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ABSTRACT: Our previous studies using puromycin aminonucleo-
side (PAN) established that podocyte damage leads to glomerular
growth arrest during development and glomerulosclerosis later in
life. This study examined the potential benefit of maintaining podo-
cyte-derived VEGF in podocyte defense and survival after PAN
injury using conditional transgenic podocytes and mice, in which
human VEGF-A (hVEGF) transgene expression is controlled by
tetracycline responsive element (TRE) promoter and reverse tetracy-
cline transactivator (rtTA) in podocytes. In vitro experiments used
primary cultured podocytes harvested from mice carrying podocin-
rtTA and TRE-hVEGF transgenes, in which hVEGF can be induced
selectively. Induction of VEGF in PAN-exposed podocytes resulted
in preservation of intrinsic VEGF, �-actinin-4 and synaptopodin,
antiapoptotic marker Bcl-xL/Bax, as well as attenuation in apoptotic
marker cleaved/total caspase-3. In vivo, compared with genotype
controls, PAN-sensitive neonatal mice with physiologically relevant
levels of podocyte-derived VEGF showed significantly larger glom-
eruli. Furthermore, PAN-induced up-regulation of desmin, down-
regulation of synaptopodin and nephrin, and disruption of glomerular
morphology were significantly attenuated in VEGF-induced trans-
genic mice. Our data indicate that podocyte-derived VEGF provides
self-preservation functions, which can rescue the cell after injury and
preempt subsequent deterioration of the glomerulus in developing
mice. (Pediatr Res 70: 83–89, 2011)

Animal models and clinical studies indicate that podocyte
damage is a key step in progression of glomerular injury

to glomerular sclerosis (1–3). Although podocyte damage
involves oxidative stress, mechanical overstretch, and defi-
ciency of slit diaphragm proteins and/or toxins, our under-
standing of the intrinsic protective mechanisms for podocyte
preservation and repair associated with injury remains largely
unknown.
Vascular endothelial growth factor-A (VEGF-A) is an an-

giogenic and survival factor for endothelial cells (4,5), pri-
marily expressed in glomerular podocytes (6). Tight regula-
tion of podocyte-derived VEGF is required for structural
integrity of the glomerular endothelium (7,8). VEGF down-

regulation prevails in animal models (9–11) and human dis-
eases (12–14) where podocyte damage is thought to be inter-
mediary in disease progression that culminates in glomerular
injury and glomerulosclerosis (15–18). Supplementation of
exogenous VEGF has been shown to attenuate glomerular
lesions in remnant kidneys (9). Recently, we showed that
damage in a portion of the podocyte population causes dam-
age in the remaining podocytes, creating an autonomous
vicious cycle that promotes progressive damage and loss of
podocytes (19). We speculate that podocyte-derived VEGF
functions as its own pivotal protective and survival factor after
injury and have directly tested this hypothesis by enhancing
podocyte VEGF that would otherwise be down-regulated
upon exposure to insult. For this purpose, we studied puro-
mycin aminonucleoside (PAN), a recognized podocyte toxin
(20). Our previous study found that adult mice are resistant to
PAN injury while PAN-injured podocytes cause underdevel-
oped glomeruli in neonatal mice (21). In this study, by using
PAN-injured primary mouse podocytes and neonatal mice
(Fig. 1), we demonstrated an autocrine podocyte survival
effect of VEGF.

METHODS

Animals. Conditional transgenic mice are generated, in which human
VEGF (hVEGF) transgene expression is controlled by tetracycline responsive
element (TRE) promoter and reverse tetracycline transactivator (rtTA) in
podocytes upon presence of tetracycline derivative, doxycycline (Dox). Mice
double-transgenic for podocin-rtTA and TRE-hVEGF (Tg) (22,23) were
obtained from heterozygous mating. WT or podocin-rtTA single transgenic
littermates served as genotype control (Ctrl). Both lines were backcrossed to
C57BL6 (Jackson Laboratory, Bar Harbor, ME) for more than 15 generations.
Animal protocols were approved by Vanderbilt University Medical Center
Institutional Animal Care and Use Committee in accordance with National
Institutes of Health guidelines.

