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Atopic dermatitis (AD) is characterized by skin barrier defects 
and increased interleukin (IL)-4/IL-13 expression. Recent evi-
dence also suggests the involvement of innate immunity 
including Toll-like receptors, IL-33, IL-25, and innate lymphoid 
cells in the pathogenesis of AD. This article reviews these 
innate immune components and how they may become an 
integral part of prognostic factors and therapeutic targets in 
the treatment of AD.

Atopic dermatitis (AD) is the most common chronic inflam-
matory skin disease of childhood. It affects up to 25% of 

children worldwide and 10–20% of children in the United 
States (1,2). AD is associated with food allergy, asthma, and 
allergic rhinitis. Patients with AD, particularly those with mod-
erate to severe disease, are at increased risk for skin infections, 
sleep disorders, and psychosocial morbidities including depres-
sion and anxiety disorders (3,4). The cost of AD has been esti-
mated to be as high as $3.8 billion per year in the United States 
(5). The cause of AD remains to be a subject of debate. Defects 
in the physical barrier of the skin have been proposed to play 
a primary role in the pathogenesis of AD (6). However, aller-
gic inflammation, including increased expression of T helper 
(Th) 2 cytokines such as interleukin (IL)-4 and IL-13, may also 
induce skin barrier defects in AD (7). This review aims to sum-
marize recent studies in the pathogenesis of AD.

FILAGGRIN MUTATIONS: EVIDENCE FOR PHYSICAL 
BARRIER DEFECTS AS A CAUSE OF AD
Filaggrin is an important skin barrier protein in the skin that 
functions in preventing water loss from the skin and intrusion 
by microbial pathogens and irritants (8). A breakdown prod-
uct of filaggrin, natural moisturizing factor, acts in retaining 
moisture and further contributes to the hydration of the skin. 
Before the identification of filaggrin null mutations (FLG), 
decreased expression of filaggrin has been shown in AD (9). In 
2006, Smith et al. and Palmer et al. identified FLG and showed 
significant association between FLG, ichthyosis vulgaris, and 
AD among European populations (reviewed in ref. 8). Since 
then, more than 30 independent studies worldwide have con-
firmed the association of FLG with AD. However, the majority 
of AD patients do not carry FLG. In children, FLG accounts 
for only 26.7% of the patients with AD, suggesting that 
other skin barrier genes, particularly those in the epidermal 

differentiation complex of chromosome 1q21, likely exist to 
account for the barrier defects in AD patients without FLG 
(10,11). Abnormalities in skin lipid composition (6), exces-
sive serine protease activity (as illustrated by the ichthyosiform 
disease Netherton syndrome, which is caused by mutations in 
SPINK5 that encodes for lymphoepithelial Kazal-type–related 
inhibitor) (6), claudins of tight junction (12), or suppression of 
skin barrier protein expression by inflammation (9) may con-
stitute other causes of skin barrier defects in AD. Mouse model 
of FLG has shown that deficiency of filaggrin in the skin leads 
to increased Th2 response and increased total serum immuno-
globulin E (IgE) (reviewed in ref. 8). Multiple clinical studies 
have associated FLG with IgE sensitizations, asthma, and food 
allergy (reviewed in ref. 8). Using tape stripping and measure-
ment of the concentrations of cytokines in the stratum cor-
neum using a Luminex-based multiplex system, AD patients 
with FLG were determined to have increased IL-1 expression 
in their stratum corneum, as compared to AD patients without 
FLG (13). However, the mechanism(s) how FLG leads to Th2 
inflammation in AD lesions remains unclear. A more recent 
human study showed that there was no significant difference 
in the basal ex vivo peripheral blood mononuclear cells expres-
sion of interferon (IFN)-γ or IL-4 between healthy controls, 
AD patients with or without FLG (14). All subjects were then 
sensitized to a nonallergenic chemical, 2,4-dinitrochloroben-
zene, by epicutaneous application of 2,4-dinitrochloroben-
zene. The 2,4-dinitrochlorobenzene-specific T-cell expression 
of IFN-γ and IL-4 was then analyzed. Healthy subjects were 
found to have significantly higher long-term expression of 
IFN-γ, whereas AD patients were found to have significantly 
higher IL-4 expression. Interestingly, there was no significant 
difference in the IL-4 expression between AD patients with 
or without FLG. This study suggests that FLG alone may not 
account for the pathogenesis of allergic inflammation in AD.

