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Background: In preterm infants, the amplitude-integrated 
electroencephalogram (aeeG) is not established in clinical rou-
tine. The aim of this study was to derive normative data on 
aeeG parameters by means of longitudinal characterization 
and to evaluate the impact of gestational age (Ga), postnatal 
age (PNa), postmenstrual age, sedation, and patent ductus 
arteriosus (PDa).
Methods: Recordings from 61 infants with Ga 28–31 weeks 
were obtained during the first 72 h, then weekly until the age 
of 4 wk. Infants were divided into three groups: (i) no sedation, 
no PDa, (ii) sedation, no PDa, and (iii) sedation, PDa. assessed 
parameters included background activity, cycling, amplitude, 
and log ratio of the maximum/minimum amplitude.
results: Ga and PNa had a significant impact within 72 h. 
sedation modified aeeG, and presence of PDa was associ-
ated with reduced aeeG scores within 72 h. The log ratio of the 
amplitude correlated with Ga but was unaffected by sedation 
and PDa.
conclusion: evaluation of electrocortical background activ-
ity within the first postnatal hours and longitudinally over days 
and weeks is important to better understand the postnatal fac-
tors impacting cerebral function in preterm infants. There is a 
need to agree on definitions and a standardized reporting sys-
tem in order to permit comparisons between studies and estab-
lish aeeG as a method for routine monitoring of preterm infants.

acquired brain injury constitutes a significant threat to the 
developing preterm infant. Biomarkers measured at or soon 

after birth may be useful in diagnosing and predicting complica-
tions and future outcome. Several studies have evaluated whether, 
and to what extent, amplitude-integrated electroencephalogram 
(aEEG)-derived parameters can be used for the identification of 
neurological dysfunction and prediction of outcome in preterm 
infants (1–7). The increasing adoption of the aEEG method in 
the neonatal intensive care unit is reflected by the growing num-
ber of studies published during the past decade, although these 
still do not match the knowledge that was gained in term-born 
infants over the same period of time (8–10). Efforts have been 
made to define normative values and changes in aEEG param-
eters with respect to gestational age (GA) and postmenstrual 

age (PMA) (11–15), and recently, integrative studies correlat-
ing aEEG with various clinical parameters have been published 
(16–18). These examples demonstrate that the concept of aEEG 
monitoring can be very useful in preterm infants. However, 
there are several challenges that delay the translation of aEEG 
monitoring into clinical practice in preterm infants. A major 
obstacle when comparing results from different studies is due 
to the differences in study populations, evaluated time periods, 
aEEG parameters, outcome assessments, and statistical report-
ing (7,19–21). A second concern is the influence on the electro-
cortical activity from extracerebral factors and from parameters 
inherent to the care and the physiology of the preterm infant 
(18,22–25). The exploration of early electrocortical activity, as 
recorded within the first hours and days, serves as the closest 
estimate of intrauterine electrocortical function and also con-
tributes to a better understanding of developmental brain injury. 
However, whereas a series of studies evaluated the development 
of aEEG patterns in the initial days after birth (11,20,21), contin-
uous monitoring of changes in electrocortical activity during the 
first postnatal hours has received much less attention (1,2,13). 
Besides these essential clinical considerations, the appropriate 
definition of the measurement time point has implications, par-
ticularly for studies hypothesizing on the prognostic abilities of 
aEEG monitoring. Together with the initial observations about 
the duality of intrauterine (GA) and extrauterine (postnatal 
age (PNA)) maturation and recent reports on repeated aEEG 
measurement after birth, aEEG profiles are expected to involve 
complex and competitive changes in this critical period. In the 
future, we should be able to better assess the neurological con-
dition and risk for infants as soon as they are admitted to the 
neonatal intensive care unit by adding aEEG technology to our 
panel of monitoring instruments.