Isolation of glomeruli and podocyte culture. Glomeruli were isolated
from 5- to 9-wk-old Tg and Ctrl mice using a modified methods of iron beads
perfusion (Invitrogen, Carlsbad, CA), collagenase A dissociation (Roche
Applied Science, Germany), and sieving (BD Falcon, Bedford, MA) (24,25),
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yielding glomerular purity �97% used in primary podocyte culture or ELISA.
Podocytes (P0) outgrowing isolated glomeruli were identified by immunos-
tainings for Wilms’ tumor 1 (WT1; Santa Cruz Biotechnology, Santa Cruz,
CA), nephrin (Progen, Germany) and synaptopodin (Progen). Only passage 3
(P3) podocytes were used in the in vitro studies.

To study effects of supplementing podocytes with recombinant human
VEGF165 (rhVEGF; R&D Systems, Minneapolis, MN), P3 podocytes were
treated with low-serum (2.5%) podocyte-conditioned medium and then with
normal podocyte-conditioned medium containing rhVEGF (10 ng/mL), PAN
(100 �g/mL; Sigma Chemical Co.-Aldrich, St. Louis, MO), rhVEGF plus
PAN, or PBS control for 48 h.

As our preliminary experiments showed slightly increased expression of
cytoskeletal proteins in cultured podocytes with Dox treatment, to study the
protective role of podocyte-derived VEGF against PAN-induced injury,
paired Tg and Ctrl podocytes were both treated with Dox (1 �g/mL; Sigma
Chemical Co.-Aldrich) with or without PAN for 48 h.

PAN-induced podocyte injury in maturing mice. To induce hVEGF
transgene expression, podocin-rtTA and TRE-hVEGF neonatal mice were
treated with Dox (2 mg/mL in drinking water containing 1% sucrose) through
the nursing dam starting on the day of delivery. PAN (50 �g/g body weight,
IP) or normal saline was injected 1 d after birth. Blood and urine were
collected and kidneys harvested at 3 wk.

ELISA, Western blot analysis, and quantitative RT-PCR. Albuminuria
was determined by urinary albumin to creatinine ratio (Exocell, Philadelphia,
PA). Human or mouse-specific VEGF and soluble VEGF receptor 1, also
known as soluble fms-like tyrosine kinase 1 (sFlt1), were measured by ELISA
(R&D). Protein expression was assessed by Western blotting normalized to
�-actin and synaptopodin mRNA by quantitative RT-PCR normalized to 18s
rRNA (26).

Immunocytochemistry and immunohistochemistry. Cells grown on slides
were fixed in acetone, incubated with anti-synaptopodin, anti-WT1 (Santa
Cruz), or anti-nephrin, followed by appropriate fluorescent secondary anti-
body. For F-actin staining of cultured podocytes, Alexa Fluor 546-labeled
phalloidin (Invitrogen) was used. For immunohistochemistry, standard ABC
method (Vector Labs, Burlingame, CA) was applied on paraffin-embedded
kidney sections using anti-desmin (Abcam, UK), anti-nephrin, anti-WT1,
anti-human VEGF (R&D), anti-human/mouse VEGF (Zymed, San Francisco,
CA), or anti-mouse VEGF (Sigma Chemical Co.).

Glomerular morphometry. On each paraffin-embedded kidney section
stained with WT1, �30 glomeruli were analyzed by ImageJ software (Na-
tional Institutes of Health) and assessed for glomerular volume (Vglom), and

density and number of WT1-positive podocytes by stereologic morphometrics
(27–29). Glomerular epithelial injury shown by desmin staining was graded
on a 0–4 scale, which represents the positive area involving 0%, 1–25%,
26–50%, 51–75%, or �75% of the glomerular epithelium. For nephrin-
stained sections, all superficial glomeruli were analyzed by AxioVision
software and percentage of positive area in the glomerulus averaged for each
mouse. Measurements were validated separately by laboratory staff without
knowledge of the groups.

Statistical analysis. Data were expressed as mean � SEM. Mann-Whitney
U tests were used for between-group comparisons and Wilcoxon signed-rank
tests for paired comparisons. All statistical tests were two-sided, and signif-
icance was defined as p � 0.05. Statistical analysis was performed using
SPSS.

