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ABSTRACT: We advance Baby STEPS or Stem cell Therapeutics
as an Emerging Paradigm in Stroke as a guide in facilitating the
critical evaluation in the laboratory of the safety and efficacy of cell
therapy for neonatal encephalopathy. The need to carefully consider
the clinical relevance of the animal models in mimicking human
neonatal brain injury, selection of the optimal stem cell donor, and
the application of functional outcome assays in small and large
animal models serve as the foundation for preclinical work and
beginning to understand the mechanism of this cellular therapy. The
preclinical studies will aid our formulation of a rigorous human
clinical trial that encompasses not only efficacy testing but also
monitoring of safety indices and demonstration of mechanisms of
action. This schema forms the basis of Baby STEPS. Our goal is to
resonate the urgent call to enhance the successful translation of cell
therapy from the laboratory to the clinic. (Pediatr Res 70: 3–9, 2011)

Why Do We Need Baby STEPS?

The need for standardized preclinical testing of neuropro-
tective drugs and cell therapy was recommended by Stroke
Therapy Academic Industry Rountable (STAIR) and Stem cell
Therapeutics as an Emerging Paradigm in Stroke (STEPS),
both of which include support for the creation of a consortium
of expert scientists and physicians, as well as solid represen-
tations from National Institutes of Health (NIH), U.S. Food
and Drug Administration (FDA), and drug- and cell-based
biotech companies (1–8). However, these preclinical criteria
primarily target adult stroke. To this end, we advance a
translational approach outlining the development of experi-
mental therapeutics in neonatal brain injury requiring a unique
set of guidelines and a consortium to advance the entry of
therapeutic products from the laboratory into the clinical
arena. Here, we focus on cell therapy for neonatal brain injury
and propose Baby STEPS as a platform to establish guidelines
and to solicit participation from academic, federal, and indus-
try stakeholders to improve the translational potential of cell
therapy in babies and/or young children.

Patients Who May Benefit From Baby STEPS

There are several injuries or diseases that result in brain
injury in the neonate that share pathophysiologic similarities
with adult stroke and therefore would be potential candidates
for cell-based therapies. These include neonatal encephalop-
athy, neonatal stroke, and periventricular leukomalacia (PVL).
Neonatal brain injury can lead to a variety of neurodevelop-
mental problems including learning disabilities, mental retar-
dation, hearing and visual impairments, and CP, a condition in
which permanent damage to muscle coordination and body
movement occurs. (http://www.ninds.nih.gov/disorders/
cerebral_palsy/detail_cerebral_palsy.htm).
Neonatal encephalopathy occurs in about 20 of 1000 full-

term infants and in nearly 60% of very LBW (premature)
newborns (9,10). However, in the United States, as in other
developed countries, the incidence of neonatal encephalopathy
seems overstated, in that less than 10 per 1000 births each year
succumb to neonatal encephalopathy. Because of concurrent
injury to other organs, between 20 and 50% of babies with
brain injury die during the newborn period (11). Of the
survivors, up to 25% have permanent neuropsychological
handicaps in the form of CP, with or without associated
mental retardation, learning disabilities, or epilepsy (12,13).
Neonatal brain injury may occur before delivery (placental
abruption, toxemia, and maternal collagen vascular disease),
during delivery (prolonged labor, difficult delivery, and ab-
normal presentation), or after delivery (sepsis, shock, and
respiratory distress). The current state of the art treatment for
neonatal encephalopathy is hypothermia (14–16). Although
this therapy is an exciting evolution in the care of neonates
with neonatal encephalopathy, only neonates with moderate
encephalopathy seem to have the most favorable response to
hypothermia with an improvement in neurodevelopmental
outcomes (14,15). Moreover, the incidence of suboptimal
neurodevelopmental outcomes in neonatal encephalopathy
even after hypothermia is about 40–50% (15), suggesting the
need for innovative treatments. Hence, although hypothermia
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may play a role in reducing the ongoing or escalating damage,
repairing already damaged regions will require a cellular
replacement approach that may be applicable for neonates
with moderate to severe neonatal encephalopathy.
The perinatal period is the second highest risk group for