The aim of the current study was to:

1. Achieve a comprehensive longitudinal characterization 
of aEEG development during the first 4 wk of life in pre-
term infants born at a GA of 28–31 wk and without evi-
dence of neonatal brain injury;

2. Compare the effects of GA, PNA, and PMA on aEEG 
parameters;
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3. Compare and validate commonly used aEEG parameters 
and scores;

4. Establish statistical data analyses for the evaluation of 
longitudinally aEEG-derived data; and

5. Analyze the impact of sedation and patent ductus arte-
riosus (PDA) on aEEG parameters.

RESULtS
Visual Background
The odds in favor of observing continuous activity increased 
with GA (odds ratio (OR) = 2.37 (1.43–3.92); P < 0.01) and PNA 
(OR = 2.19 (1.81–2.65); P < 0.01). The proportion of infants with 
continuous activity increased from 9% to 22% from 6–12 h to 
66–72 h and increased further at week 1 (75%) and at week 4 
(100%). Only PMA was associated with the presence of continu-
ity (CO) at 1–4 wk; the odds for observing CO increased by 2.80 
(1.55–5.04) (P < 0.00001) for each additional week. Burst sup-
pression pattern was present only during the first 72 h and was 
exclusively associated with analgosedation (P < 0.01) (Figure 1).

Cycling: First Sinusoidal Variation
The time from birth to the appearance of first sinusoidal varia-
tion (FSV) is graphed in Figure 2a. The time to FSV revealed 
a significant association with GA (LRT = 3.91; df = 1; P < 0.05) 
and study group (LRT = 7.79; df = 2; P < 0.01). For each addi-
tional week of gestation, time to FSV was reduced by a factor 
of 1.25 (1.00–1.59). After adjusting for GA, the average pre-
dicted time to FSV was 1.93 (1.16–3.20) times higher in the 
sedation group (mean = 13.8 h; n = 17; adjusted mean at 30 wk 

of gestation = 14.1 h) than that in the reference group (mean = 
6.4 h; n = 17; adjusted mean at 30 wk = 7.3 h). Time to FSV in 
the PDA group (mean = 16.6 h; n = 20) was found to be similar 
to that in the sedation group.

Cycling: First Obvious Widening
The proportional hazard model revealed a positive associa-
tion between the first obvious widening period and GA (LRT 
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Figure 1. Visual background annotation for each monitoring period 
and study group. Black bars, proportion of burst suppression; gray bars, 
discontinuous; white bars, continuous. the number of patients is 21 in the 
reference group, 20 in the sedation group, and 20 in the PDA group. All 
forms of burst suppression are pooled into one group. PDA, patent ductus 
arteriosus.
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Figure 2. Cycling. (a) Cumulative proportions of infants for whom tracing 
shows sinusoidal variations across the three study groups. the number of 
patients is 17 in the reference group (solid line), 17 in the sedation group 
(dashed line), and 20 in the PDA group (short-dashed line). (b) Cumulative 
proportions of infants for whom tracing shows obvious widening across 
GA groups (GA: 28 wk, solid line, n = 7; 29 wk, dashed line, n = 15; 30 wk, 
dashed-dotted line, n = 23; 31 wk, short-dashed line, n = 14). GA, gesta-
tional age; PDA, patent ductus arteriosus.
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= 24.7; df = 1; P < 0.01). A first obvious widening was present 
within the first 3 d in 90% of the infants with a GA more than 
31 wk (Figure 2b), whereas this proportion was only reached 
at weeks 3–4 in less-mature infants.

Parameters of Burdjalov Score
Distributions of the individual parameters in the three groups 
are represented in Figure 3a–d.

Continuity
During the first 72 h, 43% of traces were labeled as continuous 
(CO = 2), 35% were assessed as somewhat continuous (CO = 1), 
and 22% as discontinuous (CO = 0). In total, 87% of discontinu-
ous patterns were observed within 36 h (Figure 3a). During this 
period, the odds in favor of observing a somewhat continuous 
or continuous pattern (CO scores 1 or 2) increased with PNA 
(OR = 2.71 (1.81–4.06); P < 0.01) but not with GA (OR = 1.57 
(0.91–2.69); P > 0.05). The odds ratio for observing CO (scores 
1 or 2) was 6.48 (1.28–32.9) times lower in sedated infants than 

in the reference group. Between 2 and 4 wk, presence of CO was 
associated with GA (OR = 2.62 (1.36–5.03); P < 0.01) and PNA 
(OR = 1.66 (0.99–2.76); P < 0.05).

