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ABSTRACT: The optimal oxygen concentration for newborn resus-
citation is still discussed. Oxygen administration during reoxygen-
ation may induce short- and long-term pathologic changes via oxi-
dative stress and has been associated to later childhood cancer. The
aim was to study changes in oxidative stress-associated markers in
liver and lung tissue of newborn pigs after acute hypoxia followed by
reoxygenation for 30 min with 21, 40, or 100% oxygen compared
with room air or to ventilation with 100% oxygen without preceding
hypoxia. Nine hours after resuscitation, we found a dose-dependent
increase in the matrix metalloproteinase gelatinase activity in liver
tissue related to percentage oxygen supply by resuscitation (100%
versus 21%; p � 0.002) pointing at more extensive tissue damage.
Receiving 100% oxygen for 30 min without preceding hypoxia
decreased the expression of VEGFR2 and TGFBR3 mRNA in liver
tissue, but not in lung tissue. MMP-, VEGF-, and TGF�-superfamily
are vital for the development, growth, and functional integrity of
most tissues and our data rise concern about both short- and long-
term consequences of even a brief hyperoxic exposure. (Pediatr Res
67: 250–256, 2010)

Over the last two decades, the traditionally recommended
use of 100% oxygen for newborn resuscitation has been

extensively challenged. Meta-analyses have shown room air to
be as efficient as 100% oxygen and that 100% oxygen in-
creases both mortality and morbidity (1–3). In addition, an
association has been found between newborn resuscitation
with 100% oxygen and later childhood cancer (4,5) pointing at
the outmost necessity to search for the underlying cause.

Perinatal asphyxia may induce hypoxia-reoxygenation
(HR) injury to various organs including liver and lungs, which
have important roles in host defense after both organic and
inorganic environmental insults (6). Liver-tissue responses to
potentially damaging neonatal hypoxia and reoxygenation are
of particular interest because of the unique and remarkable
capacity of this organ to regenerate after injury via DNA
replication and mitosis (7). The lungs are in a direct and

continuous communication with the outside environment and
are exposed directly to the highest partial pressure of inspired
O2. The time course of reactive oxygen species (ROS) gener-
ation during hypoxia and reperfusion is not clearly understood
(8), but experimental evidence indicates a worsening of the
hypoxic injury by reoxygenation (9,10). The underlying
mechanisms of hypoxia induced liver or lung injury, and the
nature of the detrimental biofactors set in motion these cir-
cumstances, are still poorly understood. Among the molecules
whose expression and activity are modulated in tissue damage
and repair are the matrix metalloproteinases (MMPs). MMPs
belong to a family of zinc-containing endopeptidases best
known for their roles in the physiologic and pathologic re-
modeling of the extracellular matrix (ECM) during angiogen-
esis, embryogenesis, wound healing, tumor metastasis, and
various cardiovascular and inflammatory diseases (11). MMPs
are important in ischemia-reperfusion injury where increased
MMP-2 and MMP-9 levels are detected in multiple organs
including the brain (12). We and others have recently shown
that newborn pigs exposed to hypoxia have increased MMP
levels in lung and liver as early as 2–2.5 h after reoxygenation
with 100% oxygen (9,13). ROS seem to play a role in the
cytotoxic activation of some MMPs after ischemia and reoxy-
genation (14) and may trigger intracellular activation of
MMPs where they can mediate early responses to oxidative
stress within minutes to hours (15).

Various factors such as vascular endothelial growth factor a
(VEGFa) or transforming growth factor � (TGF�) stimulate
key receptors, VEGF receptor 1 (VEGFR1), VEGF receptor 2
(VEGFR2), and TGF� receptor 3 (TGFBR3). They are known
to play important roles in angiogenesis and to modulate tissue
development and repair from injury, including hypoxia. Inter-
estingly, these factors and their receptors also play key roles in
the regulation of MMP expression and activity, and VEGF and
MMPs may have a regulatory loop (16). VEGFR2 regulates
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proliferation and migration of endothelial cells (17) and may
play a role in lung tissue remodeling and development of BPD
(18). In several tumor forms, there is a loss of TGFBR3 expres-
sion that also correlates with a worsening tumor grade (19–21).

Consequently, we wanted to study changes at the molec-
ular and biochemical level in liver and lung tissue after
acute hypoxia and reoxygenation with different oxygen
concentrations. We sought to investigate these changes at
the onset of secondary energy failure and prolonged oxi-
dative stress. For this reason, we extended the observation
time from 2.5 h, used previously (9), to 9 h. Moreover, we
were also interested in investigating how short exposure to
oxygen without preceding hypoxia could influence tissue re-
modeling and gene regulation.