developing cerebral stroke (17). Because ischemic perinatal
stroke (IPS) is known to account for 30% of children with CP,
IPS is labeled as the most common cause of CP (18). Thus,
understanding the process and how to restore tissue damaged
by IPS can significantly impact CP, which has an estimated
lifetime cost of $11.5 billion (19). As such, it is vital to expand
on basic science and clinical studies targeting the neonatal
period as a potential treatment period to produce a clinical
impact on neonates with IPS to reduce or eliminate this entity
as a cause of CP.
PVL is cerebral white matter injury that occurs to some

degree in 50% of neonates with birth weights less than 1500 g
(20). PVL is associated with a decrease in volumes of the
cortex, thalamus, and basal ganglia (21). This injury likely
accounts for 90% of the neurologic deficits, including CP and
cognitive, behavioral, and attentional deficits, that occur in
surviving premature neonates (20). Because of a lack of
current therapies for PVL, cell-based therapies offer promise
as a potential treatment.

Neonatal Animal Models of Hypoxia-Ischemia and Stem
Cell Therapy

Because of multiple neonatal pathologies resulting from
hypoxic-ischemic (HI) injury to the brain, several animal
models exist which attempt to mimic the various pathology
seen in human neonates (22). Small animal neonatal models
offer a very good platform to test proof of principle studies for
cellular-based therapies and begin to understand the mecha-
nism of injury because of their size, rapid and high-throughput
testing, and the ability to perform functional outcomes. The
rodent model developed by Vannucci (23–26) is one of the
most widely accepted models of neonatal HI brain injury,
involving the ligation of a unilateral carotid artery in a post-
natal d 7 rat followed by exposure to systemic hypoxia (8%
oxygen) for up to 3 h. The model produces injury to the
cerebral cortex, subcortical and periventricular white matter,
striatum, and hippocampus on the side of the ligation (23).
This pattern of injury is similar to that seen in human neonates
with neonatal encephalopathy. The Vannucci model has been
adapted in mice (27), but the duration of hypoxic exposure
varies because of diverse susceptibility of different mouse
species to HI injury (28–31). With this in mind, the success of
testing novel treatments for neonatal encephalopathy, such as
cell therapy, seems highly dependent on the chosen species
and strain that faithfully mimic the disease manifestations.
The age of the animal has also been implicated as playing

a key role in animal modeling and translational research. The
young age of the chosen neonatal animal allows brain plas-
ticity to greatly influence the outcome of HI injury, which may
exaggerate the therapeutic outcome of stem cell treatment. For
example, animals between 1 and 2 postnatal days require a
more severe hypoxia to produce the desired HI injury when

compared with 7-d postnatal rat. Interestingly, postnatal d 1–2
rats show more damage to the ipsilateral subcortical develop-
ing white matter than the older rats (28). That these distinct
neurodevelopmental pathological manifestations resulting
from HI injury are dictated by age is exemplified by the
observation of localized subplate neuronal death, which oc-
curs concomitantly with increased oligodendrocyte progenitor
cell proliferation following subcortical damage in young ne-
onates (32–36). However, this limited extent of neurodegen-
eration and the compensatory endogenous cell repair mecha-
nism seem to wane in older neonates when the HI insult
encompasses both cortex and white matter (32–36). Accord-
ingly, if cell therapy is initiated in HI injured rats of various
postnatal ages, data interpretation should consider these dy-
namic levels of age-dependent neurodegeneration and neural
repair. These results, altogether, suggest that the recognition
of the age of neonatal animals is critical to producing a
reliable HI injury model for testing experimental therapeutics
related to the pathology of interest (e.g. PVL and neonatal
encephalopathy).
The gender of the neonate also plays an important role in HI