KERATINOCYTE DYSFUNCTIONS IN AD
Keratinocytes, the key epithelial cells of the skin, are the pri-
mary cellular source of barrier deficiency in AD. In the past 
10 years, there has also been progress in the understanding of 
keratinocytes in the immune dysregulation of AD. It has pre-
viously been shown that AD keratinocytes have an increased 
expression of granulocyte-macrophage colony-stimulating 
factor and TNF-α (15). Stimulated keratinocytes isolated from 
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nonlesional skin of AD patients showed lower expression of 
human β defensin-2, an antimicrobial peptide that chemoat-
tracts Th17 cells, as compared to that in healthy subjects and 
psoriasis patients (16). The lower antimicrobial peptide expres-
sion in AD lesions may contribute to the increased skin infec-
tions in these patients (17).

While the innate immune responses against microbial 
pathogens are downregulated in AD, there is an increased 
expression of thymic stromal lymphopoietin (TSLP), a pro-
Th2 IL-7–like cytokine, in the keratinocytes of AD lesions 
(18). TSLP activates dendritic cells (DC) to produce chemo-
kines such as thymus- and activation-regulated chemokine/
chemokine (C-C motif) ligand (CCL)17 and macrophage-
derived chemokine/CCL22, which leads to infiltration of Th2 
cells in AD lesions (19). In a recent AD mouse model, TSLP 
was shown to activate cutaneous group 2 innate lymphoid cells 
(ILCs; Figure  1) (20). ILCs are characterized by their lym-
phoid morphology, but lack recombination-activating gene–
dependent rearrangement antigen receptors and myeloid/
dendritic cell markers (20). They are divided into three groups: 
group 1 ILCs are IFN-γ–producing cells that include natural 
killer cells; group 2 ILCs produce IL-13, IL-5, and/or IL-4; and 
group 3 ILCs produce IL-17 and IL-22 (21). Group 2 ILCs were 
shown to be significantly increased in human AD lesions, as 
compared to healthy skin (20).

IL-33 and IL-25 are two other cytokines that may activate 
group 2 ILCs (22). IL-33 is an IL-1–related cytokine that 
induces allergic airway inflammation in mice in the absence of 
T and B cells (23). In addition, IL-33 has been shown to down-
regulate serum-induced expression of human β defensin-2 in 
keratinocytes (24). Immunohistochemical staining showed 

an increased number of IL-33+ cells among suprabasal kera-
tinocytes and an increased staining of ST2, an IL-33 receptor, 
among dermal infiltrates in AD lesions (25). IL-25 increases 
the expression of IL-5 and IL-13 in TSLP-DC–activated T cells 
(26). Immunohistochemical staining showed increased IL-25+ 
keratinocytes in AD lesions, as compared to nonlesional skin 
(27). There was also an increased infiltration of cells, which 
expressed IL-17Rh1, an IL-25 receptor, in AD lesions, as com-
pared to nonlesional AD skin (27). However, the majority 
of IL-25 producers are likely DC, eosinophils, and basophils 
(26,27).

Current evidence suggests that tissue repair mechanisms 
may underlie the pathogenesis of allergic inflammation (28). 
Double-stranded RNA released from damaged epithelial cells 
may stimulate Toll-like receptor (TLR) 3, leading to the pro-
duction of TSLP from keratinocytes (29). Deletion of a disinte-
grin and metalloproteinase 17 (ADAM 17), a transmembrane 
metalloproteinase that cleaves cell surface proteins and main-
tains barrier homeostasis, in murine keratinocytes has been 
shown to result in skin barrier defects and chronic dermati-
tis in mouse models (30,31). Epidermal and systemic levels 
of TSLP and IL-33 were found to be significantly elevated in 
these mice (31). Epidermal expression of IL-4 and IL-17 was 
also found to be increased in ADAM17-deleted mice (31). The 
absence of ADAM17 in the mice results in a reduction of epi-
dermal growth factor receptor and Notch signaling, which lead 
to increased expression of IL-33, and AP-1, TSLP, IL-4, and 
IL-13, respectively (30–32). However, increased expression of 
IL-17 is not a prominent feature of human AD lesions, but it is 
a characteristic of psoriatic lesions (33). In addition, homozy-
gous mutation of ADAM17 in human leads to the development 
of inflammatory bowel disease, psoriaform dermatitis, and 
recurrent Staphylococcus aureus skin infections (34). Further 
studies are needed on the role of ADAM17 in AD.