Cycling
Immature cycling (CY ≤ 2) appeared in 95% of infants during 
the first 72 h, and only 5% had regular and mature patterns. 
Total absence of cycling (CY = 0) was associated with analgose-
dation (Figure 3b). Of note, emergence of cycling (CY ≥ 2) over 
the first 72 h was not affected by analgosedation. By  contrast, 
manifestation of cycling patterns depended on PNA (OR = 
2.48 (1.92–3.21); P < 0.01) and GA (OR = 2.35 (1.37–4.04); P < 
0.05). After week 1, 90% of infants showed cycling (CY > 3). 
Using proportional odds logistic regression including all cycling 
scores, two main predictors for the development of cycling were 
identified: GA (OR = 2.41 (1.80–3.23); P < 0.01) and PNA (OR = 
2.21 (1.70–2.88); P < 0.01). Each additional postnatal week was 
associated with a 2.37 (1.89–2.96)-fold (P < 0.01) increase in the 
likelihood of reporting a higher cycling score.
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Figure 3. Distributions of individual Burdjalov scores for each monitoring period and study group. (a) CO, (b) CY, (c) ALB, and (d) BS-ALB. Each figure 
panel is divided into three parts according to the three treatment groups (reference, n = 21; sedation, n = 20; and PDA, n = 20). the different time points 
of aEEG evaluation are shown for each treatment group as marked on the x-axis. the sum score for each parameter is colored as follows: (a) CO: black bar 
= 0, gray bar = 1, and white bar = 2; (b) CY: black bar = 0, right diagonal patterned bar = 1, gray bar = 2, vertical patterned bar = 3, left diagonal patterned 
bar = 4, and white bar = 5; (c) ALB: black bar = 0, gray bar = 1, and white bar = 2; and (d) BS+ALB: black bar = 0, right diagonal patterned bar = 1, gray bar 
= 2, left diagonal patterned bar =3, and white bar = 4. aEEG, amplitude-integrated electroencephalogram; ALB, amplitude of the lower border; BS-ALB, 
bandwidth span and amplitude of the lower border; CO, continuity; CY, cycling; PDA, patent ductus arteriosus.
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Amplitude of the Lower Border
Severely depressed traces (amplitude of the lower border (ALB) 
= 0) were detected only within the first 24 h (35% of traces at 
6–12 h and 9% at 18–24 h; Figure 3c), and the main contribu-
tor was PNA (OR = 2.25 (1.79–2.82); P < 0.01). During the 
6–12-h period, the likelihood of presenting a score of 0, rather 
than 1 or 2, depended on the study group (LRT = 8.02; df = 2; 
P < 0.05); sedation increased the odds for detecting severely 
depressed traces by a factor of 7.98 (1.40–85) (P < 0.05); and 
PDA was not found to be significant (OR = 1.98 (0.5–7.8);  
P > 0.05). The proportion of infants with elevated lower border 
(ALB = 2) increased from 21% at 6–12 h to 91% at 66–72 h, and 
the main contributor was GA (OR = 1.81 (1.04–3.15); P < 0.04). 
Four infants showed a somewhat depressed ALB score at week 
1 that could only be associated with PDA status (Barnard’s test, 
P < 0.05) regardless of GA.

Bandwidth Span and Amplitude of the Lower Border
In the first monitoring period (6–72 h), scores of 1 (41.5%) 
and 2 (52.6%) were characteristic of this combined parameter 
(Figure 3d). The occurrence of a score >1 increased by a factor 
of 2.25 (1.71–2.97) (P < 0.01) for every 12-h increase in PNA, 
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Figure 5. Amplitude parameters over the second monitoring period. (a–d) Distribution of amplitude parameters during the 7- to 28-day monitoring period. 
(e) the Burdjalov total score during the 7- to 28-day monitoring period. Actual distributions are shown as shaded gray boxplots. Vertical lines correspond to the 
predicted total score and 95% confidence intervals for GA = 28, 29, 30, and 31.
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to the predicted total score and 95% confidence intervals for GA = 28, 29, 
30, and 31 for each study group at each measurement time. the number 
of patients is 18 in the reference group (solid line), 17 in the sedation 
group (dashed line), and 19 in the PDA group (dotted line). Significance 
levels: †P < 0.0001, **P < 0.01, *P < 0.05. GA, gestational age; PDA, patent 
ductus arteriosus.
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and by a factor of 1.93 (1.18–3.14) (P < 0.01) for each additional 
week of gestation. The presence of a score >1 was reduced by 
a factor of 3.08 (0.98–9.65) (P < 0.05) in the sedation group, 
whereas the PDA group did not have an increased risk for 
immature traces (OR = 0.72 (0.22–2.39); P > 0.05). During the 
first 3 d, bandwidth span and amplitude of the lower border 
was largely dominated by the emergence of maturing (52.6%) 
and mature traces (5.2%) from immature traces (38.4%).

