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Asthma has a high prevalence worldwide, and contributes 
significantly to the socioeconomic burden. According to a 
classical paradigm, asthma symptoms are attributable to an 
allergic, Th2-driven airway inflammation that causes airway 
hyperresponsiveness and results in reversible airway obstruc-
tion. Diagnosis and therapy are based mainly on these patho-
physiologic concepts. however, these have increasingly been 
challenged by findings of recent studies, and the frequently 
observed failure in controlling asthma symptoms. Important 
recent findings are the protective “farm effect” in children, the 
possible prenatal mechanisms of this protection, the recog-
nition of many different asthma phenotypes in children and 
adults, and the partly disappointing clinical effects of new tar-
geted therapeutic approaches. systems biology approaches 
may lead to a more comprehensive view of asthma patho-
physiology and a higher success rate of new therapies. 
systems biology integrates clinical and experimental data by 
means of bioinformatics and mathematical modeling. In gen-
eral, the “-omics” approach, and the “mathematical modeling” 
approach can be described. Recently, several consortia have 
been attempting to bring together clinical and molecular data 
from large asthma cohorts, using novel experimental setups, 
biostatistics, bioinformatics, and mathematical modeling. This 
“systems medicine” approach to asthma will help address the 
different asthma phenotypes with adequate therapy and pos-
sibly preventive strategies.

IntroductIon
Asthma is classically defined as an inflammatory chronic air-
way disease characterized by reversible airway obstruction 
and airway hyperresponsiveness (1). It affects 200–300 million 
people worldwide, and its prevalence has increased over the 
past few decades (2). Up to 10% of all cases of asthma are con-
sidered to be severe (3). Typically, the inflammation in asthma 
is described as being allergic, eosinophilic, IgE dependent, 
and Th2 driven (4). Therefore the therapy (besides broncho-
dilation) mainly addresses eosinophilic inflammation, either 
nonspecifically using topical or systemic glucocorticoids or 
antileukotriene drugs, or specifically addressing IgE using 
“biological therapies”; in the future, interleukin (IL)-13, IL-5, 
and others may also find use (5). However, in many patients 

it has not been found to be impossible to achieve sufficient 
control of asthma symptoms. This is partly because >50% of 
asthma patients do not show a persistent eosinophilic inflam-
mation (6), thereby seriously challenging the classical patho-
physiological concepts. Systems-based approaches can help to 
establish a comprehensive and testable new hypothesis of the 
pathophysiology of the different phenotypes of asthma (7).

clInIcal challenges In asthma
Caring for patients with asthma, especially children, pro-
vides many challenges, including long-term patient education, 
addressing socioeconomic and psychological issues, and choos-
ing the right inhalation device,. In this paper we focus on some 
issues arising from recent pathophysiologic findings that can 
benefit from a systems biology or systems medicine approach.

“Farm Effect”
The risk and the disease course in asthma are associated with 
environmental factors. More than 20 years ago, it was pro-
posed that “…allergic diseases are prevented by infection in 
early childhood, transmitted by unhygienic contact with older 
siblings, or acquired prenatally…” (8). In the same year, a 
report from Sweden (9) implicated a protective effect of rural 
environment for asthma or allergic rhinitis. In children of 
ages 5 to 7 years living on a farm in Germany, contact with 
livestock seemed to protect against asthma and atopy (10). In 
rural areas in Austria, Germany, and Switzerland, it has been 
shown that exposing children under the age of 1 year to stables 
and feeding them farm milk reduced the prevalence of asthma 
and, independently, atopic sensitization as well. This protec-
tive effect was not observed in children living in the same area 
who did not have direct contact with a farm environment. 
The protective effect was strongest in children who had been 
exposed to stables up to the age of 5 years (11). The effect was 
specifically correlated with exposure to cattle, pigs and poultry, 
hay, grain, straw, and silage, and the consumption of unpro-
cessed cow’s milk, thereby suggesting that the ingestion and/
or inhalation of certain substances in the farm environment 
are highly relevant to the protective effect (12). Other studies 
found that asthma was negatively or positively correlated with 
various infections (13). Colonization with Helicobacter pylori 
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was demonstrated to be negatively correlated with childhood 
asthma (14). In the same rural environment, a study tested 
the hypothesis that exposure to a particular microbial compo-
nent (lipopolysaccharide) rather than infection per se might 
offer a protective effect against asthma (15). A later study has 
shown a protective effect against asthma for a constituent of 
peptidoglycan from Gram-negative or Gram-positive bacteria 
(16). Interestingly, prevalence of hay fever, atopic asthma, and 
atopic sensitization—but not nonatopic wheeze—in children 
was inversely related to endotoxin levels in samples of dust 
from the children’s mattresses. More recently, the same group 
of researchers showed that the protective effect against asthma 
correlated with the diversity of microbial exposure, especially 
exposure to particular fungal and bacterial (Listeria monocyto-
genes, Bacillus licheniformis, and others) species (17).

