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ABSTRACT: Necrotizing enterocolitis (NEC) is the most common
gastrointestinal disease of infancy, afflicting 11% of infants born 22–28
wk GA. Both inflammation and oxidation may be involved in NEC
pathogenesis through reactive nitrogen species production, protein
oxidation, and DNA damage. Poly(ADP-ribose) polymerase-1
(PARP-1) is a critical enzyme activated to facilitate DNA repair
using nicotinamide adenine dinucleotide (NAD�) as a substrate.
However, in the presence of severe oxidative stress and DNA dam-
age, PARP-1 overactivation may ensue, depleting cells of NAD�
and ATP, killing them by metabolic catastrophe. Here, we tested the
hypothesis that NO dysregulation in intestinal epithelial cells during
NEC leads to marked PARP-1 expression and that administration of
a PARP-1 inhibitor (nicotinamide) attenuates intestinal injury in a
newborn rat model of NEC. In this model, 56% of control pups
developed NEC (any stage) versus 14% of pups receiving nicotin-
amide. Forty-four percent of control pups developed high-grade NEC
(grades 3–4), whereas only 7% of pups receiving nicotinamide
developed high-grade NEC. Nicotinamide treatment protects pups
against intestinal injury incurred in the newborn rat NEC model. We
speculate that PARP-1 overactivation in NEC may drive mucosal cell
death in this disease and that PARP-1 may be a novel therapeutic
target in NEC. (Pediatr Res 70: 67–71, 2011)

Necrotizing enterocolitis (NEC) is the most common gas-
trointestinal disease of infancy, with population studies

estimating the incidence of NEC at between 0.3 and 2.4 per
1000 live births in the United States and afflicting up to 11%
of all infants born 22–28 wk gestation (1,2). Mortality rates
range from 20% to 44% in infants with birth weights �1500
g and up to 20% in infants �2500 g (3). Although first
described in the 1800s, the mechanistic basis of NEC remains
poorly understood despite years of basic science and clinical
exploration (4). Factors in the newborn intestine modulating
the innate immune response as well as the protective and toxic
effects of the free radical NO have been postulated as possible
contributors to the initiation and/or progression of NEC (5,6).
Endogenous NO is generated during the enzymatic conver-

sion of L-arginine to L-citrulline and is catalyzed by a family of
enzymes known as NO synthases (NOS) (7,8). Three NOS
isoenzymes function in the gastrointestinal tract to produce

NO: neuronal NOS (NOS1), inducible NOS (NOS2), and
endothelial NOS (NOS3). The synthase most commonly im-
plicated in NO dysregulation is NOS2 (9). Excess or uncon-
trolled production of NO can shift it from a useful cellular
signal to a toxic free radical (10). NO dysregulation promotes
the formation of peroxynitrite, a highly reactive nitrogen
species known to nitrate protein tyrosine residues and cause
cellular oxidative damage to organelles and DNA (11).
Widespread NOS2 induction and protein nitration have

been found in human NEC specimens (12). After DNA dam-
age due to oxidation, poly(ADP-ribose) polymerase-1
(PARP-1) is a critical enzyme activated to facilitate DNA
repair (Fig. 1). This enzyme uses NAD� (nicotinamide ade-
nine dinucleotide) as a substrate and attaches multiple ADP-
ribose (PAR) units to itself and other acceptor proteins
(13,14). This poly(ADP-ribosyl)ation allows the acceptor pro-
teins to selectively influence important cellular responses that
enhance DNA repair (15). However, in the presence of severe
cellular oxidative stress and DNA damage, overactivation of
PARP-1 may ensue (16). This may lead to cell death by two
possible mechanisms. First, significant PARP-1 activation
may deplete the cells of NAD�/ATP, killing the cells by
metabolic catastrophe (16). Cells with already low NAD�
stores may be more prone such as proliferating enterocytes in
the crypts or cells entering apoptosis such as those at the villus
tips (17). Second, in the presence of adequate cell energy
stores, increased PARP-1 activation can lead to apoptosis via
apoptotic inducing factor (AIF) from the mitochondria or by
caspase-dependant mechanisms (18).
The importance of apoptosis during the evolution of NEC

has been supported in multiple experiments (19–23). How-
ever, at some point, necrosis will ensue whether the disease
continues to progress. Thus, a mediator such as PARP-1 in an
injured or activated cell may serve as a checkpoint or governor
between the fate of cellular repair and the fate of cell death
(via either apoptosis or necrosis) and may play a vital role in
disease progression including necrotizing enterocolitis. Our
objective was to test the hypothesis that NO dysregulation in
the intestinal epithelial cell during NEC leads to marked
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PARP-1 expression, and that administration of a known
PARP-1 inhibitor (nicotinamide) will attenuate intestinal in-
jury in a newborn rat model of NEC.