Total Score
Distribution of the Burdjalov total score (TS) over the first 
72 h is displayed in Figure 4. The TS increased significantly 
with GA (LRT = 8.96; P < 0.01) and PNA (P < 0.01). As com-
pared with the reference group, the TS was significantly lower 
in the sedation group during the first 48 h and significantly 
lower in the PDA group during the first 72 h (P < 0.05). After 
week 1 (Figure 5e), the TS increased significantly with PMA, 
regardless of group allocation. Our data show a slope of 0.58 
(0.45–0.72), which is slightly lower than that in the original 
paper by Burdjalov et al. (estimated slope to be ~0.70–0.75 
over 23–37 GA wk).

Amplitude Parameters
The minimum, mean, and maximum amplitudes for the first 72 h 
are presented in Figure 6a–d, and for weeks 1–4 in Figure 5a–d. 
Minimum amplitude was the only parameter affected by GA (LRT 
= 3.77; df = 1; P < 0.05), increasing by 0.22 (−0.01 to 0.45) µV per 
additional week of GA. All amplitude parameters are character-
ized by a nonlinear relationship with PNA consisting of a sharp 
increase in the first postnatal hours and behaviors specific to the 
different study groups. Impact of the latter decreased in the order 
of minimum (LRT = 9.6; P < 0.01), mean (LRT = 9.4; P < 0.01), 
and maximum (LRT = 5.2; P = 0.07) amplitudes. For all three 
parameters, the effect of the study groups was found to be time 
dependent (all P < 0.01). In particular, infants from the sedation 
group presented lower minimum and mean amplitudes up to 36 h 
(P < 0.05). The PDA group had a predicted minimum amplitude 
that was 0.23 (−0.14 to 0.90) µV lower than the reference group. 
During weeks 1–4, the minimum amplitude increased at a rate of 
0.19 (0.09–0.29) µV per additional week, whereas the maximum 
amplitude decreased at a rate of −0.75 (−1.12 to −0.38) µV for 
each additional postnatal week (Table 1). The mean amplitude 
remained constant at ~12.3 (11.9–12.7) µV. The log ratio between 
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the maximum and minimum amplitudes was computed to obtain 
an estimate of the dynamic range of variation of the aEEG trace. 
This log ratio was significantly correlated with GA in the first 72 h 
and was not impacted by PDA or sedation. In the second moni-
toring phase, the log ratio decreased with PMA at a rate of −0.11 
(−0.13 to −0.09) per week.

Medication
Although medication regimens were reasonably balanced across 
the study groups (Table 2), we examined whether the residual 
variance patterns could be associated with specific sedative 
drugs. For illustration, we report the aEEG maximum amplitude 
in infants who were administered a combination of fentanyl with 
benzodiazepine (n = 9) or ketamine (n = 9). This parameter was 
dramatically attenuated in the benzodiazepine group for up to 60 h 
after administration (Figure 7). A similar trend was observed for 
the mean amplitude, although found significant only at 30–36 h 

(P < 0.05), but not for any other parameters including minimum 
amplitude or Burdjalov individual and TSs.

DISCUSSION
This study provides a comprehensive analysis and comparison 
of postnatal longitudinally obtained aEEG parameters from the 
first postnatal hours until the age of 4 wk in a cohort of preterm 
infants born at 28–31 gestational weeks. Our results confirm 
previous studies by demonstrating the emergence of continu-
ous patterns, cycling, and ALB on the aEEG signal with increas-
ing age (14,15,20). We expand this knowledge by (i) including 
the first 72 postnatal hours in the analysis, (ii) comparing the 
established and novel aEEG parameters in a single study, and 
(iii) focusing on the age group of 28–31 wk GA, in which these 
data were lacking. We obtained reference data, compared the 
different parameters extracted from the aEEG, and evalu-
ated potential confounders. This has major clinical relevance 

table 1. Regression coefficients used to model Burdjalov total score and amplitude parameters over the 7- to 28-day period

Parameter total score Minimum Mean Maximum
Maximum/minimum 

amplitude ratio

Gestational age 0.54 (0.33–0.75)** 0.28 (0.08–0.48)** NS NS −0.09 (−0.13 to −0.05)**

