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For nearly a decade, our research group has had the privilege 
of developing and mining a multicenter, microarray-based, 
genome-wide expression database of critically ill children 
(≤10 y of age) with septic shock. Using bioinformatic and 
systems biology approaches, the expression data gener-
ated through this discovery-oriented, exploratory approach 
have been leveraged for a variety of objectives, which are 
reviewed here. Fundamental observations include wide-
spread repression of gene programs corresponding to the 
adaptive immune system and biologically significant differ-
ential patterns of gene expression across developmental age 
groups. The data have also identified gene expression–based 
subclasses of pediatric septic shock having clinically relevant 
phenotypic differences. The data have also been leveraged 
for the discovery of novel therapeutic targets, as well as for 
the discovery and development of novel stratification and 
diagnostic biomarkers. almost a decade of genome-wide 
expression profiling in pediatric septic shock is now demon-
strating tangible results. The studies have progressed from 
an initial  discovery-oriented and exploratory phase to a new 
phase in which the data are being translated and applied to 
address several areas of clinical need.

For nearly a decade, our research group has had the privi-
lege of developing and mining a multicenter, microarray-

based, genome-wide expression database of critically ill chil-
dren (≤10 y of age) with septic shock. The expression data 
are based on whole blood–derived RNA and are focused 
on the initial, acute presentation to the pediatric intensive 
care unit (PICU) with a clinical diagnosis of septic shock. 
Comparator groups include age-matched normal controls, 
critically ill children meeting criteria for sepsis, and criti-
cally ill children meeting criteria for the systemic inflamma-
tory response syndrome (SIRS), based on pediatric-specific 
definitions (1). Using bioinformatic and systems biology 
approaches, the expression data generated through this dis-
covery-oriented, exploratory approach have been leveraged 
for a variety of objectives, which are summarized in Figure 1 
and are reviewed below. Analogous studies involving adult 
populations were recently reviewed (2).

Genome-LeveL Response of pediatRic septic shock 
and RepRession of adaptive immunity–ReLated 
Genes
The long-standing paradigm for understanding the pathophys-
iology of septic shock is centered on a dysfunctional innate 
immune system, wherein excessive and uncontrolled proin-
flammatory responses lead to direct tissue and organ injury 
(3,4). Although this paradigm remains valid, the vast major-
ity of clinical trials focused on controlling or modulating this 
excessive inflammatory response have failed to demonstrate 
efficacy, thereby leading to the derivation of alternative para-
digms for understanding the pathophysiology of human sepsis 
(5). One such alternative paradigm focuses on dysfunction of 
the adaptive immune system, wherein a form of immune sup-
pression or “immune paralysis” accounts for the negative con-
sequences of sepsis (6–10).

Genome-level expression patterns in children with septic 
shock strongly support this concept of immune suppression 
(2,11–17). Specifically, pediatric septic shock is characterized 
by widespread repression of gene programs corresponding to 
various major components of the adaptive immune system, 
including the T-cell receptor signaling pathway, T-cell func-
tion, B-cell function, and the major histocompatibility complex 
antigen presentation pathway. This pattern of gene repression 
is evident within the first 24 h of presentation to the pediatric 
intensive care unit (PICU) with septic shock and persists at 
least into the third day of PICU admission. Analogous studies 
in adults with septic shock, and in adults suffering from major 
traumatic injuries, have also demonstrated similar patterns of 
gene repression corresponding to the adaptive immune system 
(18–22). Accordingly, novel therapeutic strategies for septic 
shock are now being contemplated with a focus on restora-
tion of the adaptive immune system, rather than inhibition 
of the innate immune system and the inflammatory response 
(23,24).

infLuence of deveLopment on the Genome-LeveL 
Response of pediatRic septic shock
A variety of clinical and experimental data indicate that devel-
opmental age influences the immune system and hence the 
host response to sepsis (4,25–28). A recent study examined the 
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acute, genome-level expression patterns across four develop-
mental age groups with septic shock: neonate (≤28 d of age), 
infant (1 mo through 1 y of age), toddler (2–5 y of age), and 
school age (≥6 y of age) (17).