injury studies. In demonstrating the therapeutic benefits of
erythropoietin in neonatal rats exposed to HI injury, the
female animals displayed robust reduction in infarct volumes
by 6 wk and maintained up to 12 wk postinjury, whereas the
male animals exhibited only modest reduction in infarct vol-
umes at 6 wk that worsened by 12 wk postinjury (37). These
gender-dependent histological effects of erythropoietin were
paralleled by similar differences in the resulting behavioral
recovery during the same postinjury period, whereby females
outperformed the males in a sensorimotor task. That gender
affects the therapeutic outcome in neonatal HI injury model
has been previously detailed in other experimental treatments
(38,39) and should be a consideration in the design of clinical
trials of cell therapy. Along this vein, stem cell transplants at
childbirth may minimize the influence of gender differences
by enhancing the fetomaternal stem cell trafficking that can
increase the number of stem cells in the fetal circulation and
afford immediate benefit to the baby in the event of newborn
diseases such as neonatal encephalopathy (40). The delay in
cord blood clamping may allow stem cell transplants to occur
early on during childbirth and in a natural setting, thus this
novel cell therapy approach may have a logistical advantage
over hypothermia and other pharmacological treatments
which likely can only be initiated after the baby is born.
Finally, when contemplating with animal modeling, a spe-

cies closer to humans may approximate the disease and pro-
vide a better platform for testing potent treatments for neona-
tal encephalopathy. Larger animal models are a logical
progression from small animal models, because they give the
researcher the ability to use similar delivery approaches for
cell therapy that would be encountered in a human neonate.
However, these models have the disadvantage of being more
difficult to work with postinjury often requiring resuscitation
and sometimes intensive care. Several large species have
recently been shown to have an impact on perinatal brain
research such as fetal and neonatal nonhuman primate, sheep,
lamb, puppy, piglet, and rabbit (22,41–46). A careful evalu-
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ation of the rodent and the large animal models for HI injury
should allow a much in-depth examination of the neurobehav-
ioral pathology associated with the neonatal disease. Consid-
eration should be given equally to the costs of proper animal
handling for research and the neurostructural and behavioral
manifestations produced by the experimental injury that
should parallel the human condition to better assess the safety
and efficacy of cell therapy for neonatal encephalopathy.

Review of Clinical Trials of Stem Cell Therapy for
Cerebral Ischemia

Currently, there are eight stem cell products being evaluated in
the clinic for adult stroke patients, with only one product in Phase
III clinical trials. In general, the stem cells used for cerebral
ischemic injury display mesenchymal or mesenchymal-like stem
cell properties. Stem cells derived from patient’s own tissues are
also being investigated in some stem cell products. Embryonic-
derived stem cells have not reached advanced preclinical testing
in stroke (http://www.researchandmarkets.com/product/86f9c5/
stem_cell_therapy_for_stroke). Our group has been associated
with the preclinical testing of SanBio Inc.’s bone marrow-derived
stromal cells in chronic stroke. We are also developing a pipeline
for transplantation of umbilical cord blood cells for neonatal
encephalopathy. There are at least two limited clinical trials in the
United States testing the safety and efficacy of umbilical cord
blood transplants in CP pediatric patients (Dr. James Carroll of
Medical College of Georgia and Dr. Joanne Kurtzberg of Duke
University). Careful clinical trial design and rigorous analysis of
data should allow a critical assessment of the therapeutic poten-
tial of cell therapy in the clinic.