Postnatal age 0.58 (0.43–0.74)** 0.14 (0.04–0.25)** NS −0.9 (−1.3 to −0.5)** −0.11 (−0.13 to −0.08)**

Postmenstrual age 0.58 (0.45–0.71)** 0.19 (0.09–0.29)** −0.03 (−0.21 to 0.15) −0.75 (−1.11 to −0.38)** −0.1 (−0.13 to −0.08)**

One time unit corresponds to 1 wk. Model including PMa is given only in addition to the model that can include Ga and PNa. 95% confidence intervals in brackets.

significance levels: **P < 0.01.

Ga, gestational age; PMa, postmenstrual age; PNa, postnatal age; Ns, not significant.

table 2. Patient characteristics

Parameter
Reference group  

(no sedation and no PDA (n = 21))
Sedation group (sedation 

and no PDA (n = 20))
P value  

(sedation)a

PDA group (sedation 
and PDA (n = 20))

P value  
(PDA)b

Gestational age (wk) 30.7 (0.952) (28.6–31.8) 30.1 (0.904) (28.1–31.8) 0.052 (0.061) 29.5 (0.8) 0.029 (0.021)

Birth weight (g) 1,380 (361) (805–2,060) 1,360 (316) (580–1,860) 0.815 (0.855) 1,250 (249) (790–1,700) 0.226 (0.148)

Umbilical cord pH 7.31 (0.05) (7.25–7.42) 7.32 (0.05) (7.22–7.46) 0.709 (0.762) 7.27 (0.10) (7.01–7.42) 0.108 (0.282)

Apgar at 1 min 7 (5–9) 6 (4–8) <0.001 (0.001) 6 (2–8) 0.401 (0.537)

Apgar at 5 min 9 (7–10) 8 (7–9) 0.023 (0.024) 8 (7–9) 0.483 (0.47)

Apgar at 10 min 9 (8–10) 9 (8–9) 0.013 (0.015) 9 (7–9) 0.843 (1)

Continuous positive 
airway pressure 
treatment (h)

5.11 (8.03) (0–28) 7.1 (6.12) (1–26) 0.379 (0.014) 7.96 (4.96) (0.8–19) 0.626 (0.386)

Ventilator treatment (d) 0.3 (1.3) (0–6) 13.3 (27.2) (0–122) 0.034 (<0.001) 19.9 (31.6) (0–138) 0.483 (0.156)

Male (n) 12 14 0.273 11 0.263

twin (n) 14 9 0.108 12 0.263

Small for gestational 
age (n)

5 2 0.14 3 0.374

Sepsis (n) 0 3 0.036 0 0.043

Ketamine (n) — 12 — 8 0.27

Fentanyl derivatives (n) — 15 — 12 0.348

Benzodiazepine (n) — 10 — 12 0.242

Opioid antagonist (n) — 2 — 5 0.102

Mean, median (apgar), sD and range (in brackets), and number of patients for each possible group status are shown. P values are calculated by means of t-test and Mann–Whitney test 
(in brackets) for the continuous parameters and according to Barnard for the categorical parameters.
aResults of comparing the sedation and reference groups. bResults of comparing the PDa and sedation groups.
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because alterations in these parameters are speculated to be 
potential biomarkers of good or adverse neurological outcome 
(5) that are already well established in term newborns (10). In 
the current study, GA and PNA had a distinct impact on aEEG 
parameters. Maturation of cycling was seen mainly during 
the first weeks, but less during the first 72 h of life. An addi-
tional parameter, which has previously been discussed as the 
strongest developmental indicator, is the minimum amplitude 
(1). The minimum amplitude increased within the first 72 h 
after birth and increased further during the first weeks of life, 
whereas the maximum amplitude decreased, expressing the 
compression of bandwidth span with increasing GA. The GA 
is an important factor, because almost always it is presented as 
a discrete measure, usually in 2–4-wk periods (6,14,20). To the 
best of our knowledge, the current study is the first in which 
the exact GA in weeks was modeled against the evaluated aEEG 
parameter. With increasing PNA/PMA, the mean amplitude 
remained constant, whereas the minimum amplitude and the 
maximum amplitude were affected. Although amplitude is 
a valid and objective parameter, it must be interpreted with 
caution because of its susceptibility to artifacts, environmen-
tal and iatrogenic factors (20,24,26). We therefore introduced 
the log ratio between the maximum and minimum amplitudes 
to obtain an estimate of the dynamic range of variation of the 
aEEG trace. Because this log ratio was significantly correlated 
with GA in the first 72 h and was not impacted by PDA or seda-
tion, this parameter permits GA to be estimated independently 
of potential confounders such as sedation. Sedation resulted in 
an overall depressed aEEG background and lower scores dur-
ing the first 24–36 h. The effect on aEEG parameters of this 
sedation, given as a bolus in conjunction with intubation after 
delivery, was time dependent and decreased over time. Of note 
is the already mentioned lack of impact of sedation on the log 
ratio of maximum and minimum amplitude. Within the seda-
tion group, we were able to demonstrate that suppression of 