It was possible to mimic these effects in murine models of 
allergic airway inflammation. In the classical approach, Th2-
biased mouse inbred strains were sensitized by intraperitoneal 
application of ovalbumin/aluminium hydroxide (as adjuvant) 
and challenged by ovalbumin inhalation to provoke eosino-
philic airway inflammation. In primary preventive approaches, 
intranasal application of substances or nonpathogenic microbes 
found in cowshed dust, fodder, or farm children’s mattresses 
was shown to reduce or prevent eosinophilic airway inflam-
mation and airway hyperresponsiveness (12). Among other 
agents, arabinogalactanes, Gram-positive and Gram-negative 
bacteria, and dust extracts were tested.

A recent meta-analysis of published literature up to September 
2011 analyzed data from 39 studies on the “farm effect” in 
asthma (18). Most of these studies applied cross-sectional 
approaches, and there were great variances and heterogeneity 
in definitions, in the prevalence of asthma or wheeze, as well 
as in the extent of reported correlations. Despite these limi-
tations, childhood exposure to farming environment appears 
to account for a 25% lower prevalence of  doctor-diagnosed 
asthma and current wheeze.

The heterogeneity in protective effects has been attributed to 
several factors. For instance, the assessment of a “farming envi-
ronment exposure” generally relied on retrospective descrip-
tions of places of upbringing, parents’ occupation, etc. (18). In 
addition, it has been argued that the farming environment in 
Switzerland, Austria, and Southern Germany may be charac-
terized specifically by small and traditional farms containing 
only livestock, in particular cattle, and involving close contact 
between the children and the farm environment (12). Also, the 
usefulness of “doctor-diagnosed asthma” may be hampered by 
variances in definitions of asthma and in disease labeling. In 
addition, the tendency to label a disease condition as “asthma” 
might be greater in some populations (19).

One argument that questions the classical hypothesis of the 
role of hygiene in asthma is based on some pathophysiologic 
observations. For example, the protective effect is studied 
mostly on an atopic, eosinophilic, and Th2-driven background, 
but cowshed dust components do not change the inflamma-
tory environment toward the Th1 direction (12). In fact, a 
farm environment seems to offer protection against nonatopic 

asthma or wheeze as well (11,20). Another reason for skepti-
cism of the classical hypothesis is that the overall decline in 
asthma prevalence in children and adults over the past decade 
does not seem to correlate with decreased hygiene, and nei-
ther does the increase in asthma prevalence in US inner city 
populations correlate with increased hygiene (13). Ironically, 
adults in a farming environment might face an increased risk 
for nonatopic asthma (21). An interesting new idea in this con-
text is the “diversity hypothesis” of atopy (22). It suggests that 
too low a level of contact with natural environmental biodiver-
sity adversely affects the human commensal microbiota, lead-
ing to inadequate stimulation of immunoregulatory circuits. A 
recent study in 14- to 18-year-old children in eastern Finland 
revealed that atopic individuals had lower environmental bio-
diversity in the surrounding of their homes and significantly 
lower generic diversity of Gram-negative Gammaproteo bac-
teria on their skins (23). Taken together, the “farm effect” or a 
modified “hygiene hypothesis” may offer potential for a truly 
preventive strategy in asthma. However, recent observations 
show inconsistent results, and there is a strong urge for a more 
comprehensive picture. This can possibly be achieved by mod-
ern “omics” technologies using systems approaches (24).

Prenatal Asthma Protection
Various observations imply that there may be a  trans-placental 
transmission of asthma risk from mother to child (25). A 
potentially preventive strategy could arise from an interest-
ing offshoot of the “farm effect”; because atopy and wheeze 
can occur early in life, it is likely that the predisposing events 
happen even earlier. A study in a British cohort showed that 
the use of antibiotic drugs during pregnancy increased the 
newborn’s risk for wheeze and asthma (26). This effect did 
not depend on the group of antibiotics to which the drug 
belonged or the trimester of pregnancy during which the drug 
was taken, but increased with the overall number of antibiot-
ics administered. Ege et al. found that maternal exposure to a 
farming environment during pregnancy increased atopic sen-
sitization of the offspring (27), suggesting a role for intrauter-
ine and epigenetic mechanisms. A European cross-sectional 
questionnaire survey also showed that maternal exposure to 
a farm environment during pregnancy had a protective effect 
against asthma and hay fever in the offspring(28). In general, a 
very tight interaction has been shown to exist between mater-
nal trans-placental signals and the fetal immune system; for 
instance, maternal cells cross the placental barrier, settle in 
the offspring’s lymph nodes until early adulthood, and sup-
press anti-maternal immune reactions by induction of fetal 
regulatory T cells (29). A glimpse of the specific immunologic 
background of this in utero protective effect against asthma is 
seen in the results of an analysis of cord blood T cells from 
82 mothers in a rural area of southern Germany (30). In the 
cord blood samples of children of mothers who had lived and 
worked regularly on a farm during pregnancy, the number and 
function of regulatory T cells were increased, and IL-5 secre-
tion in response to innate stimulation was reduced. Following 
up on this, a prospective study in a multinational birth cohort 
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demonstrated that farm exposure enhances the secretion of 
interferon-γ (IFNγ) and tumor necrosis factor-α in response 
to stimulation of cord blood mononuclear cells, whereas no 
differences could be observed within respect toof IL-5, IL-10, 
and IL-12 (31). Similarly, in an Australian prospective birth 
cohort, a negative correlation was observed between IL-4- and 
IFNγ-levels in cord blood and asthma at 6 years of age (32). 
In contrast, elevated tumor necrosis factor-α levels correlated 
negatively with atopy only, and not with asthma.