Identifying the Optimal Stem Cell Donor

Cell therapy for adult stroke has reached clinical trials
(47–50). The effective donor cell type for stroke seemed to
require a neuronal phenotype, and for that reason, many
previous preclinical studies examined primary fetal neuronal
cells and neuronal progenitor cells (50,51). However, the
notion that stroke requires neuronal as well as glial and
oligodendrocytic, cell replacement, in addition to trophic,
vascuologenic, angiogenic, and synaptogenic, among other
exogenous and endogenous neural repair mechanisms, facili-
tated the entry of novel cell graft donors including trophic
factor secreting tissues, such as carotid body (52) and pineal
gland (53), and embryonic, fetal, and adult sources of stem
cells, such as umbilical cord blood (54,55), bone marrow
(56–58), placenta/amnion tissue and fluid (59), and menstrual
blood (60).
Stem cell researchers studying neonatal brain injury have

similarly explored the need for identifying the optimal cell
with neurogeneic, vascuologenic, angiogenic, and trophic sup-
port to afford therapeutic benefits in this setting. A major
criterion related to demonstrating optimal cell type for neo-
natal brain injury requires the need to reveal the donor cell
phenotype to allow cross-laboratory validation and replica-
tion, and phenotyping would need to occur by a uniform set of
techniques, developed in concert with regulatory and consor-
tium expertise, but equally important to create an off-the-shelf

cell product that is readily available for transplantation in the
clinic. To realize this cell characterization for clinical use, it
will be most practical to conduct a quality control and assur-
ance to ensure sterile condition of the cell product. Because a
cell processing unit operating under strict good manufacturing
practice (GMP) and good laboratory practice (GLP) is not
routinely found in the clinic, the preferred approach is for all
cell preparation done in an FDA-approved manufacturing
facility, and that the envisioned cell product is frozen at this
facility then delivered and thawed at the clinic for immediate
use without additional manipulation. Among the many cell
manipulation techniques include the basic phenotypic charac-
terization of the donor cells, such as surface marker antigens
and gene/protein expressions via immunocytochemistry and
microarray/ELISA, respectively. In addition, if cell homoge-
neity is indicated for efficacy, flow cytometry should be
considered.

Functional Outcome Measures

Appropriate behavioral and histological tests are extremely
important for characterizing the HI injury and the therapeutic
outcome of cell therapy in animal models. Similar to the
guidelines proposed for adult stroke, the use of behavioral
tests in neonatal HI injury should consider the clinical mani-
festation of the disease namely symptoms of motor (e.g.
elevated body swing test, Rotorod, and general locomotor
activity), somatosensory (e.g. neurological test, limb place-
ment test, foot fault test, grip traction test, and postural reflex
test), and cognitive functions (e.g. Morris water maze, plus
maze, the eight-arm radial maze, and the choice reaction time
task) seen in the clinic (61–64). Behavioral testing should also
match the neuroanatomical damage produced by the HI injury.
For example, cortical and hippocampal damage after HI
should be reflected by impairments in motor function and
learning and memory, behaviors that have been implicated as
being mediated by these brain structures, respectively, which
should prompt the investigator to use the corresponding be-
havioral tests (5–7,59,65–67). Because of the young age of the
animals, the use of complex behavioral tests, including cog-
nitive tasks, would be difficult to perform in the rodent model
but may be possible in large animals. The behavioral testing
should be performed over long-term after administration of
therapy to reveal the onset and stable effects of the novel
treatment (5–7,68). A key difference between adult stroke and
neonatal brain injury is that neonatal brain injury presents with
a considerable level of spontaneous recovery that accompa-
nies the early stages of the experimental insult (69) and
endogenous brain reorganization as the animal matures (70),
requiring the need for a careful evaluation of the data espe-
cially when behavioral recovery is used as a major index of
efficacy of therapeutic intervention. Based on our experience
(unpublished results), increasing the complexity of the task
(e.g. higher rod speed for Rotorod test) could reveal the subtle
impairments in motor coordination even with the occurrence
of spontaneous recovery in young, juvenile animals that re-
ceived HI injury at postnatal 7 d of age. That plasticity of the
neonatal brain after brain injury is similarly recognized in
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pediatric patients (71). Note that although endogenous repair
processes seem more robust in neonatal brain injury compared
with adult stroke, long-lasting neurobehavioral deficits per-
sists in the injured neonates that would require treatment
interventions such as cell therapy. Equally noteworthy is that
behavioral testing in large animal models of neonatal enceph-
alopathy remains limited to nonhuman primates.
In addition to behavioral tests, histological assays of the