aEEG parameters is more pronounced in benzodiazepine- than 
in ketamine-treated newborns. This underlines the clinical 
importance of a detailed knowledge of the effects of adminis-
tered drugs to avoid misinterpretation of aEEG parameters.

In addition to sedation, we evaluated the impact of PDA 
on electrocortical activity. Infants with PDA showed reduced 
Burdjalov TSs in the first 72 h postnatal as compared with the 
sedation group. The difference between the sedation group and 
the PDA group persisted at postnatal week 1, a time when the 
duct was closed, suggesting either long-term impact of PDA or 
an ibuprofen effect on electrocortical activity. This is in contrast 
to several studies that did not find notable changes in (a)EEG 
patterns before or after closure of the ductus arteriosus despite 
variations in cerebral blood flow velocity, volume, or oxygenation 
described in infants with PDA (27,28). Of note, our study was not 
designed to evaluate potential mechanisms. Therefore, we can 
only speculate on the reasons for these different observations.

The current study has limitations. aEEG recordings were not 
commenced immediately after birth, which would be the clos-
est time point to extrauterine transition. However, stabilization, 
neonatal care, and minimal handling were more important. 
Nevertheless, the majority of recordings, including all infants 
from a geographically determined region (highly representa-
tive), were started within 6 h after birth. Another limitation 
of this study is that to date, long-term outcome has not been 
analyzed. One of the main findings of our study is that aEEG is 
influenced by sedation during the first days of life, but further 
studies are necessary to investigate the influence of sedation on 
long-term outcome in these children.

Conclusion
The aEEG has been increasingly used in neonatology in recent 
years. Several studies evaluated the potential of the aEEG as a 
biomarker of brain injury and predictor of neurodevelopmen-
tal outcome. The advantages of aEEG as compared with blood-
based biomarkers are multiple. However, if aEEG is ultimately 
to be established for these purposes, there is an urgent need to 
agree on common definitions, relevant parameters, and a stan-
dardized reporting strategy. Because extrauterine life is a path-
ological condition for preterm infants, defining normality of 
electrocortical activity is a challenge, especially because of the 
great variance in preterm conditions. Longitudinal evaluation 
of infants receiving clinical treatment and presenting epidemi-
ology is needed to avoid persistent variations in aEEG param-
eters. Our methodology and results could form the basis for 
the development and establishment of a standardized report-
ing system, providing raw data for statistical analysis and the 
exchange of aEEG data between centers.

MEtHODS
This study was performed at the neonatal intensive care unit of the 
Department of Pediatrics II, University Hospital of Innsbruck, Austria. 
Inborn infants with a GA between 28 and 31 completed wk, delivered 
between October 2007 and August 2010, were eligible for the study. 
This age group of early preterm infants was chosen because they form 
the majority of preterm infants admitted to our unit, thus allowing 
a sufficient number of infants to be recruited during a limited time 
period and thereby avoiding potential confounders such as changes 
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Figure 7. Impact of medication on maximum amplitude during the first 72 h 
postnatal. Actual distributions are shown as shaded gray boxplots. Vertical 
lines correspond to the predicted maximum amplitude of 95% confidence 
intervals for infants who received ketamine (solid line, n = 8) or benzodiaz-
epine (dashed line, n = 9). Significance levels: **P < 0.01, *P < 0.05.



Volume 73  |  Number 2  |  February 2013      Pediatric ReseaRch 233copyright © 2013 International Pediatric Research Foundation, Inc.