In comparisons with age-matched controls, the neonate and 
school-age groups had the largest number of uniquely regu-
lated genes corresponding to several key inflammation- and 
immunity-related pathways. In direct comparisons across the 
developmental age groups, there were minimal differences 
among the infant, toddler, and school-age groups. In contrast, 
age-specific differential gene expression was most profound 
in the neonate group, which predominately demonstrated 
reduced expression of several key pathways of both the innate 
and the adaptive immune response. This observation does not 
appear to be an artifact of differential white blood cell counts. 
The expression data were analyzed for the presence of signa-
ture probe sets for neutrophils, lymphocytes, and monocytes. 
The signature probe sets were present to a similar degree across 
the four developmental age groups, thereby suggesting that the 
relative contributions of the three major leukocyte subsets to 
the gene expression profiles did not substantially differ across 
the four developmental age groups.

One striking example involved expression of genes related 
to the triggering receptor expressed on myeloid cells-1 sig-
naling pathway, for which there has been recent interest as a 
therapeutic target in sepsis (29). Genes corresponding to the 
triggering receptor expressed on myeloid cells-1 signaling 
pathway were not expressed in the neonate group, whereas 
they were highly expressed in the three older developmental 
age groups. These data illustrate how development must be 
taken into consideration when developing novel, immunity-
based therapies for sepsis.

discoveRy of Gene expRession–Based suBcLasses
Septic shock is a heterogeneous syndrome, rather than a 
discrete, uniform disease process (5). This high level of 

heterogeneity implies the potential existence of disease “sub-
classes” predicated on distinct patterns of gene expression. A 
series of three recent studies indicate that gene expression–
based subclasses of pediatric septic shock may indeed exist 
and that the subclasses have clinically important phenotypic 
differences (30–32).

The first study in this series attempted to identify subclasses 
of pediatric septic shock based exclusively on differential pat-
terns of gene expression (30). A list of more than 6,000 dif-
ferentially regulated genes was generated using statistical and 
expression filters targeted at subclass discovery. The differen-
tially regulated genes were then subjected to unsupervised hier-
archical clustering, and three putative gene expression–based 
subclasses (subclasses A, B, and C) were identified based on 
the first- and second-order cluster branches. Post hoc analysis 
of the gene expression–based subclasses revealed that patients 
in subclass A had a significantly higher degree of illness sever-
ity and a significantly higher mortality rate compared with 
patients in subclasses B and C.

The subclass-defining gene signature was subsequently dis-
tilled to the top 100 class predictor genes, and these genes 
corresponded to T-cell receptor signaling, B-cell receptor 
signaling, glucocorticoid-receptor signaling, and peroxisome 
proliferator–activated receptor-α activation (30). Of note, the 
genes corresponding to these signaling pathways were gen-
erally repressed in the subclass A patients, who also had the 
highest degree of illness severity and the highest mortality rate 
among the three identified subclasses. Recently, these observa-
tions were experimentally corroborated by the demonstration 
that peroxisome proliferator–activated receptor-α–deficient 
mice are more susceptible to the untoward effects of experi-
mental sepsis (33).

In the second study of this series, the 100 class-defining 
genes were depicted using gene expression mosaics that allow 
for intuitive pattern recognition of otherwise complex gene 
expression patterns (32,34,35). Clinicians with no formal bio-
informatic training and minimal instruction were able to allo-
cate patients to the correct gene expression–based subclasses 
with a high degree of accuracy, thus demonstrating the poten-
tial feasibility of bringing gene expression–based subclassifica-
tion of pediatric septic shock to the bedside. In the final study 
of this series, the gene expression mosaics were used to allo-
cate a new, test cohort of patients into each of the three puta-
tive subclasses (31). This validation study corroborated that 
patients in subclass A have a higher degree of illness severity 
compared with patients in subclasses B and C. Collectively, 
this series of studies indicates that gene expression–based sub-
classes of pediatric septic shock exist, that the subclasses can be 
readily identified by clinicians using gene expression mosaics, 
that the class-defining genes are biologically relevant, and that 
the subclasses have clinically relevant phenotypic differences.

discoveRy of noveL theRapeutic taRGets
A common goal for discovery-oriented clinical studies 
 centered on genome-wide expression patterns involves the dis-
covery of novel therapeutic targets. The pediatric genome-wide 
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Figure 1. schematic depicting how genome-wide expression data from 
children with septic shock have been leveraged for a variety of objectives.
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expression studies have thus far identified two promising 
areas for therapeutic intervention, which have been corrobo-
rated experimentally: inhibition of matrix metallopeptidase-8 
(MMP-8) activity and restoration of zinc homeostasis.