RESULTS

Effects of exogenous VEGF and PAN on podocyte VEGF
(in vitro). Primary cultured mouse podocytes from WT adult
mice were exposed to PAN or vehicle, and/or rhVEGF for
48 h. The supernatant concentration of hVEGF was 1 ng/mL,
a level that was 3.79 � 0.12 fold of mouse VEGF-A
(mVEGF). Furthermore, mVEGF levels in the supernatant or
cell lysates were unaffected by supplementation with rhVEGF
(Table 1), suggesting that rhVEGF supplementation does not
affect endogenous mVEGF. PAN significantly decreased
podocyte mVEGF and significantly reduced hVEGF in lysates
of cells treated with rhVEGF (Table 1). These results indicate
that injured podocytes have reduced capacity to produce en-

Figure 1. Experimental design.

Figure 2. Effects of rhVEGF on PAN-exposed cultured podocytes. PAN
significantly decreased expression of podocyte slit diaphragm protein �-ac-
tinin-4 and increased apoptotic markers total caspase 3 and Bax. VEGF
supplementation restored suppressed �-actinin-4 and attenuated increased
total caspase 3 (t-Caspase 3) and Bax. , control; , rhVEGF; , PAN; ,
PAN � rhVEGF. *p � 0.05 vs. Ctrl; †p � 0.05 vs. rhVEGF; ‡p � 0.05 vs.
PAN. Experiments used primary podocytes from n � 4 mice.

Table 1. Cellular and supernatant VEGF concentrations in cultured podocytes exposed to PAN and/or rhVEGF

n

Cell lysate Supernatant

hVEGF (pg/mg) mVEGF (pg/mg) hVEGF (pg/mg) mVEGF (pg/mg)

Control 4 0 � 0 431.4 � 6.1 0 � 0 272.7 � 20.1
rhVEGF 4 1493.6 � 198.2 433.8 � 37.7 1005.4 � 18.3 278.5 � 9.9
PAN 4 0 � 0 356.6 � 19.8* 0 � 0 286.9 � 20.5
PAN �rhVEGF 4 477.4 � 160.6† 310.3 � 57.2 1073.8 � 29.4 274.2 � 15.9

Data are presented as mean � SEM. rhVEGF, 10 ng/mL; PAN, 100 �g/mL.
* p � 0.05 vs. Ctrl.
† p � 0.05 vs. rhVEGF.
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dogenous VEGF and have an impaired ability to interact with
and/or take up supplemental VEGF.
PAN significantly reduced expression of the podocyte cy-

toskeleton protein �-actinin-4 and increased expression of the
apoptosis marker total caspase 3 and Bax. Supplementation of
rhVEGF significantly attenuated these injury-related changes
(Fig. 2).
Effects of podocyte-derived VEGF on PAN-injured podo-

cytes (in vitro). To study whether enhanced intrinsic podo-
cyte-derived VEGF protects against injury, mouse podocytes
double-transgenic for podocin-rtTA and TRE-hVEGF were
exposed to PAN. Induction of hVEGF-A transgene was
achieved by Dox. Induced hVEGF was detected in the super-
natant of Tg podocytes as early as 1 h after Dox and was
sustained. By contrast, hVEGF was not detected in Dox-
treated WT or podocin-rtTA single transgenic podocytes (Ctrl
podocytes). Intrinsic mVEGF expression and secretion were
not significantly changed by induced expression of podocyte-
derived hVEGF in Tg podocytes compared with Ctrl podo-

Figure 3. Effects of induced expression of
podocyte-derived VEGF on PAN-injured podo-
cytes. (A) PAN caused retraction of podocyte
processes, and it significantly down-regulated
and disrupted synaptopodin (green) and F-actin
(red) in both Ctrl and Tg podocytes. Induction of
podocyte-derived VEGF attenuated PAN-
induced suppression of synaptopodin and F-ac-
tin in Tg podocytes as well as lessening process
retraction. (B) Enhancement of podocyte VEGF
expression in Tg podocytes significantly amelio-
rated suppression of �-actinin-4, synaptopodin,
and �-tubulin caused by PAN when compared
with Ctrl. In Ctrl podocytes, PAN significantly
increased expression of apoptotic marker
cleaved caspase 3 (c-Csps 3), total caspase 3
(t-Csps 3), and Bax and decreased antiapoptotic
Bcl-xL and ratio of Bcl-xL/Bax. Induction of
podocyte-derived VEGF expression signifi-
cantly attenuated PAN-induced changes in the
ratio of c-Csps 3 to t-Csps3 (c/t-Csps 3) and
Bcl-xL/Bax. , Ctrl; , Ctrl � PAN; , Tg; ,
Tg � PAN. *p � 0.05 vs. Ctrl; †p � 0.05 vs. Tg;
‡p � 0.05 vs. Ctrl � PAN. All podocytes were
treated with Dox. Podocytes from n � 4 pairs of
Ctrl and Tg mice.