This in utero preventive effect was reproduced in a murine 
ovalbumin model of allergic airway inflammation. Exposure 
to lipopolysaccharide before conception and during pregnancy 
reduced eosinophilic airway inflammation in the offspring in 
response to challenge with ovalbumin (33). More specifically, 
female mice were exposed intranasally before conception to 
Acinetobacter lwoffii, a Gram-negative bacterium found in 
cowshed dust (34). The asthma-protective effect in the off-
spring depended on low-level maternal inflammation. This 
could be inhibited by maternal knockout of Toll-like receptors, 
thereby mediating bacterial recognition. An interesting mech-
anistic insight arose from a study using the same experimen-
tal model (35). The Th2-response in the offspring was found 
to be reduced by elevated levels of IFNγ. Maternal bacterial 
exposure prevented histone modifications at T-cell promot-
ers of IFNγ and IL-4, but not IL-5, after ovalbumin challenge. 
The protective bacterial effect mediated by increased histone 
H4 acetylation at the IFNγ promoter was preventable by use 
of an inhibitor of histone acetyl transferases. So far, nothing is 
known about the epigenetic effects on other asthma-relevant 
promoters.

Taken together, prenatal asthma protection afforded by a 
farming environment might be mediated by trans-placental 
transfer of cytokines and subsequent epigenetic events, e.g., in 
fetal immune cells. Further studies are needed to draw a com-
prehensive picture of these events in animal models as well as 
in humans.

Many Different Phenotypes?
For a long time, asthma has been characterized clinically on 
the basis of intermittent respiratory symptoms, reversible air-
flow obstruction, nonspecific bronchial hyperresponsiveness, 
and airway inflammation. Motivated in part by the unsatisfac-
tory effectiveness of treatment strategies, recent hypotheses 
suggest that asthma is a syndrome containing different pheno-
types that could be characterized by environmental triggers or 
by immunologic or molecular markers (36).

In children, diagnosis and prognosis of asthma are com-
plicated by the fact that wheezing and asthma in pre-school-
age children are very heterogeneous in clinical phenotypes. 
Although daily impairment is usually rare, short but recurrent 
infection-triggered exacerbations are associated with cough 
and wheeze. Nonatopic wheezing is especially challenging in 
terms of diagnosis, therapy, and prognosis.

Valuable parameters for diagnosis are partially reversible 
airflow obstruction and lung function, allergen sensitization, 
increased IgE levels, and blood eosinophilia. However, reliable 

lung function measurements cannot be achieved in very young 
children. In addition, there is as yet no specific parameter or 
biomarker predicting persistent asthma.

In terms of therapy, there are only limited data within 
respect toof different treatment regimes in young children, 
even for distinct phenotypes. The impact of the develop-
ing airways on drug deposition is an issue, as is the effect of 
inhaled corticosteroids on growth and development. Recent 
reports suggest that the daily use of inhaled corticosteroids in 
children is associated with a reduction in linear growth, and 
that symptom-driven inhalation of corticosteroids is equally 
effective with fewer side effects (37,38). Overall, however, an 
effective strategy to prevent asthma or stop it from worsening 
is not yet in sight.