METHODS

Animals. Pregnant Sprague-Dawley rats (Harlan Laboratories Indianapo-
lis, IN) were obtained at gestation E16 and were allowed access to standard
chow and water ad libitum until delivery of the pups via C-section at E21
(term). All animal studies were approved by The Research Institute at
Nationwide Children’s Hospital’s Institutional Animal Care and Use Com-
mittee (IACUC).

Neonatal rat NEC model. After delivery, rat pups were placed on the rat
NEC model protocol as previously described (24,25). Each pup was given
enteral LPS (1 mg/kg E. coli lipopolysaccharide) followed by enteral orogas-
tric artificial feedings six times a day. The feedings consisted of 15 g of
Similac 60/40 powder (Ross Pediatrics, Columbus, OH) added to 75 mL
Esbilac Liquid Milk Replacer (Pet-Ag, New Hampshire, IL) to provide 200
kcal/kg/d. Starting within 2–3 h of delivery, pups were exposed to hypoxia
(100% nitrogen) for 2 min followed immediately by exposure to hypothermia
(10 min at 4°C) twice a day. Pups were killed at 4 d of age or sooner if they
developed evidence of distress, including increased work of breathing or
lethargy. After sacrifice, the intestines were removed and placed in 10%
formalin for 24 h followed by saline. After fixation of the intestines with
formalin, the intestine was placed in paraffin block, and histologic sections
were prepared and stained with hematoxylin and eosin for further analysis.

Grading of intestinal injury. A previously established grading system was
used to objectively determine the degree of observed intestinal injury (25,26).
The grading system was as follows: grade 0, no evidence of intestinal injury;
grade 1, sloughing at the tips of the villi only; grade 2, sloughing to the mid
villous; grade 3, necrosis of the entire villus; and grade 4, necrosis of the
intestinal wall that includes the entire villus extending into the submucosa.
Two separate investigators blinded to the study graded each intestinal sample.

Enteral administration of NOS2 blocker or nicotinamide. The selective
NOS2 inhibitor aminoguanidine (AG; 10 mg/kg/d; Cayman Chemical, Ann
Arbor, MI) (n � 11) or vehicle (sterile water) (n � 12) was administered per
orogastric tube before the first feeding and then daily throughout the 4-day
protocol in animals in the aminoguanidine group. In a separate experiment,
the PARP inhibitor nicotinamide (500 mg/kg/d; Sigma Chemical Co.-Aldrich,
St. Louis, MO) (n � 14) or vehicle (sterile water) (n � 16) was administered
per orogastric tube before the first feeding and then daily throughout the 4-day
protocol in animals in the nicotinamide group. AG and nicotinamide were
suspended in sterile water for these experiments.

Human NEC sample collection. Human intestinal tissues obtained during
operative procedures carried out at Nationwide Children’s Hospital (Colum-
bus, OH) were used. Sample collection was approved by Nationwide Chil-
dren’s Hospital Institutional Review Board. The operative procedures that
provide tissue for this study occurred during the course of standard care for
intestinal disease states (i.e. intestinal obstruction or NEC). The pathologist

first examined the tissue and those portions required to make a pathologic
diagnosis are placed in the proper fixative; the remaining tissue that normally
would be discarded by the pathologist was then analyzed in this study. The
sample is cut into two pieces. One piece is placed in 10% formalin for 24 h
followed by saline, and the second was immediately frozen at �80°C for
future use. For the purposes of this study, we used NEC specimens taken from
the region of the resection margin. These tissues were not grossly necrotic and
had evidence of viable proximal mucosa.

Intestinal immunohistochemistry. Five-micrometer sections from forma-
lin-fixed paraffin-embedded ileal tissues from either human or rat species were
mounted on slides, rehydrated in a graded series of alcohols, and deparaf-
finized for immunohistochemical staining. Immunohistochemistry was per-
formed using primary antibodies specific for NOS2 (Transduction Labs;
1:200), 3-nitrotyrosine (3-NT) (Millipore, Billerica, MA; 1:400), and PARP-1
(Trevigen, Helgerman, CT 1:1000), followed by biotinylated universal goat
link secondary antibody (Biocare Medical, Concord, CA), followed by
streptavidin-HRP (Biocare Medical) and diaminobenzadine (DAB; Sigma
Chemical Co.-Aldrich) as the chromogen. Tissue sections were visualized
with an Olympus Optical (Melville, NY) BX-40 microscope (40� objective).
Images were captured under identical lighting conditions and optical settings
and analyzed using image analysis software (Image Pro Plus; Media Cyber-
netics, Silver Springs, MD). In each image, two transmural regions (distal
villus and proximal villus) were outlined and the staining intensities, mea-
sured as integrated OD (IOD), were determined for each region.