Figure 4. Immunostaining for hVEGF and mVEGF on the kidney specimens
from Dox-treated Tg mice. Expression of hVEGF transgene was detected in
Tg glomeruli but not in WT. Expression of intrinsic mVEGF in podocytes was
not affected by hVEGF transgene expression. Arrow indicates a podocyte with
positive hVEGF staining.

Table 2. Cellular and supernatant VEGF concentrations in cultured Ctrl and Tg podocytes exposed to PAN

n

Cell lysate Supernatant

hVEGF (pg/mg) mVEGF (pg/mg) hVEGF (pg/mg) mVEGF (pg/mg)

Ctrl 4 0 � 0 412.2 � 22.5 0 � 0 240.2 � 9.7
Tg 4 2929.0 � 610.6 448.9 � 3.9 1425.9 � 99.8 283.5 � 9.4
Ctrl � PAN 4 0 � 0 246.8 � 0.7* 0 � 0 284.4 � 19.6
Tg � PAN 4 126.9 � 54.1† 289.6 � 5.2†‡ 736.5 � 199.5† 269.8 � 8.0

Data are presented as mean � SEM. All cells were treated with Dox.
* p � 0.05 vs. Ctrl.
† p � 0.05 vs. Tg.
‡ p � 0.05 vs. Ctrl � PAN.

85SELF-PROTECTIVE EFFECT OF PODOCYTE VEGF



cytes. The total human and mouse VEGF levels were some
6.5-fold higher in Tg podocyte lysate and 5.0-fold in Tg
supernatant than the Ctrl.
PAN significantly down-regulated expression of mVEGF in

Tg and Ctrl podocytes and hVEGF in Dox-treated Tg podo-
cytes. However, Dox-treated Tg podocytes with induced
podocyte-derived VEGF significantly ameliorated reduction
in mVEGF (Table 2). Moreover, even 48 h after Dox, mVEGF
levels in cell lysates and supernatants and hVEGF levels in
supernatants were comparable between WT podocytes supple-
mented with rhVEGF and Dox-treated Tg podocytes with
induced hVEGF (Tables 1 and 2).
PAN-exposed cultured podocytes showed retracted pro-

cesses, disrupted and reduced cytoskeleton protein F-actin

(Fig. 3A), as well as down-regulated slit diaphragm protein
synaptopodin, tight junction protein ZO-1, and cytoskeleton
protein �-actinin-4 and �-tubulin. Tg podocytes with elevated
podocyte VEGF had significantly ameliorated all these
changes (Fig. 3B). PAN also significantly increased apoptosis
marker cleaved and total caspase 3, and tended to increase
proapoptotic Bax and decrease antiapoptotic Bcl-xL in Ctrl
podocytes. Tg podocytes with elevated podocyte VEGF had
significantly preserved ratios of Bcl-xL/Bax and cleaved/total-
caspase 3 (Fig. 3B).
Western blot analysis showed significantly up-regulated ex-

pression of VEGF receptor 1, also known as fms-like tyrosine
kinase 1 (Flt1), in Tg podocytes with elevated podocyte VEGF
but down-regulated in PAN-exposed podocytes. Induction of
hVEGF expression significantly attenuated the change in Flt1
expression caused by PAN (Ctrl, 1.00 � 0.04; Tg, 2.08 �
0.07; Ctrl � PAN, 0.59 � 0.08; Tg � PAN, 0.94 � 0.11 fold
change; all p � 0.05 for Tg versus Ctrl, Ctrl � PAN versus
Ctrl, and Tg � PAN versus Ctrl � PAN).
VEGF in podocin-rtTA/TRE-hVEGF double-transgenic