ADAPTIVE IMMUNITY: PERPETRATOR OF PERSISTENT AND 
CHRONIC INFLAMMATION IN AD
The role of adaptive immunity in the cutaneous inflamma-
tion of AD has been well established. T-cell expression of IL-4, 
IL-5, and IL-13 is significantly upregulated in both acute and 
chronic AD lesions, as compared to nonlesional AD skin and 
healthy skin (35,36). Based on atopy patch testing using house 
dust mite allergens, a biphasic model of cytokine expression by 
T cells in AD was observed: an initial increase in the infiltra-
tion of IL-4+ T cells into AD lesions, followed by infiltration 
of IFN-γ+ T cells in the chronic phase (37). T-cell activities 
in AD are directed by specialized DCs in the skin including 
epidermal Langerhans cells and inflammatory dendritic epi-
dermal cells. These cells have increased expression of high-
affinity receptor for IgE (FcεRI), which captures allergens for 
antigen processing and presentation to Th2 cells (38,39). TLR-
activated DC determines the type of T-cell response: activation 
of TLR4 on DC by microbial pathogens induces Th1 response, 
whereas activation of TLR4 on DC in the presence of TSLP 
or TGF-β and IL-6 promotes Th2 or Th17 response, respec-
tively (40). Langerhans cells isolated from healthy human skin 

Figure 1. Cutaneous immune response in atopic dermatitis. CCL, chemo-
kine (C-C motif ) ligand; D.C., dendritic cells; hBD-2, human β defensin-2; 
ILC, innate lymphoid cells; K.C., keratinocytes; MDC, macrophage-derived 
chemokine; S.C., stratum corneum; TARC, thymus- and activation-
regulated chemokine; TSLP, thymic stromal lymphopoietin.
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induce T  cells that produce less IFN-γ and IL-10, but more 
IL-4, IL-13, TNF-α, and thymus- and activation-regulated che-
mokine/CCL17 in the presence of TLSP (41).

IL-4 and IL-13 produced by Th2 have been shown to sup-
press filaggrin expression by keratinocytes (42). This is con-
sistent with the clinical observation that filaggrin expression is 
significantly lower in the lesional AD, as compared to nonle-
sional AD skin (43). IL-4 and IL-13, together with TNF-α, also 
increase the expression of glucocorticoid-induced TNF recep-
tor–related protein ligand in keratinocytes (44). Ligation of 
glucocorticoid-induced TNF receptor–related protein ligand 
on keratinocytes leads to the production of thymus and activa-
tion-regulated chemokine/CCL17, which further attracts Th2 
cells to AD lesions. Cutaneous and systemic Th2 responses 
may amplify and maintain AD inflammation in a positive 
feedback mechanism (45). The absence of T-regulatory cells, 
and therefore a lack of suppression of cutaneous inflammation, 
may further contribute to the chronicity of AD (40).

Increased expression of IL-22 has been found consistently 
in both psoriatic and AD lesions (46,47). IL-22, together with 
Th2 cytokines and IL-31, may differentially induce keratino-
cyte differentiation proteins and epidermal hyperplasia (48). 
Its role in driving the development of psoriasis vs. AD may 
depend on the presence or absence of specific cytokines (49). 
More recently, Bromley et al. (50) showed that the chemokine 
(c-c motif) receptor 2–deficient mice which were injected 
intradermally with IL-23, a cytokine that increases the expres-
sion of IL-17 and IL-22 that characterize psoriatic lesions, 
developed skin lesions that resembled AD with elevated num-
ber of eosinophils and increased expression of IL-22, TSLP, 
and IL-4. The study did not find increased infiltration of Th2 
cells in the lesions, suggesting that IL-22 may provide feedback 
to innate cells to increase allergic inflammation, rather than 
antimicrobial response, in chemokine (c-c motif) receptor 
2–deficient mice. The role of chemokine (c-c motif) receptor 
2 and IL-22 in human AD will require further studies. Both 
CD4+ T cells, which were induced by Langerhans cells and der-
mal DC (51), and CD8+ T cells, are the major contributors of 
IL-22 expression in AD lesions (47,52).

ROLE OF MICROBIAL PATHOGENS
S. aureus, Malassezia species, and Candida albicans are impor-
tant triggers of cutaneous inflammation of AD (3,53,54). These 
microbial pathogens may induce host production of superan-
tigen- or pathogen-specific IgE, which leads to basophil acti-
vation and histamine release (55). S. aureus cell wall products 
also bind to TLR, leading to the production of TSLP by kerati-
nocytes (56). In addition to superantigens, S. aureus also pro-
duces α-toxin, which may be particularly virulent in filaggrin-
deficient keratinocytes that lack sphingomyelinase, an enzyme 
that is required to cleave α-toxin receptor (57). α-toxin may 
also increase the risk of viral infections including herpes sim-
plex virus and vaccinia virus in AD, resulting in eczema herpe-
ticum and eczema vaccinatum, respectively (58).