ArticlesaEEG for monitoring the preterm brain

in neonatal care and treatment. GA was assessed by obstetrical diag-
nostic estimate and postnatal clinical examination using the modified 
Ballard Score. PMA and PNA were recorded for all infants. Preterm 
infants were recruited after obtaining written consent from at least one 
parent, either prenatally or within the first 6 h after birth. Exclusion 
criteria were congenital malformations, congenital infections, arterial 
hypotension (on the basis of published normative data) (29), need for 
continuous analgosedation, treatment with indomethacin or repeated 
doses of ibuprofen for symptomatic PDA, periventricular leukomala-
cia, or intraventricular hemorrhage grade 2 or more, assessed by serial 
cranial ultrasound. The study was approved by the ethics committee 
of Innsbruck Medical University (study no. UN3019).

Sedation
Infants in need of surfactant treatment in the delivery room received 
bolus analgosedation, which was at the discretion of the attending 
neonatologist (benzodiazepines, opioid derivates, ketamine, and opi-
oid antagonist).

Diagnosis and Treatment of PDA
All preterm infants were routinely screened by echocardiography within 
48–72 h of PNA. If a left-to-right shunt over the ductus arteriosus was 
diagnosed, pharmacological treatment with ibuprofen (Pedea; Orphan 
Europe SARL, Puteaux, France) was started according to the following 
method: initial dose of 10 mg/kg and second and third doses of 5 mg/
kg ibuprofen intravenously administered every 24 h. On day 6 of life, 
echocardiography was performed for the re-evaluation of the PDA.

Clinical Characteristics of the Study Cohort
In total, 73 children were eligible for the study. Eight infants were 
excluded, including one infant who developed periventricular leu-
komalacia, two infants who were treated with indomethacin, and five 
infants who received a second cycle of ibuprofen treatment. Another 
four infants had a PDA on routine echocardiography but did not 
receive postnatal analgosedation. They were post hoc excluded from 
further analysis due to the limited number of infants within this study 
group. The final cohort comprised 61 infants, who were included in 

table 3. Synopsis of aEEG parameters considered in this study

Method Parameter type Range/level/score Definition

1 Visual background Cat. 1 Ft/LV (flat/low voltage)

2 BS (burst suppression)

3 DC (discontinuous)

4 C (continuous)

Cyclicity: first sinusoidal variation Num. 1–50 FSV appear (hour)

Cyclicity: first obvious widening Cat. <24 h, 24–48 h, 48–72 h,  
W1, W2, W3, W4

FOW appears

2 Burdjalov: CO parameter Score 0 Discontinuous

1 Somewhat continuous

2 Continuous

Burdjalov: CY parameter Score 0 None

1 Waves first appear

2 Not definite, somewhat cycling

3 Definite cycling, but interrupted

4 Definite cycling, uninterrupted

5 Regular and mature cycling

Burdjalov: ALB parameter Score 0 Severely depressed (<3 µV)

1 Somewhat depressed (3–5 µV)

2 Elevated (>5 µV)

Burdjalov: BS-ALB parameter Score 0 Very depressed: low span (≥15 µV) and low voltage (5 µV)

1 Very immature: high span (>20 µV) or moderate span  
(15–20 µV), and low voltage (5 µV)

2 Immature: high span (>20 µV) and high voltage (>5 µV)

3 Maturing: moderate span (15–20 µV) and high voltage (>5 µV)

4 Mature: low span (<15 µV) and high voltage (>5 µV)

Burdjalov: tS Score 0–13 Summation score of CO, CY, ALB, and BS-ALB

3 Minimum amplitude (µV) Num. 1.2–9.7

Mean amplitude (µV) Num. 2.0–27.1

Maximum amplitude (µV) Num. 3.3–55.0

Log2 (maximum/minimum) 
amplitude

Num. 1.2–3.8

Type: data type whether the parameter is numerical (Num.), categorical (cat.), or score. Range: possible values for the parameter (categorical or score) or range of variation (numerical).

aLB, amplitude of the lower border; Bs-aLB, bandwidth span and amplitude of the lower border; cO, continuity; cY, cycling; FOW, first obvious widening; FsV, first sinusoidal variation; 
Ts, total score; VB, visual background; W, week.



234 Pediatric ReseaRch      Volume 73  |  Number 2  |  February 2013 copyright © 2013 International Pediatric Research Foundation, Inc.