host brain damage and the detection of the transplanted cells
are extremely important. For determining host brain damage,
the major focus until recently was the reduction in the core
injury produced by the HI insult. However, in recent years,
adjacent regions and even areas remote from the core injury
have been the target of therapeutic interventions, including
cell therapy (54,65). The targeted brain regions distant from
the core injury include neurogenic sites, such as the subven-
tricular zone and the dentate gyrus, and nonneurogenic sites,
including the striatum and cortex, which have shown robust
cell proliferation after HI injury and cell therapy (54,65). The
other histological marker necessary to provide a link between
grafted cells and the behavioral recovery relates to the assess-
ment of the status of the grafted cells. Normally this evalua-
tion of the grafted cells pertains to the cell fate, thus immu-
nohistochemical assays via phenotypic markers are used to
reveal maintenance of stemness or cell lineage commitment/
differentiation (65,72). However, there is also compelling
evidence that grafted cells’ entry into the brain is not required
for therapeutic effects and that their secreted factors or graft-
stimulated growth factors from the host should be sufficient to
afford functional recovery (54). Accordingly, markers of en-
dogenous repair processes such as trophic effect, immuno-
modulatory response, neurogenesis, vascuolgenis, and angio-
genesis have been used to demonstrate this alternative
pathway of brain repair after cell therapy in neonatal HI injury
(73–75). These results taken together indicate the need to
reveal the mechanism of action of the grafted cells by either
direct visualization of the cells in the brain suggesting neu-
roregeneration or analyze the brains for an increase in graft-
stimulated secreted factors that can enhance host endogenous
repair processes. Direct visualization of the grafted cells is
also important to reveal any untoward tumor and ectopic
tissue formation in both central and peripheral organs of the
transplant recipient.

Experimental Design

The experimental design of the laboratory studies should
closely approximate the envisioned clinical trials to maintain
the translational potential of cell therapy. One primary goal is
to envision the clinical product in contemplating with the
experimental design for the laboratory studies. Here, optimi-
zation of the cell dose, delivery route, and timing of admin-
istration correspond to the three most important factors that
need to be determined in the laboratory. Although a bolus
injection of cells seem to be the current transplant paradigm
for adult stroke and adopted in neonatal brain injury, there is
reason to believe that multiple transplants may prove more
beneficial in further retarding and also to completely reverse

the disease-induced neurobehavioral deficits. In theory, there
are two stages in which treatment can be developed for
neonatal brain injury, the neuroprotective stage (within 24 h of
the insult) and the neurorestoration stage (beyond 24 h after
the insult) (76,77). These time points may require different cell
types to fulfill the therapeutic intent. With these considerations
in mind, the experimental design of laboratory studies should
now incorporate repeated dosing regimen of donor cells. In
view of multiple cell injections, lower cell dose may be
possible thereby circumventing possibility of microembolism
with high cell dose. Moreover, with this repeated cell dosing,
the route of administration is likely via peripheral vasculature
rather than direct intracerebral transplantation.

Mechanisms of Action

As noted above, functional outcome assays and evaluation
of the status of grafted cells are important criteria in transla-
tional cell therapy for neonatal brain injury. These two criteria
overlap in terms of their overarching focus on mechanisms of
action underlying functional recovery produced by the grafted
cells. Cell signaling and growth pathways along with neu-
rorestorative processes such as neurogenesis, angiogenesis,
synaptogensis, immunomedulation, trophic factor secretion,
and cell replacement are effective targets for treatments for
cell therapy (5–7,59). The two major postulated mechanisms
of action for cell based treatment of neurological disorders
include cell replacement and bystander effects. Imaging tech-
niques such as in vivo functional MRI (fMRI) can be used to
reveal both graft survival and endogenous repair mechanisms,
as previously demonstrated in adult stroke models (78–81).
These observations can be extended to neonatal brain injury as
has been recently proposed (82–84).