mouse kidneys (in vivo). To determine the transgene expres-
sion in vivo, immunostaining and ELISA for human-
specific VEGF were assessed. Human VEGF staining on
kidney sections from adult mice treated with Dox for 1–4
wk showed positive transgene expression primarily in glo-
merular podocytes. Increased expression of podocyte
hVEGF in Tg mice did not affect the level of intrinsic
mVEGF (Fig. 4), with an average of 1076.6 � 257.3 pg/mg
protein in Ctrl glomeruli versus 1153.6 � 278.8 pg/mg
protein in Tg glomeruli measured by ELISA (each n � 3,
p � 0.05). Quantitation of VEGF expression in isolated
glomeruli showed that the amount of hVEGF was some
4-fold of mVEGF (Table 3).

Figure 5. Renal morphology of neonatal Ctrl
or Tg mice with or without PAN. hVEGF ex-
pression was only detected in Tg mice but not in
the Ctrl. Tg mice with induced podocyte VEGF
showed larger glomeruli than Ctrl and similar
podocyte foot processes, glomerular basement
membrane, and endothelial fenestrae examined
by transmission electron microscopy (TEM).
PAN-injected mice showed increased desmin
and decreased nephrin expression, as well as
smaller glomeruli with simpler branches of cap-
illaries and increased density of WT1-positive
podocytes in superficial glomeruli. These
changes were attenuated by induction of podo-
cyte-derived VEGF.

Table 3. VEGF level and ratio of human/mouse VEGF in Tg
mouse glomeruli and kidneys treated with Dox

n
hVEGF

(pg/mg protein)
mVEGF

(pg/mg protein)
human/mouse

VEGF

Glomerulus 3 4834.2 � 1097.5 1153.6 � 278.8 4.21 � 0.27
Kidney 3 39.2 � 1.2 51.4 � 0.6 0.60 � 0.16

Data are presented as mean � SEM.

Table 4. VEGF level in Ctrl and Tg neonatal kidneys treated with
Dox and/or PAN

n
hVEGF

(pg/mg protein)
mVEGF

(pg/mg protein)
Human/mouse

VEGF

Ctrl 3 0 � 0 93.9 � 0.6 0 � 0
Tg 3 35.6 � 4.9 92.8 � 4.8 0.38 � 0.03
Ctrl � PAN 3 0 � 0 107.6 � 12.5 0 � 0
Tg � PAN 3 10.0 � 1.6* 128.1 � 12.0 0.077 � 0.006*

Data are presented as mean � SEM.
* p � 0.05 vs. Tg.
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Effects of induction in podocyte VEGF on PAN podocyte
injury (in vivo). hVEGF expression was observed in kidneys
of 3-wk-old Dox-treated mice (Table 4), localizing in podo-
cytes (Fig. 5) of Tg but not Ctrl pups. Compared with the Ctrl,
Dox-treated Tg mice with induced podocyte VEGF had larger
glomeruli (Figs. 5 and 6A), greater nephrin-positive glomer-
ular areas (Table 5; Fig. 5), and increased synaptopodin
mRNA (Fig. 6B). Histological assessment revealed no struc-
tural damage in the glomerulus by induced podocyte VEGF

(8). These findings were supported by transmission electron
microscopy, which also showed no appreciable differences in
podocyte foot processes, glomerular basement membrane, and
endothelial fenestrae between Ctrl and Tg mice (Fig. 5).
PAN significantly reduced hVEGF expression in kidney