Articles Griesmaier et al.

the following three subgroups: (i) reference group: received no anal-
gosedation and had no PDA (n = 21), (ii) sedation group: received 
analgosedation but did not have PDA (n = 20), and (iii) PDA group: 
received analgosedation and one course of ibuprofen treatment for 
PDA (n = 20). Perinatal characteristics of the cohort in relation to the 
study groups are given in Table 2.

aEEG Recording
Two-channel aEEG was recorded with the BrainZ Instruments 
BRM2/3 monitor (BrainZ Instruments; Natus Medical, San Carlos, 
CA) using hydrogel electrodes with standard electrode placement 
at C3, P3, C4, and P4 regions according to the 10–20 International 
System of Electrode placement. This tool uses the parietal (P3, P4) 
electrodes for cross-cerebral aEEG recordings. Recording quality 
was monitored by continuous measurement of the electrode imped-
ance. Traces with impedance >5 kOhm, or with obvious or marked 
artifacts, were excluded from the analysis. aEEG was commenced 
no later than 6 h after birth and continued for a total length of 72 h. 
We analyzed six defined representative time periods each with a 
duration of 6 h: age 6–12 h (n = 52 recordings), 18–24 h (n = 53), 
30–36 h (n = 50), 42–48 h (n = 46), 54–60 h (n = 46), and 66–72 h (n 
= 45). We chose this approach in order to reach for the evaluation-
feasible, representative number of tracings in each infant. Serial 
aEEG recordings were performed during the first 4 wk of life (days 
7, 14, 21, and 28; n = 51–57), each for a duration of 4–6 h.

aEEG Assessment
The 6-h epochs, and the weekly recordings, were evaluated according 
to three methods:

1. Visual assessment of dominating background activity (visual 
background) (continuous, discontinuous, burst suppression, 
low voltage, flat) (12) and onset and presence of cycling defined 
as FSV and obvious periodic widening (19).

2. Background scoring according to Burdjalov et al., including four 
single parameters: CO, CY, ALB, BS-ALB, together with their sum 
(TS) (11).

3. Amplitude parameters (minimum, mean, and maximum) auto-
matically extracted from the aEEG tracing using the Analyze 
Research software (Version 1.3; BrainZ Instruments; Natus 
Medical) (1). aEEG recordings were obtained by two investiga-
tors (M.B. and E.G.), who were experienced but had no specific 
training. The aEEG variables were characterized for the three 
subgroups of infants and assessed in relation to GA, PNA, and 
PMA. A synopsis of the assessed aEEG parameters and scores is 
given in Table 3.

Statistical Analysis
Data analyses and representations were performed within the sta-
tistical environment R (R Development Core Team, 2010) (30). 
Descriptive data are reported as mean (SD), median, and range 
of variation for continuous parameters and as proportion (%) of 
the whole population for categorical outcomes. Potential bias in 
the experimental design was assessed with the two-tailed Welch 
t-test, the Wilcoxon test, and the one-tailed Barnard test (31). 
Proportional hazards modeling was applied to evaluate the impact 
of study group and GA on time to FSV and first obvious widening. 
Modeling of the time to FSV was approached by negative binomial 
regression. Burdjalov scores and the visual background assess-
ment were compared using generalized estimating equations, and 
distributions of the amplitude parameters were compared by gen-
eralized least square regression. Models were independently built 
from the data obtained in the first (6–72 h) and the second (week 
1–4) monitoring phases. Initial model specification strictly follows 
the experimental design, comprising GA, PNA, and PMA (accom-
modating linear and quadratic relationships with time), and study 
group terms as main effects and an interaction term between study 
group and age to examine the time-dependent changes specific to a 
particular study group. For generalized estimating equation mod-
els, intraindividual correlation was addressed using an autoregres-
sive covariance structure in the first monitoring period (6–72 h) 

and an exchangeable correlation structure in the second period 
(week 1–4). Several specifications of the generalized least square 
regression error term were allowed in order to include the longitu-
dinal structure and deal with potential time-dependent heterosce-
dasticity. Model selection and diagnostics follow the protocols of 
Zuur et al. (32). Incidences evaluated in a single aEEG session (i.e., 
corresponding to a given PNA) were calculated with Firth’s penal-
ized-likelihood logistic regression (33). Estimated parameters are 
accompanied by their 95% confidence intervals.
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