Image analysis. Images were captured using a research grade Olympus
BX-40 microscope, a high-resolution color digital camera (Diagnostic Instru-
ments, Sterling Hts, MI) and a Pentium 233 PC workstation, and analyzed
using Image Pro Plus software (Media Cybernetics, MD). Separate methods
have been developed that allow semiquantitative determination of the extent
of immunoreactivity of sections. For tissues exhibiting a more punctate
staining pattern (commonly observed with NOS2 presence), the image anal-
ysis software provided an automated analysis tool that allows for counting of
dark or light objects; these objects can be gated to discriminate very small or
large (i.e. noncellular) debris based on pixel size. Images are segmented after
extraction of the blue channel and conversion to gray scale as previously
described (27,28). We have previously used this method to quantify NOS2
positive cells in a cross section of ileum from newborn rats in a model of
prenatal LPS exposure and also hyperoxia exposure (25,27,28).

The degree of 3-NT, NOS2, and PARP-1 staining in the mucosa of ileal
tissues from rats with grades 1 and 2 injury were analyzed. Focus was placed
on these grades to represent the early transition to severe tissue injury and cell
death. Moreover, the mucosal region is obliterated in severe NEC (Fig. 2)
(grades 3 and 4 injury in the newborn rat model). Thus, the proximal mucosa
could not be evaluated in these grades of injury.

Statistical analyses. Data are expressed as means � SEM. Comparative
analyses were completed by t test and two-way ANOVA with Bonferroni
posttests to determine relative differences among our study groups. A p value
�0.05 was considered significant.

Figure 1. Illustration of PARP-1 action after DNA damage. PARP-1 adds
PAR units onto DNA repair proteins to facilitate DNA repair. This action
requires NAD� and ATP. Overactivation of PARP-1 may deplete the cell of
NAD� and ATP stores. Adapted from Schreiber et al. Nat Rev Mol Cell Biol
7:517, copyright © 2006 MacMillan Publishers Ltd., with permission.

Figure 2. Comparison of human and rodent NEC. Shown are representative
photomicrographs of both human intestinal tissues and rat intestinal tissues with
NEC. The upper panels show healthy tissue in both species and the lower panels
shows NEC in both species. These data support the validity of the use of rodents
as in vivo models of NEC. Scale bar � 100 �m, magnification �40.
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RESULTS

Evidence of reactive nitrogen species formation in the rat
NEC model. Digital image analysis showed evidence of in-
creased 3-NT in the proximal mucosal region (Fig. 3A) in
tissues with grade 1 or 2 injury, demonstrating an increased
prevalence of nitrative cellular injury.
PARP-1 activation in the rat NEC model. We observed

significant increases in PARP-1 in the same regions of tissue
in which we observed protein nitration (Fig. 3B). In addition,
there was a positive association of PARP-1 prevalence in the
regions of highest protein nitration among the NEC tissues
investigated (Fig. 3C).

Inhibition of NOS2 reduces intestinal mucosal PARP-1
expression. NOS2 expression was unchanged with aminogua-
nidine treatment in the proximal mucosa. In contrast, 3-NT
and PARP expression were significantly decreased in the
proximal mucosa of pups treated with aminoguanidine (Fig.
4). Although there was no significant difference in overall NEC
between treatment and control, severe grades of injury were

protected against (0% versus 50%; data not shown). These
finding are consistent with those of other investigators (12).
Nicotinamide is protective against intestinal injury in a

newborn rat model of NEC. Administration of nicotinamide
was protective against the development of any NEC (p �
0.01) and also protected against more severe grades of injury
(p � 0.02; Table 1).
PARP-1 expression is elevated in human intestinal tissue

resected for NEC. Figure 5A shows PARP-1 immunostaining
in a specimen of small intestine from an infant with bowel
obstruction, whereas Figure 5B shows PARP-1 immunostain-
ing in intestinal tissue resected from an infant with NEC. Note
this is not severe NEC or markedly necrotic bowel because the
mucosa is still present in this portion of the specimen. When
quantified (n � 17 for control with mean GA 29 � 4 wk and
n � 20 for diseased with mean GA 31 � 5 wk), PARP-1
immunostaining was significantly increased in the intestinal
mucosa of human NEC specimens (Fig. 5B).

DISCUSSION

Our objective was to test the hypothesis that NO dysregu-
lation in the intestinal epithelial cell during NEC leads to
marked PARP-1 expression, and that treatment with a known
PARP-1 inhibitor attenuates intestinal injury in a newborn rat
model of NEC. Analyses revealed evidence of increased 3-NT
in the proximal mucosal region, demonstrating an increased
prevalence of nitrative cellular injury. PARP-1 immunostain-
ing was significantly decreased in pups treated with AG and

Figure 3. 3-NT and PARP-1 expression in experimental NEC. (A) 3-Nitrotyrosine staining in the proximal mucosa of pups exposed to experimental NEC. 3-NT
staining increased as the degree of injury increased in this region (* � p � 0.05 vs control; two-way ANOVA). (B) PARP immunostaining is significantly
increased in the proximal mucosa as severity of injury increases. (C) PARP activation correlates with areas of greatest nitrative injury in the proximal mucosa.
F, Control; �, grade 1 NEC; Œ, grade 2 NEC. (D) Representation of areas of mucosa discussed. Scale bar � 50 �m, magnification �40.