Safety Outcome Measures

Operating under the Hippocratic Oath of “to do no harm to
the patients,” cell therapy should be scrutinized not only for
their efficacy but equally for their safety. As noted above,
phenotypic characterization of the donor cells is a prerequisite
before transplantation to delete any tumor-forming cells. After
transplantation, the survival, migration, and differentiation of
the grafted cells should also be monitored, if possible with
minimally invasive visualization techniques such as MRI. To
that end, the experimental design should carefully address all
safety issues. When moving forward to the clinic, cell therapy
studies should have a method of identifying tumor or ectopic
tissue formation, cell fate and status, and adverse behavioral
effects. Moreover, solicitation of advice from the FDA must
be initiated early on during the design of pivotal preclinical
studies to get guidance on both efficacy and safety outcome
measures.

Relevance of Baby STEPS to Adult Stroke’s
STEPS Guidelines

Many of the neonatal brain injury guidelines being pro-
posed here have been derived from the original recommenda-
tions set forth by the STEPS consortium. Here, we identified
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STEPS guidelines for adult stroke that can be extended to
neonatal brain injury. We discussed above the importance of
animal modeling, characterization of donor cells, careful con-
siderations for the experimental design, the choice of func-
tional and safety outcomes, and the need to incorporate mech-
anism-based investigations at the preclinical stage, which we
have borrowed from STEPS but highlighted caveats for these
translational criteria to be applied in Baby STEPS.
There are, however, many key differences between adult

stroke and neonatal brain injury, supporting the need to es-
tablish Baby STEPS separate from STEPS. Clearly, the age of
the targeted population differs between adult stroke and neo-
natal brain injury, with the latter likely to be more responsive
to cell therapy due largely to increased brain plasticity accom-
panying the neonatal brain.
A major area of research need for cell-based therapies in

neonates is the development of objective test that can accu-
rately predict long-term neurologic deficits shortly after in-
jury. These tests will likely include biomarkers, physical
examination findings, amplitude-integrated electroencepha-
lography (aEEG), imaging studies, and cerebral oximetry.
Ideally, a scoring system using all these tests to accurately
predict long-term deficits such as CP should be developed.
Predicting long-term outcomes is a daunting task, because
these tests must predict the attainment of baseline function
many years into the future with brain plasticity serving as a
confounding variable. This situation is markedly different
from an adult who suffers brain injury and loses function
shortly after injury and can be readily tested for this loss of
function.
On the basis of these critical laboratory and clinical vari-

ables, distinguishing neonatal brain injury from adult stroke,
we recognize the need for establishing the Baby STEPS.
Although we are focused on cell therapy, we envision that
these Baby STEPS guidelines will also apply to other exper-
imental neuroprotective and neurorestorative treatments for
neonatal brain injury (85–88) and complement other existing
pediatric stroke recommendations for research and treatment
interventions (89–96). We plan to set up a consortium that
will include the NIH, the FDA, and multiple clinicians and
scientists from numerous disciplines to better amplify the
therapeutic potential of cell transplantation in neonatal brain
injury. This consortium will enhance the execution of exper-
imental designs that maximize the efficacy and safety of cell
therapy in neonatal brain injury as we translate this treatment
into clinical application. In addition to the NIH and the FDA,
we would like to include biotech companies that will be able
to offer important resources especially their expertise and
infrastructure for providing clinical grade cells processed
under strict GMP and GLP; these companies (while not an
inclusive list) will involve Celgene Cellular Therapeutics,
Cord Blood Registry, and Cryo-Cell. Although the many
guidelines enumerated here seem daunting and appear to
suggest additional administrative hurdles before clinical trial
initiation, our goal is to expedite the transition of cell therapy
from the laboratory to the clinic. With the involvement of the
FDA regulatory board, the scientific vision support of NIH,
and the participation of stem cell-based companies allowing

access to their established cell manufacturing protocols, this
academic-regulatory-industry consortium should advance cell
therapy for neonatal brain injury.
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