MMP-8 belongs to a family of 25 individual endopeptidases 
having different cellular sources, expression conditions, and 
target substrates (36). MMP-8 is also known as neutrophil col-
lagenase given its original identification as a neutrophil prod-
uct that remodels the extracellular matrix via cleavage of colla-
gen type I. However, it is now apparent that multiple cell types 
have the ability to express MMP-8, particularly in the setting of 
inflammatory conditions. In addition, MMP-8 can also cleave 
a wide range of noncollagenous substrates, including serine 
protease inhibitors and several chemokines.

MMP-8 is consistently the highest expressed gene in children 
with septic shock, and the degree of expression and proteolytic 
activity positively correlate with the degree of illness severity and 
mortality, but do not correlate with differential white blood cell 
counts (37). Similar observations have been reported in adults 
with sepsis (38). These observations have led to a series of exper-
iments designed to formally test the role of MMP-8 in a murine 
model of sepsis (37). MMP-8 null mice have a significant sur-
vival advantage in experimental sepsis compared with wild-type 
animals. This survival advantage correlates with an attenuated 
inflammatory response, without compromising clearance of 
bacteria. In addition, this phenotype can be replicated by treat-
ing wild-type mice with a pharmacologic inhibitor of MMP-8 
activity, after induction of sepsis. Collectively, these data indicate 
that MMP-8 inhibition is a potential, novel therapeutic strat-
egy for sepsis. This assertion is supported by the availability of 
clinically approved pharmaceutical compounds that effectively 
inhibit MMP-8 activity (36,39).

Zinc is an essential trace element and is critical for nor-
mal functioning of both the innate and the adaptive immune 
systems (40). A consistent observation across multiple gene 
expression studies is that pediatric septic shock is characterized 
by widespread repression of gene families that either directly 
participate in zinc homeostasis or are directly dependent on 
zinc homeostasis for normal function (11,12,14–16,30). These 
observations suggest that altered zinc homeostasis may be a 
prominent feature of pediatric septic shock. Indeed, low serum 
zinc concentrations have been documented in pediatric septic 
shock, and nonsurvivors have lower serum zinc concentra-
tions compared with survivors (16). Low serum zinc concen-
trations have also been reported in other forms of critical ill-
ness in both adults and children (41–43).

These observations have collectively fostered the concept 
that zinc supplementation may be a low-cost and effective 
therapeutic strategy for septic shock (41,44). In animal models 
of sepsis, zinc supplementation confers a survival benefit, and 
the survival benefit correlates with enhanced bacterial clear-
ance as well as modulation of excessive inflammation (45–47). 
Two recent studies involving children with either pneumo-
nia or bacteremia in developing countries demonstrated that 
zinc supplementation significantly reduced infection-related 
complications, including mortality (48,49). A study involving 

critically ill children in the United States tested the efficacy of 
oral zinc supplementation, in combination with oral selenium, 
glutamine, and metoclopramide, as a means of preventing 
nosocomial infection or sepsis (24). There was no efficacy in 
the overall study population for the primary study end point 
(time to development of nosocomial infection/sepsis), but a 
secondary analysis restricted to patients with baseline immune 
dysfunction suggested a beneficial effect in reducing nosoco-
mial infections. Thus, zinc supplementation as an adjunctive 
therapeutic strategy for septic shock remains an intriguing 
concept that requires further testing. There are currently two 
ongoing phase 1 trials of intravenous zinc supplementation 
designed to address this question further (ClinicalTrials.gov: 
NCT01062009 and NCT01162109).

discoveRy of stRatification BiomaRkeRs
The ability to stratify outcome risk is fundamental to effec-
tive clinical practice and clinical research, and there is great 
deal of interest in using biomarkers to stratify outcome risk 
in septic shock (5,50–52). Effective stratification biomarkers 
could benefit the field of septic shock in three broad areas: risk 
stratification for clinical trials, informing decision making for 
individual patients, and as a metric for quality improvement 
efforts. The genome-wide expression studies in pediatric septic 
shock have served as effective tools for the discovery of candi-
date stratification biomarkers.