Figure 4. Effects of aminoguanidine on NOS2,
3-NT, and PARP-1 expression in experimental
NEC. (A) NOS2 immunostaining was un-
changed. In pups with grade 2 NEC, there was
significantly less 3-NT (B) and PARP (C) im-
munostaining within the proximal mucosa of
pups treated with the NOS2 inhibitor aminogua-
nidine. * � p � 0.05, ** � p � 0.005 vs NEC
grade 2.

Table 1. Effect of nicotinamide on experimental NEC

Control Nicotinamide p

Percentage of NEC 56% 14% �0.01
Percentage of NEC � grade 2 44% 7% �0.02

Pups treated with nicotinamide have significantly less evidence of any
intestinal injury than controls when exposed to the rat model of NEC (p �
0.05; t test). Pups treated with nicotinamide tended to have less severe
intestinal injury (p � 0.05; t test).
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subjected to experimental NEC. It seems that PARP-1 activa-
tion is downstream from NOS2 induction, and that blocking
the NOS2 enzyme can reduce mucosal PARP in this setting.
These data strongly support the concepts developed in other
disease states, specifically that reactive nitrogen species lead to
PARP-1 activation. Note that the use of amioguanidine will not
decrease transcription of NOS2 protein, but it will decrease the
enzyme activity. Thus, the downstream effects of the enzyme are
attenuated as we have demonstrated in these experiments and
have been shown previously by Vicente et al. (29) as well as
others. PARP-1 is a contributor to both disease progression and
severity in other disease states including myocardial infarction
and inflammatory bowel disease (30–32). PARP-1 is therapeutic
target in these disease states as well as others (33). Therefore, it
is possible that treatment with a PARP-1 inhibitor may also
attenuate intestinal injury in NEC.
On administration of the known PARP-1 inhibitor nicotin-

amide in our rat NEC model, both intestinal injury and
PARP-1 expression were significantly decreased. Nicotin-
amide was chosen in these initial experiments because of its
wide safety profile and known PARP-1 inhibitory effects (16).
There are several other PARP-1 inhibitors in clinical trials for
other disease states, including diabetes and cancer (33). How-
ever, nicotinamide does have other effects, such as attenuation
of inflammation, which may also make it an ideal choice for
a therapeutic in premature infants. These experiments demon-
strate evidence that PARP-1 may play a role in newborn
intestinal injury, and inhibition of PARP-1 may be protective
against NEC. However, because of other potential roles, nic-
otinamide might play in protecting the newborn intestine from
injury; our finding supports our hypothesis but do not defin-
itively prove PARP’s mechanistic role in NEC. Other studies
have identified the elevation of PARP-1 in experimental mod-
els of NEC, but they only identified it as a marker for cell
death (34). Studies to putatively define the role of PARP-1 in
NEC using PARP-1 “knock out” and “knock down” models of
newborn intestinal injury are warranted and on-going in our
laboratory as well as optimizing the dosing of nicotinamide
and newborn intestinal injury.
Our results also support the premise that PARP-1 may play

a role in the events leading to enterocyte cell death during
human NEC. PARP-1 is significantly elevated in human NEC
specimens when compared with control newborn intestinal

tissues. Specifically, PARP-1 expression was elevated in the
NEC surgical specimens that still have a relatively intact
intestinal mucosa. It is generally accepted that the intestinal
injury incurred in NEC begins in the mucosa and propagates
from there (25,35,36). This region of intestine is critical for
restitution from the initial stages of NEC. If the diseased
intestinal tissue was not removed, it is plausible that these
tissues would have progressed to NEC because the majority of
these samples were at the resection margins of a sample with
a necrotic midsection. Therefore, it is reasonable to hypothe-
size that PARP-1 may be acting as a gate keeper for enterocyte
cell death during NEC. Multiple studies have shown the
importance of apoptosis and early cell death in the progression
of bowel injury in NEC (19,23). Identifying mediators that
determine this early decision by the cells for restitution or cell
death may allow us to develop therapies to halt the progres-
sion of this disease and subsequently decrease the significant
morbidities associated with NEC (37–39).
In summary, PARP-1 may be an important effector of

intestinal injury and cell death associated with NEC. Further
exploration of its mechanistic role in NEC as well as its
viability as a therapeutic target and its safety in future studies
is warranted.
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