WithAs regard tos asthma in adults, the phenotype chal-
lenges remain. In a study aimed at phenotype identification 
by clinical features alone, data from 726 subjects from a per-
sistent asthma cohort were analyzed using an unsupervised 
hierarchical cluster analysis of 34 clinical variables, including 
age at onset, gender, body weight, degree of airflow limitation, 
reversibility of airflow limitation, and frequency of asthma 
exacerbation (39). The authors showed that the resulting five-
patient cluster could be correctly characterized on the basis of 
onlymerely three clinical parameters: pre- and postbronchodi-
lator percentage of predicted forced expiratory volume in 1 s 
and age of onset of asthma. However, this cluster did not cor-
relate with the terms “severe asthma” and “treatment refrac-
tory asthma.” In another study in 2,536 adults with asthma, 
latent class analysis was applied on 19 variables to identify four 
subgroups, including active treated allergic childhood-onset 
asthma and active treated adult-onset asthma (40). The groups 
partly correlated with eosinophil and neutrophil counts. A 
wider approach including clinical, physiologic, and pathologic 
parameters in a k-means cluster analysis has been performed 
by Haldar et al. (3). The authors studied two distinct asthma 
populations: a group from primary care with mild to moder-
ate asthma and a group from secondary care with refractory 
asthma. In the mild asthma group, three clusters could be 
identified: (i) early-onset atopic asthma (airway dysfunction, 
asthma symptoms, and eosinophilic airway inflammation, fre-
quent exacerbations requiring oral corticosteroids), (ii) obese 
noneosinophilic asthma (preponderance of female subjects, 
asthma symptoms, absence of eosinophilic airway inflamma-
tion), and (iii) benign asthma (middle-aged, little evidence 
of asthma symptoms, airway inflammation, airway hyper-
responsiveness, and exacerbations). In the refractory asthma 
population, four clusters were identified: (i) early-onset atopic 
asthma (see earlier text), (ii) obese, noneosinophilic asthma 
(see earlier text), (iii) early-onset, symptom-predominant 
asthma (minimal eosinophilic disease), and (iv) eosinophilic 
inflammation-predominant asthma (few symptoms, late-onset 
disease, greater proportion of male subjects). The first two 
clusters were concordant; disease severity differed in cluster 1, 
which seemed to be strongly associated with a lack of patient 
compliance. Interestingly, degrees of eosinophilic inflamma-
tion and symptoms were discordant in clusters 2 and 3 of the 
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refractory asthma group. This may give rise to overtreatment 
and treatment failure with inhaled corticosteroids in these 
groups.

New phenotypes may be discovered even by small observa-
tional studies. For instance, a study in 19 subjects with severe 
asthma and requiring daily systemic corticoids applied a 
technique involving video-assisted thoracoscopic biopsies to 
identify a histologic phenotype of interstitial nonnecrotizing 
granulomas in 10 patients (41).

An important issue in defining subgroups of asthma in chil-
dren or adults is the question of time, i.e., phenotype stabil-
ity. Using repeated measures of sputum cytology in a cohort of 
51 children with severe asthma and 28 with mild to moderate 
asthma, subjects were classified as eosinophilic, neutrophilic, 
mixed granulocytic, or paucigranulocytic. A total of 63% of 
the children were grouped into two or more phenotypes, and 
41% were transiting between noneosinophilic and eosinophilic 
asthma (42). These changes do not correlate with inhaled cor-
ticosteroid treatment, but might depend on variable adherence 
to treatment protocols or to variations in exposure to allergens 
or viruses over time. Similarly, in adults with asthma who were 
not taking inhaled glucocorticoids, three subgroups could be 
defined by sputum cytology: persistent eosinophilia (22%), 
intermittent eosinophilia (31%), and persistent noneosino-
philia (47%). Not surprisingly, the third group did not benefit 
from a combined anti-inflammatory therapy with corticoster-
oids and a leukotriene receptor antagonist. Recent approaches 
aim to widen the field of phenotype definition from clinical 
presentation and sputum cytology to molecular markers and 
mechanisms (43).

The central goals of the phenotyping efforts are to devise 
improved and targeted therapeutical strategies, especially for 
difficult-to-treat asthma. In this context, the reduced effec-
tiveness of inhaled glucocorticoids is an important chal-
lenge. It seems to be partly associated with a polymorphism 
in the  glucocorticoid-induced transcript 1 gene (44). Even 
more prominent may be the effect of differences in phe-
notypes; patient groups with high symptom levels but low 
eosinophilic inflammation seem to have only moderate ben-
efit from inhaled glucocorticoids (3). An issue in terms of 
therapy is also the retrospective observation that Americans 
with African ancestry showed greater deterioration when 
treated with long-acting β-agonists (45). There is a debate on 
whether treatment with this substance group alone without 
inhaled corticosteroids leads to increased mortality (46), and 
whether mutations in the β2-adrenoreceptor have an impact 
on the drug’s effect on peak flow and disease symptoms (47). 
In noneosinophilic subgroups of asthma patients, recent 
studies with low patient numbers suggest a beneficial effect 
of long-acting anticholinergic drugs (48), or macrolide anti-
biotics (49).

Considering all aspects together, there is a strong medical 
need and an intellectual rationale to not “abandon asthma as a 
disease concept” (50), but to undertake phenotyping or “endo-
typing” (51) even on the molecular and “omics” level (43) so as 
to improve clinical asthma therapy using targeted approaches.

(Failure of) Targeted Therapies
Given theThe fact that there are a significant number of patients 
with severe or difficult-to-treat asthma, andgiven the reluctance 
of patients to use glucocorticoids, there have been attempts to 
translate basic research findings into new clinical treatment 
strategies. Typically, they target a single factor of the assumed 
asthma pathogenesis.

Anti-IgE therapy has shown to reduce days with asthma 
symptoms, hospitalizations, exacerbations, and the daily dose 
of an inhaled glucocorticoid that was needed to maintain dis-
ease control in children (52). Responsive phenotypes seem to be 
characterized by higher blood eosinophil counts, higher levels 
of exhaled nitric oxide, a total IgE level of >100 IU/ml, and a 
body mass index of >25. Interestingly, sensitization and expo-
sure to cockroach allergen was also predictive of a good clinical 
response.