The first genome-wide expression study in pediatric septic 
shock generated a list of genes differentially expressed between 
survivors and nonsurvivors, thus providing an initial working 
list of candidate stratification biomarkers (16). Interleukin-8 
(IL-8), the principal human chemoattractant for neutrophils, 
was among these differentially expressed genes; validation 
assays confirmed that serum IL-8 protein levels were indeed 
increased in nonsurvivors compared with survivors (16). This 
observation led to a subsequent study directly testing the abil-
ity of serum IL-8 levels to predict 28-d mortality vs. survival 
(53). This study demonstrated that an IL-8 level ≤220 pg/ml, 
within 24 h of presentation to the PICU with septic shock, had 
a negative predictive value for mortality of 95%. This observa-
tion was subsequently validated in an independent test cohort. 
Consequently, it has been proposed that serum IL-8 levels 
can be used to exclude low-risk patients from future pediatric 
septic shock interventional trials as a means to improve the 
risk-to-benefit ratio of a therapeutic intervention. Of note, 
IL-8 does not seem to be an effective stratification biomarker 
in adult septic shock, thereby suggesting important biological 
and physiological differences between adult and pediatric sep-
tic shock (54).

Although the negative predictive value of serum IL-8 alone 
is high, the other test characteristics of IL-8 (i.e., sensitivity, 
specificity, and positive predictive value) are not sufficiently 
robust to develop a comprehensive pediatric septic shock strat-
ification tool meeting a wide variety of clinical and research 
needs. Given the complexity of septic shock, it is possible that 
a  multibiomarker-based stratification system could better 
address these needs. Accordingly, the genome-wide expression 
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data in pediatric septic shock have been leveraged to select, 
objectively, a panel of 12 candidate stratification biomarkers 
(51). Using classification and regression tree methodology, the 
candidate stratification biomarkers have been used to derive 
and test a decision tree–based model that robustly predicts out-
come in children with septic shock (55). The model has been 
tested in 355 subjects and has the following test characteristics 
for predicting 28-d all-cause mortality: sensitivity 93%, speci-
ficity 74%, positive predictive value 32% (in the context of an 
overall mortality rate of ~10%), and negative predictive value 
99%. Although the model requires further testing, the test 
characteristics indicate that it has substantial potential to serve 
a wide variety of stratification needs in pediatric septic shock.

discoveRy of diaGnostic BiomaRkeRs
The development of diagnostic biomarkers is another area 
of interest in the field of pediatric critical care medicine, and 
again, genome-wide expression data have been leveraged for 
the discovery of two classes of candidate diagnostic biomark-
ers: biomarkers to diagnose the development of septic  shock–
associated kidney injury and biomarkers to diagnose the 
 presence of bacterial infection in critically ill children.

Acute kidney injury (AKI) is a common complication of 
critical illness and septic shock; and consequently, there is 
substantial interest in the development of biomarkers that 
diagnose AKI before a rise in serum creatinine as a means to 
institute potentially renal protective therapies in a more timely 
manner (56). Commonly used biomarkers for AKI may not be 
as effective in the context of septic shock compared with other 
etiologies of AKI (56–58). Accordingly, there remains a need 
to develop AKI diagnostic biomarkers specific to septic shock.