homogenate of Tg pups (Table 4). PAN also lessened renal
synaptopodin mRNA expression in both Ctrl and Tg mice.
These changes were significantly alleviated by induction of
podocyte VEGF in Tg mice (Fig. 6). Glomerular increase in
desmin and decrease in nephrin induced by PAN were atten-
uated by enhanced expression of podocyte VEGF (Table 5;
Fig. 5). Glomeruli of PAN-exposed Ctrl mice tended to have
smaller glomerular volume (Table 5; p � 0.094) with simpler
branching of capillaries and higher podocyte density (Table 5;
p � 0.064) than non-PAN-treated Ctrl. Pairing Tg and Ctrl
mice from the same litter according to the body weight
revealed that induced expression of podocyte-derived VEGF
increased glomerular volume in both PAN-exposed and non-
PAN-exposed mice and decreased podocyte density in PAN-
exposed mice (Fig. 6A). At 3 wk, ELISA analysis of urine for
albumin showed no proteinuria in Tg and Ctrl mice treated
with Dox with or without PAN (Ctrl, 81.1 � 31.3; Tg, 38.4 �
12.3; Ctrl � PAN, 65.9 � 22.1; Tg � PAN, 35.1 � 11.4
�g/mg creatinine) (8,21,30). Plasma creatinine measured by
HPLC was not significantly different among the groups (Ctrl,
0.105 � 0.024; Tg, 0.102 � 0.026; Ctrl � PAN, 0.116 �
0.011; Tg � PAN, 0.114 � 0.018 mg/dL). As expected during
this rapid maturational growth stage, apoptotic signals and
apoptotic cells were rarely detected by TUNEL or caspase
staining in the 3-wk mouse kidneys with or without PAN
exposure.

DISCUSSION

Using in vitro and in vivo transgenic models of inducible
podocyte-specific VEGF, we demonstrate a protective effect
of intrinsic VEGF against podocyte injury and suggest that
podocyte-derived VEGF has a self-preserving autocrine func-
tion. Our data also indicate that augmentation of intrinsic
podocyte VEGF within the physiological range can abort
deterioration of glomerular development prompted by podo-
cyte injury.
In our study, the podocyte-derived VEGF was increased by

a maximum 6-fold of the intrinsic mVEGF in cultured podo-
cytes (Table 2) and 4-fold in isolated glomeruli from Tg mice
(Table 3). This level of increase parallels that observed in
studies with hypoxia which induced 3- to 7-fold increase in
VEGF-A expression or secretion in cultured cells (31–34).

Figure 6. Changes in glomerular size and podocytes. (A) Ctrl and Tg
littermates with or without PAN were paired according to the body weight and
gender. Tg mice with induced podocyte-derived VEGF had significantly
larger glomeruli than their paired Ctrl in both PAN and vehicle groups (both
p � 0.05). Glomerular podocyte density that encompasses the podocyte
number over glomerular volume was significantly reduced by enhanced
podocyte VEGF in PAN-exposed mice (p � 0.05). Tg and Ctrl pairs for PAN
treated or untreated (n � 5). (B) Enhanced podocyte-derived VEGF significantly
increased synaptopodin expression in kidneys of Ctrl and significantly attenuated
synaptopodin decrease caused by PAN injury. , Ctrl; , Tg. *p � 0.05 vs. Ctrl;
†p � 0.05 vs. Tg; ‡p � 0.05 vs. Ctrl � PAN. Ctrl (n � 6) and Tg (n � 7) without
PAN, and Ctrl (n � 7) and Tg (n � 7) with PAN.

Table 5. Glomerular histology in podocin-rtTA/TRE-hVEGF double-transgenic kidneys treated with Dox and/or PAN

n Desmin score Nephrin (%) NV (/�m3 � 106) Podocytes (/glomerulus) Glomerular volume (�m3)

Ctrl 7 0.51 � 0.14 3.99 � 0.41 1,424 � 59 101.2 � 5.5 71,347 � 3,528
Tg 9 0.79 � 0.13 5.20 � 0.25* 1,512 � 138 119.6 � 12.8 80,740 � 6,564
Ctrl � PAN 7 1.64 � 0.16* 2.98 � 0.15* 1,622 � 81 100.3 � 5.4 62,345 � 3,466
Tg � PAN 7 0.79 � 0.24† 4.06 � 0.41†‡ 1,358 � 78† 92.2 � 3.7 70,011 � 6,077