The outcomes of anti-IL-5 therapy have been disappointing 
(53). With regard to (sub-) phenotypes, there are indications 
that anti-IL-5 therapy can lead to moderate improvement in 
lung function tests and reduced incidence of severe exacerba-
tion in patients with uncontrolled, eosinophilic asthma (54,55), 
and possibly nasal polyps (56).

Several strategies to block IL-4 signaling have been applied in 
asthma patients. Inhaled recombinant human sIL-4R showed 
initial promising effects on lung function and airway inflamma-
tion (57). However, results for this and other anti-IL-4 strategies 
have been inconsistent. Given that IL-4 and IL-13 are redun-
dant in that they share the IL-4 receptor α, strategies against this 
receptor have been developed, including a mutated recombinant 
human IL-4 (“IL-4 mutein”). First results of this approach hint at 
a beneficial effect in eosinophilic asthma (58).

In a cohort of 219 patients with poorly controlled asthma, 
anti-IL-13 therapy was shown to enhance the prebronchodila-
tor forced expiratory volume in 1 s after 12 wk of treatment, but 
did not reduce the occurrence of exacerbations and symptoms 
of asthma (59). The patient phenotype with the best treatment 
results seems to be characterized by higher levels of periostin 
(a cytokine produced by the lung epithelium in response to 
IL-13) and exhaled nitric oxide.

Challenging the most widely applied strategy to address 
modulators of the Th2 and IgE axis, data have emerged that 
support a role for tumor necrosis factor-α in human refractory 
asthma (60). However, recent studies targeting tumor necrosis 
factor-α in human subjects have failed to show improved clini-
cal end points (61).

Most of these targeted therapeutical approaches have been 
initially successfully tested in mouse models. There are difficul-
ties in translating these findings to the clinical setting because 
murine models have certain limitations: (i) mice are not 
humans, includingincluding in immunologic and pulmonary 
aspects (62), (ii) the classical experimental setup tests primary 
or secondary prevention rather than therapy, and (iii) the for-
merly common murine model used sensitization with ovalbu-
min and adjuvants such as aluminum hydroxide followed by a 
challenge with ovalbumin to provoke a Th2-driven eosinophilic 
airway inflammation and hyperresponsiveness (63). These 
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models are certainly unphysiologic and, most importantly, tai-
lored to mimic just one specific phenotype of human asthma. 
Therefore they might not be useful in predicting therapeutic 
success in a diverse patient population.

systems BIology WorKBench
Systems biology is a new interdisciplinary approach to bio-
medical research. The key elements of this approach are: (i) 
the retrieval of large-scale sets of quantitative experimental 
data, either clinical or biological, and (ii) the use of advanced 
mathematical techniques to process, analyze, and interpret 
these data. The discoveries of the past decade have revealed 
that many diseases with high prevalence are of multi-factorial 
nature. It therefore becomes necessary to accumulate massive 
amounts of clinical and biological data in order to discover the 
origins of diseases and to improve success rates with respectas 
regards to early detection and treatment. Unfortunately, mas-
sive volumes of high-throughput biological data evade direct 
interpretation. Proteins, miRNAs, and metabolites are parts of 
large and complex biological regulatory networks, which often 
show counterintuitive behavior elicited by the complex nature 
of the interactions encoded in these networks. This calls for 
the use of powerful mathematical methods to dissect the data 
in order to find and interpret the complex relations hidden 
in them, explain the causes of diseases, and provide pointers 
about how to fight them.

Systems biology emerged as a strategy to tackle this difficult 
task of extracting new insights from complex quantitative bio-
logical data. To date, there is no standard for the application of 
systems biology to the investigation of biomedical problems; 
the strategies used vary depending on the nature and amount 
of data available and the questions to be addressed. We can dis-
tinguish two main approaches in systems biology—the “omics” 
approach with data analysis, and the mathematical modeling 
approach.

The “Omics” Approach With Data Analysis
This approach relies on the collection and analysis of mas-
sive volumes of clinical, quantitative, high-throughput data 
(genomic, transcriptomic, or proteomic), alone or in combi-
nation with other biometric information such as the preva-
lence rate of the investigated disease and other demographi-
cal data (Figure 1). The approach is used to analyze tissue- or 

plasma-specific concentrations of dozens to thousands of 
proteins, mRNAs, miRNAs, and other relevant biomolecules, 
extracted from a population sample relevant for the disease 
under investigation. Once collected and processed, the data 
are analyzed using advanced statistical and computational 
methods (64). The aims and final outcomes of this analysis can 
be diverse. For example, the analysis can be used to classify 
the patients in different groups according to their expression 
profiles and verify whether this correlates with the progres-
sion status of the investigated disease. In such an approach, 
one can obtain disease-associated genetic signatures, a group 
of genes whose combined expression pattern is linked to the 
development of the disease. This procedure has been remark-
ably successful in oncology, and some of the genetic signatures 
have proved to have predictive abilities: they can predict the 
future progression of the disease in the relevant patients and 
are useful in designing prognostic tests (65). These techniques, 
although not yet completely established within respect toof 
inflammatory diseases, can be a promising approach to gain 
insights into the relevant genes involved.