Genome-wide expression data have been leveraged for the 
discovery of 21 unique genes that can predict the development 
of septic shock–associated kidney injury with a sensitivity 
of 98% and a specificity of 80% (59). The products of several 
of these genes (i.e., proteins) can be readily measured in the 
serum compartment, and preliminary data indicate that the 
serum protein concentrations can also predict the development 
of septic shock–associated kidney injury (59). Studies are cur-
rently in progress to determine whether a panel of these candi-
date, serum-based, diagnostic markers can improve the ability 
to diagnose septic shock–associated kidney injury further.

A daily clinical conundrum in the PICU is the differentiation 
of SIRS secondary to infection (i.e., sepsis) from SIRS second-
ary to noninfectious etiologies (i.e., “sterile inflammation”). 
Procalcitonin has emerged as a potential diagnostic biomarker 
to meet this need, but its performance in critically ill popula-
tions has been challenged (60).

The most recent analysis of the pediatric genome-wide 
expression data has been targeted toward the identification 
of diagnostic biomarkers to identify the presence of bacte-
rial infection in critically ill children (61). The analysis com-
pared critically ill children with SIRS having documented 
negative bacterial cultures (i.e., the noninfected group) with 
those having documented positive bacterial cultures (i.e., the 
infected group). A total of 221 gene probes were differentially 

regulated between the noninfected group and the infected 
group. A leave-one-out crossvalidation procedure based on a 
Support Vector Machines learning algorithm, and the 221 dif-
ferentially regulated gene probes were able to differentiate the 
two groups with 86% accuracy. Epstein–Barr virus–induced 
gene 3 had the highest predictive strength among these 221 
gene probes.

Epstein–Barr virus–induced gene 3 is a subunit of the het-
erodimeric cytokine IL-27, and IL-27 has been recently linked 
to the pathophysiology of sepsis (62,63). Because IL-27 can be 
readily measured in the serum compartment, the ability of IL-27 
to diagnose bacterial infection in critically ill children was tested 
and compared with that of procalcitonin (61). Serum IL-27 lev-
els had a >90% specificity and positive predictive value for diag-
nosing bacterial infection in this cohort of critically ill children, 
and the overall performance of IL-27 was generally better than 
that of procalcitonin. In addition, a decision tree incorporating 
IL-27 and procalcitonin performed better than either biomarker 
alone. Thus, IL-27 has potential as an effective “rule-in” test for 
bacterial infection in critically ill children. Additional studies are 
being planned to test further the ability of IL-27 to serve as a 
biomarker for bacterial infection.

potentiaL Limitations
The majority of the studies reviewed above are based on whole 
blood–derived RNA. Thus, the source of RNA is a mixed popu-
lation of white blood cells. Although this approach has facili-
tated the accumulation of a large number of biological samples 
from multiple institutions, it has the potential to confound data 
inasmuch as differential patterns of gene expression could reflect 
differential white blood cell counts, rather than intrinsic differ-
ences in mRNA expression. This potential confounder has been 
addressed by multiple complementary approaches, including 
corrections for differential white blood cell counts (11,12), inter-
rogation of gene expression data for leukocyte subset–specific 
gene probes (15,17,64), the generation of expression data using 
leukocyte subset–specific mRNA (15), and the ability to validate 
gene expression signatures in formal validation cohorts (11,31). 
In addition, the gene  expression data generated through these 
studies have been successfully leveraged for the development 
of serum protein biomarkers (51–53,55,59,65) and have been 
validated in animal models of sepsis (33,37,47). Thus, although 
the potential confounder of using whole blood–derived RNA 
remains an important issue, it would appear that the data gen-
erated thus far primarily reflect intrinsic differences in gene 
expression rather than an artifact of mRNA derived from a 
mixed population of white blood cells.

concLusion
Almost a decade of genome-wide expression profiling in pediat-
ric septic shock is now demonstrating tangible results. The studies 
have progressed from an initial discovery-oriented and explor-
atory phase to a new phase in which the data are being translated 
and applied to address several areas of clinical need. These areas 
include the identification of potential novel therapeutic targets 
and pathways, discovery of candidate diagnostic and stratification 
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biomarkers, and the possibility of clinically relevant and clini-
cally feasible gene expression–based subclassification. The chal-
lenges moving ahead include robust validation studies, which will 
require large-scale collaborations.
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