Data are presented as mean � SEM. NV denotes glomerular podocyte density.
* p� 0.05 vs. Ctrl.
† p � 0.05 vs. Ctrl � PAN.
‡ p � 0.05 vs. Tg.
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In vivo, VEGF was found 5- to 10-fold higher after hypoxia in
the retina (35), in the cornea with neovascularization (36), and
in tumor tissues (37). Thus, data of our study indicated that the
magnitude of increase in podocyte VEGF in the Tg mice was
in the physiological rather than pharmacological range. Nota-
bly, this physiological level of VEGF induction did not result
in proteinuria, glomerular endothelial injury, or glomerulo-
sclerosis (8,30). Moreover, both ELISA measurement of cul-
tured podocytes and isolated glomeruli indicated that the
supplemental hVEGF transgene expression does not affect the
level of intrinsic mVEGF.
PAN has been shown to cause derangement and down-

regulation of cytoskeletal proteins as well as increased apo-
ptosis in cultured podocytes (20,38), and podocyte foot pro-
cess effacement and altered expression/localization of slit
diaphragm proteins in vivo (38,39). In our study on primary
podocytes, these changes were found associated with a sig-
nificant decrease in cellular VEGF after PAN injury. The level
of recombinant VEGF was also greatly reduced compared
with podocytes without PAN injury. Therefore, PAN injury
compromises podocyte survival by down-regulating intrinsic
VEGF expression and/or reducing the cell’s capability to use
VEGF from adjacent podocytes. It is not known whether the
turnover of VEGF is changed in diseased podocytes and
whether higher dose of rhVEGF exerts greater protective
effects. Given that the nature of podocyte deterioration follows
an autonomous vicious cycle, our data suggest that supple-
mentation of intrinsic VEGF protects podocytes by disrupting
this injurious cycle (19).
Previous studies in glomerular injury models (40,41) sug-

gested an antagonistic effect of soluble VEGF receptor 1
(sFlt1) on podocyte preservation, while decreased Flt1 expres-
sion has been linked to increased apoptosis (42,43). The sFlt1
levels in cultured podocyte supernatant in the current study
were not significantly different after PAN and/or induction of
VEGF expression. However, the Flt1 expression was de-
creased by PAN and increased in podocytes with induced
hVEGF with or without PAN. Thus, the preserved Flt1 ex-
pression in PAN-injured podocytes may mediate the autocrine
protective effects of VEGF against podocyte injury. Although
VEGF receptor 2 (VEGFR-2) is regarded as functional recep-
tor of VEGF, our study did not find convincing changes in its
phosphorylation or expression in cultured podocytes (data not
shown), which is consistent with a most recent finding that
autocrine effects of podocyte VEGF may not actively involve
VEGFR-2 (44).
In vivo, mouse podocytes are sensitive to PAN only during

the developmental stage (21). Our previous study showed
transient effacement of podocyte foot processes without pro-
teinuria in neonatal mice after PAN injection (21). The injured
podocytes cause abnormal development of glomerular capil-
laries with simpler branching and reduced glomerular endo-
thelial volume, changes that are more prominent in superficial
than deep glomeruli (21). In developing mice, we detected a
significantly reduced expression of podocyte-specific synap-
topodin and nephrin as well as an increase in desmin after
PAN injury while no change in mVEGF likely due to contri-
bution from its nonpodocyte sources. Enhanced expression of

podocyte-derived VEGF not only significantly preserved syn-
aptopodin and nephrin expression but also dampened up-
regulated desmin after PAN. These data indicate a self-
protective role of podocyte VEGF against injury and
propagation of injury in vivo. Previous studies have shown
that glomerular development is influenced by podocyte-
derived VEGF (8,45). In the current study, enhanced podo-
cyte-derived VEGF caused larger glomerular volume in nor-
mally developing uninjured mice, whereas supplementing
podocyte VEGF preserved glomerular growth deteriorated by
PAN injury. The effects of enhanced podocyte VEGF on
glomerular development also suggest a proangiogenic form of
hVEGF rather than antiangiogenic splice variants (46), and a
paracrine effect of VEGF on endothelial cells in developing
glomeruli (44). The nonsignificant changes in podocyte den-
sity or number between the normal mice with and without
enhanced podocyte VEGF, and the restored podocyte density
in PAN-injured mice with enhanced podocyte VEGF, together
with increased synaptopodin and nephrin expression, indicate
that the enhanced expression of podocyte VEGF may be
conducive for podocyte adaptation that occurs in parallel with
enlargement of the glomerular vasculature under pathophysi-
ological conditions.
In summary, our studies confirm an autocrine survival effect

of VEGF in podocytes in vitro (47–49) and demonstrate
protective roles of enhanced intrinsic VEGF against podocyte
injury and in preservation of normal glomerular development
in vivo.
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