The approach can also be used to map asthma-related sig-
naling networks and help in designing functional experiments. 
Zou and coauthors combined microarrays with real-time 
PCR to identify and validate differentially expressed genes in 
a monkey model of allergic asthma (66). The authors tested 
approximately 40,000 RNAs and found 169 items with highly 
differentiated expression levels. These genes were grouped into 
five clusters with unique expression patterns, one containing 
asthma-related genes coding, e.g., eotaxin, PARC, MCP-1, and 
MCP-3. Park and collaborators performed transcriptional time 
courses in the lungs in a mouse model of asthma for 9 wk after 
exposure to aerosolized ovalbumin (67). They found a total of 
776 differentially expressed mRNAs. Among these, most of 
the immune-responsive mRNAs were found to be transiently 
upregulated in the early phase of the allergen treatment (within 
1 wk), but not for a longer duration (up to 6 wk), thereby sug-
gesting that homeostatic mechanisms act as potential regula-
tors of an allergic inflammatory reaction in chronic asthma.

It is not only RNA that is accessible on a broader level; Gray 
and colleagues used sputum proteomics to identify poten-
tial biomarkers of inflammatory lung disease (68) including 
asthma, chronic obstructive pulmonary disease (COPD), cys-
tic fibrosis, and bronchiectasis. Using surface-enhanced laser 
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desorption/ionization time-of-flight to analyze the samples, 
the authors identified 105 potential biomarkers for asthma. 
Along similar lines, Zhao and coauthors investigated altera-
tions in the global protein expression in the bronchoalveolar 
lavage fluid in a mouse model of allergic airway inflammation 
(69). The authors identified 28 proteins that were significantly 
altered in the experimental group as compared with the con-
trols. The group of overexpressed proteins included lungkine, 
Ym1, Ym2, acidic mammalian chitinase, gob-5, and surfactant 
protein-D. Proteomics can also address protein modifications; 
Ghosh and collaborators evaluated the oxidation of proteins 
in an allergen-induced murine model of asthma (70). More 
than 30 different proteins were identified as nitration targets in 
response to an allergen challenge. Among them was the anti-
oxidant enzyme catalase, the activity of which has been found 
to be downregulated by up to 50% in bronchoalveolar lavage 
fluid of humans with asthma. Further experiments showed 
increased oxidation in catalase isolated from asthmatic air-
way epithelial cells. These results pointed to the possibility that 
intense oxidative reactions contribute to the chronic inflam-
matory state found in asthmatic airways, consequent to the 
inactivation and loss of activity of catalase and other oxidative-
stress-related proteins. Data analysis is an essential approach 
in the study of asthma-associated pathophysiology; Jardim 
and coauthors used miRNA expression data in human airway 
cells from donors with asthma in order to identify asthma-
associated genes (71). After profiling miRNA expression of 
human bronchial epithelial cells, they found that the expres-
sion profiles of 66 miRNAs differed significantly between the 
two groups. Three of them were validated using real-time PCR 
data from an additional 16 asthma patients and 16 healthy sub-
jects. A final set of functional assays was performed to confirm 
AQP4, a target of the highly downregulated miRNA-203 in 
asthmatic cells, as a novel asthma-associated gene.

It is possible to use omics data analysis to assess the global 
effect of anti-asthma drug administration. O’Neil and collabo-
rators used quantitative proteomics on asthmatic bronchi to 
investigate the effects of inhaled glucocorticoid treatment (72). 
The authors carried out a double-blind treatment experiment 
with either placebo or budesonide (800 μg daily for 3 mo) on a 
cohort of 15 subjects, of which 12 were patients with asthma. 

Endobronchial biopsies of the patients were obtained and ana-
lyzed using proteomics techniques. They found significant dif-
ferences between treated and nontreated patients with respect 
to expression levels of proteins associated with pathways linked 
to acute phase response signaling, cell-to-cell communication, 
and tissue development.

Data-Driven Mathematical Modeling of Biochemical Networks
The mathematical modeling approach is focused more on 
establishing the biochemical mechanisms underlying a dis-
ease. In the past decade, experimental evidence has supported 
the idea that biological networks controlling cell function and 
tissue organization very often show nonlinear behavior. This 
originates in their structural complexity, which invalidates the 
use of direct intuition to understand their regulatory processes. 
Under these conditions, mathematical modeling of biochemi-
cal networks emerges as a methodology to dissect the func-
tion and regulation of biological networks (73). The method 
is an iterative process that involves: (i) the reconstruction of 
the relevant biochemical network using prior knowledge and 
the hypotheses under investigation; (ii) the translation of the 
network into a mathematical model; and (iii) the integration of 
the mathematical model with quantitative experimental data 
in iterative cycles, aiming to refine or reformulate the hypoth-
eses (Figure 2). The outcome of the process is a more precise 
understanding of the structure, regulation, and function of the 
network, with the potential to help in the designing of more 
directed therapies.