The persistent colonization of S. aureus and Malassezia spe-
cies may be influenced by epigenetics and microbiome, which 

are emerging areas of research in AD (59–61). The fungus 
Malassezia furfur has been shown to induce histone acetyla-
tion of antimicrobial peptide genes in keratinocytes (62). 
Bacterial components have been found in deeper skin com-
partments including the dermis, suggesting that the microbi-
ome of the skin may extend beyond the skin surface (63). A 
mouse model showed that Staphylococcus epidermidis differ-
entially upregulates the expression of IL-17 in the skin, rather 
than in the gut (64), suggesting a specific role of this bacteria 
in skin immunity. It has been shown that S. epidermidis may 
produce its own antimicrobial peptides that modulate the sur-
vival of other cutaneous microbial pathogens (65,66). More 
recently, Kong et al. (67) showed that increased bacterial diver-
sity on typically affected skin areas of AD children was linked 
to treatments, whereas decreased bacterial diversity was asso-
ciated with increased AD severity and flare. The decrease in 
bacterial diversity during AD flare corresponds to an increase 
in S. aureus and S. epidermidis sequences (67). Whether this 
increase in S. epidermidis during AD flare represents a com-
pensatory and antagonistic mechanism against S. aureus will 
require further studies.

CLINICAL IMPLICATIONS AND CHALLENGES
In addition to therapeutic potential, studies of genetic, cel-
lular, or cytokine markers may lead to early identification of 
different phenotypes of AD. This may be crucial in prevent-
ing morbidities such as infections, psychosocial issues, and 
respiratory allergies. Testing for these markers should be 
relatively simple (e.g., a blood test or noninvasive testing of 
stratum corneum) and inexpensive to be practical for clinical 
use. Elevated IgE have been associated with skin infections, 
respiratory allergy, and severity of AD (68,69). The pres-
ence and increased levels of specific IgE against microbial 
allergens correlate with AD severity (70,71). However, these 
markers tend to have a later onset (>3 y old) (72). Recent 
studies have associated FLG with AD severity, persistence, 
skin infections, and food allergy (8,73). Therefore, FLG may 
be a potential prognostic marker for clinical use. Genetic 
variations in TSLP are also a potential candidate for AD 
severity and herpes simplex virus infections (74). Further 
studies are also needed to delineate the pathways of innate 
immunity leading to the cutaneous inflammation of AD. The 
presence of early markers may allow for early intervention to 
prevent complications of AD. Mechanistic studies may also 
result in safer agents that target the innate immune response. 
An example is coal tar, which has long been known to be 
an effective treatment for AD (75). However, the potential 
carcinogenic effects and appearance of coal tar have ham-
pered its clinical use in AD. More recently, it has been shown 
that coal tar may increase the differentiation of keratinocytes 
and expression barrier proteins including filaggrin via the 
activation of aryl hydrocarbon receptor (76). The study also 
showed that coal tar increased filaggrin expression in the 
keratinocytes of AD patients who were heterozygous for 
FLG. Further studies in this area may result in more effective 
and safer treatments for AD.
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CONCLUSION AND FUTURE DIRECTIONS
It is now well established that skin barrier defects are one of 
the primary causes of AD. FLG is first genetic marker of bar-
rier defects that have been confirmed in the pathogenesis of 
AD. More recently, it has been shown that copy number varia-
tions of filaggrin genes may result in lower filaggrin expres-
sion and confer a risk for AD (77). Further studies are needed 
to search for therapies that increase filaggrin expression in 
these patients. However, since the majority of AD patients do 
not carry FLG, the search for other causes of AD is needed. 
Genetic variations may exist in other skin barrier molecules or 
in the cutaneous immune response of AD. Molecular or cellu-
lar components for microbial sensing such as TLR (78–80), or 
skin tissue repair such as TSLP and ILC (28), deserve further 
studies. Prospective clinical studies are needed to correlate 
laboratory markers with development of moderate to severe 
AD and complications of AD. Studies on early implementation 
of anti-inflammatory therapies or barrier repair are needed for 
the prevention of AD complications.
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