The modeling of biochemical pathways involved in the reg-
ulation of the inflammatory response has been addressed in 
many papers during the past decade (74–78). Further, in the 
past few years several studies have adopted this approach to 
address some aspects of the molecular basis of asthma.

Hwang and coauthors constructed protein–protein inter-
action networks that represent proinflammatory and cellular 
proliferation signaling pathways in asthma, by extracting data 
from different resources including text mining of the OMIM 
database, microarrays from the GEO database, and protein–
protein interactions from the Human Protein Reference 
Database (79). The authors used the network to identify puta-
tive drug target genes for asthma.
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Significant progress has also been made with respect to sys-
tems immunology. For instance, the IL-4-dependent activation 
of the important Th2-driving transcription factor GATA-3 has 
been modeled mathematically (80). The model implied that a 
bi-stable system is created by GATA-3 autoactivation, and that 
this can constitute a Th2 memory through a transient inductive 
signal. Subsequently, a model of differentiation of helper T cells 
was proposed, describing the expression of, and interactions 
between, the master regulators (i.e., transcription factors) that 
determine the phenotypic polarization toward Th1 or Th2 (81). 
Also, using elegant single-cell measurements and modeling, 
Podtschaske et al. showed that graded T-cell receptor signaling 
results in graded activation of the transcription factor nuclear 
factor κB, but a digital activation of transcription factor NFATc2 
results in a switch that regulates the number of T lymphocytes 
actively participating in an immune response (82). In addition, 
cytokines such as IL-2, which have different effects on different 
populations of T lymphocytes, have also been studied by com-
bined experimentation and modeling approaches specifically 
addressing the spatiotemporal complexity (75).

Mathematical modeling can also be a useful tool in biomedi-
cal research, ignoring the molecular details of the specific dis-
ease. For example, Frey and colleagues developed a mathemati-
cal model to investigate memory effects of the pathophysiology 
and pharmacodynamics of asthma (83). Using stochastic mod-
eling and detrended fluctuation analysis, the authors investi-
gated whether their methodology could be used to establish 
a correlation between past, current, and future lung function 
in patients. Toward this end, the authors computationally ana-
lyzed day-to-day data accounting for the fluctuations in lung 
function (i.e., peak expiratory flow) in patients with chronic 
asthma. They aimed to determine whether the future risk of 
asthma exacerbation could be predicted from fluctuations in 
peak expiratory flow, and how these results may be affected by 
bronchodilator therapy. Their method can also be used to pre-
dict the probability of future occurrences of asthma exacerba-
tion, using current baseline fluctuation data of peak expiratory 
flow. A subsequent study by Frey’s group indicated that, with 
regular use of short-acting β2-agonists (but not long-acting 
ones), the fluctuation in lung function becomes more ran-
dom and less predictable; according to the authors, this leads 
to increased risk of future occurrences of asthma exacerba-
tion (84). There is also evidence to show that different types 
of asthma, such as cough-variant asthma and classical asthma, 
show different peak expiratory flow values. It is therefore pos-
sible to identify various asthma phenotypes using a simple 
parameter in Frey’s model, conferring potentially important 
diagnostic value in the future (85).

Multiscale Modeling of Asthma
Mathematical models are also a useful strategy to integrate 
diverse sources of quantitative biological data. These data relate 
to different levels of organization in the body, from the regula-
tion of intracellular biochemical networks to the structure and 
functioning of tissues and organs (86). This approach offers 
the potential to connect the genetic or epigenetic causes of a 

disease with their phenotypic effects at the organ level, using 
mathematical modeling. In line with this attempt, a multi-scale 
mathematical model was recently proposed to address airway 
hyperresponsiveness (87). The model is composed of different 
interconnected modules that are used to integrate experimental 
data for intracellular, cellular, tissue, and organ events that are 
relevant in asthma-related bronchoconstriction. For example, 
the model takes into account: (i) the kinetics of actin-myosin 
contractile protein production and depletion (intracellular 
event); (ii) the Ca2+-signaling mechanisms that regulate air-
way smooth muscle force production (cellular event); (iii) the 
interplay of mechanical forces that determine airway narrowing 
(tissue-level event); and (iv) the time-dependent distribution of 
airway smooth muscle contraction through the lung (whole-or-
gan-level events). The authors claim that, when considered along 
with many other aspects of lung physiology, their model can be 
used to make predictions about bronchoconstriction, thereby 
helping to gain insights into airway hyperresponsiveness with a 
view to predicting potential therapies for asthma.

In a similar effort, Patel and coauthors developed a model 
to investigate lung deposition of inhaled drugs during asthma 
(88). Starting from a previously published model of the healthy 
human respiratory system (89), the authors developed a com-
putational model that can simulate different levels of asthma 
severity, as well as various asthma-associated symptoms, 
including bronchoconstriction, inflammation, and mucus pro-
duction. Further, the model allowed for the simulation of the 
administration of inhaled anti-asthma drugs. With the help 
of the model, various ventilation schemes (through different 
configurations of factors such as particle size and ventilatory 
parameters) were simulated and compared so as to investigate 
intersubject variability in breathing patterns after drug admin-
istration in asthma. This effort illustrated how computational 
models can be used to improve and personalize the therapy 
outcome in asthma patients.

systems medIcIne aPProach
Within the past few decades, enormous scientific and techno-
logical progress has been made both in clinical medicine and 
biomedical research. However, there are two observations that 
are worrisomeying. First, despite all efforts by academia, the 
industry, government agencies, and even private foundations, 
there is still a tremendous unmet medical need with respect 
toas regards asthma treatment. Second, the gap between clini-
cal medicine and basic research is getting wider in many coun-
tries. Even communication between different subdisciplines, 
e.g., immunologists, physiologists, and geneticists, is becom-
ing more and more difficult. Theis second shortcoming might 
even hamper efforts to overcome the first one. Ironically, a 
third “kingdom”—mathematics—historically quite isolated 
from clinics and wet-lab research, might help to translate clini-
cal problems in a valid way to basic science and the putative 
solutions back to the clinic to help patients.

The use of systems medicine in asthma could be a fruitful 
endeavor, given that the disease constitutes a huge socioeco-
nomic burden, presents several clinical problems, challenges 
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scientific hypotheses, and is fully furnished with big clinical 
cohorts, multiple experimental models, and a tremendous 
amount of isolated scientific insights waiting for a big picture to 
emerge. One possible workflow of systems medicine in asthma 
is to integrate medical needs, patient cohorts undergoing com-
prehensive clinical phenotyping, and molecular omics data 
with a systems biology workbench, combining comprehensive 
bioinformatics and biostatistics, mathematical modeling, and 
experimental wet-lab research in animal, tissue, and cellular 
models. Figure 3 shows a workflow that will be established in 
the systems biology platform of the newly founded German 
Center for Lung Research, a huge translational endeavor of five 
German centers for pulmonary research funded by the federal 
government of Germany (90).

Current Initiatives
In recent years, the application of systems biology or systems 
medicine in respiratory medicine, especially asthma, has been 
attracting increasing interest from the scientific community 
and funding agencies in many countries. Some of the resulting 
scientific consortia are mentioned here. However, the list is not 
complete.

The Unbiased Biomarkers for the Prediction of Respiratory 
Disease Outcome Consortium (U-BIOPRED) is a European 
project involving scientists from universities, research insti-
tutes, the pharmaceutical industry and small companies, 
and part of the Innovative Medicines Initiative (91). It aims 
at a personalized management approach for patients with 
severe asthma by integrating omics data from invasively and 
noninvasively obtained patient material to define pheno-
types with respect to therapeutic efficacy (7). It takes part in 

the Airway Disease Predicting Outcomes Through Patient 
Specific Computational Modeling Consortium (AirPROM), 
a project funded by the European Union seventh framework 
program. AirPROM integrates expertise in physiology, radi-
ology, image analysis, bioengineering, data harmonization, 
security and ethics, computational modeling, and systems 
biology to develop validated models that predict disease pro-
gression and response to treatment in asthma and COPD. 
Another project within the European Union seventh frame-
work program is Synergy-COPD, which aims to develop a 
prediction tool to enable physicians to decide on the use of 
specific rehabilitation therapies for individual patients with 
COPD. As part of this, five previously validated mathemati-
cal models on oxygen uptake and usage from lung to mito-
chondria are to be integrated (92). Synergy-COPD is also 
part of the Virtual Physiological Human Network of excel-
lence (VPH-NoE). Within the European Union, this proj-
ect aims to integrate patient-specific computer models for 
personalized and predictive health care and tools for model-
ing and simulation of human physiology and disease-related 
processes. Different disease- or organ-centered exemplar 
projects exist. The project resembles the IUPS-Physiome 
project of the International Union of Physiological Sciences, 
which also contains a pulmonary disease branch, develop-
ing and coupling models of air flow, blood flow, soft tissue 
mechanics, gas exchange, heat and water balance, and inert 
gas mixing in anatomically relevant geometric meshes (93).

conclusIon
Recent developments contain perspectives for asthma pre-
vention; on the other hand, they challenge our concepts of 
asthma development, pathophysiology, diagnostics, and ther-
apy. Efforts aimed at a “systems medicine” approach to asthma 
treatment might be the only way to deal with the enormous 
amount of data arising from large asthma cohorts, complicated 
(including even prenatal) timelines, comprehensive clini-
cal phenotyping, and technologic possibilities, such as next-
generation sequencing and the use of genome-wide epigenet-
ics, splice variants, RNA editing, microbiomes,. Although all 
these hold out promise of interesting times for scientists and 
for better patient care in the future, the integration of many 
professional disciplines, from in silico and in vitro to in vivo, 
will need enthusiasm and hard work from all sides and, last 
but not least, sustained funding, for this new discipline.
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