METHODS

The Norwegian Council for Animal Research approved the experimen-
tal protocol. Animals were cared for and handled in accordance with the
European Guidelines for Use of Experimental Animals, by certified
FELASA (Federation of European Laboratory Animals Science Associa-
tion) researchers.

Surgical preparation and anesthesia. Forty-nine newborn Noroc (LY �
LD) pigs, 12–36 h of age, Hb � 5 g/dL, and in good general condition were
included in the study. The piglets were anesthetized, orally intubated, venti-
lated, and surgically prepared as described by Andresen et al. (22).

Experimental protocol. After 60 min of stabilization, the piglets were
randomized to go through global hypoxia and reoxygenation (groups 1–3), to
receive 100% oxygen for 30 min without preceding hypoxia (group 4), or to
be controls (group 0), subjected to the same procedures and observation time
but no hypoxia or hyperoxia.

For groups 1–3, hypoxemia was achieved by ventilation with a gas mixture
of 8% O2 in N2 until either mean arterial blood pressure decreased to 15 mm
Hg or base excess (BE) reached �20 mM/L. CO2 was added during hypox-
emia aiming at a PaCO2 of 8.0–9.5 kPa, to imitate perinatal asphyxia. Before
resuscitation, hypoxic piglets were block-randomized into three different
groups. Resuscitation was performed for 30 min with 21% O2 (group 1), 40%
(group 2), or 100% O2 (group 3). Thereafter, the piglets were observed for 9 h
[receiving 21% O2 and normocapnia (PaCO2 4.5–5.5 kPa)]. At the end of the
observation time, the animals were given an overdose of pentobarbital (150
mg/kg iv). The liver and lungs were quickly removed, snap frozen in liquid
nitrogen, and stored at �70°C until subsequent analysis.

Preparation of liver tissue extracts. Fifty milligrams liver tissue was
homogenized in ice-cold lysis buffer [Tris-HC (pH 7.5) with 1% NP-40 and
a protease inhibitor cocktail without EDTA] and MagNA Lyser Green Beads,
(Roche Diagnostics GmbH, Mannheim Germany), for 50 s at 6500 rpm,
incubated on ice for 15 min at 4°C, sonicated for 1 min, and centrifuged at
12000 � g (4°C) for 15 min. Supernatants were spun for 5 min, and the
protein concentration was measured by BCA method (Pierce, Cheshire, UK).

Gelatin zymography. Ten micrograms of liver tissue protein extract was
separated by a SDS-PAGE (10% gel containing 0.1% gelatin)and assayed for

gelatinase activity according to the methods as described elsewhere (9,23).
The results were calculated by densitometry, normalized to a representative
21%, sample of Human MMP-2 and MMP-9 (CC073; Chemicon, Temecula,
CA), which was used as an internal standard on every zymography run. When
the gelatin gel was incubated with 200 �M EDTA, no lysis zones were
detected, and thus the metal-dependent, lysis-zones were most likely due to
MMP activity (gels not shown) (24).

In situ zymography. In situ zymography was performed to localize net
gelatinolytic activity in liver and lung sections with minor modifications with
respect to a method previously described in brain (12) and lung tissue (9).
Because in situ zymography measures many different gelatinases, both liver
and lung control slides were incubated with Complete Mini (Roche), a
cocktail of EDTA-free nonmetalloproteinase inhibitors and 1 mM 1.10-
Phenanthroline (Molecular Probes), a broad spectrum metalloproteinase in-
hibitor. Both inhibitors abolished constitutive and induced gelatinolytic ac-
tivity in the tissue; thus, the gelatinolytic enzymes are likely to be
metalloproteinases. We analyzed three slices per animal. For liver, we used
6–7 piglets per experimental group and for lung 4–5.

The analyses of different hepatic structures were done focusing on the liver
lobule, the liver’s functional unit with the central vein in the middle and the
portal triads at the periphery in the junction to the neighboring lobules. The
oxygenation and metabolite supply is best around the portal triad and around
the vessels between the lobules and diminishes in parenchyma toward the
central vein. We made measurements perivascular, in the triads and in
parenchyma.

The analyses of different lung structures were done focusing on areas close
to the blood fluid (perivascular) and airways (submucosa) rich on endothelial
cells and with higher accessibility toward possible inducing factors like
cytokines and ROS than parenchyma.

Tissue preparation for real time PCR. Twenty milligrams of tissue that
had been kept in RNASafer were placed in MagNA Lyser Green bead tubes
(Roche Diagnostics GmbH, Mannheim, Germany) and TRK lysis buffer.
Total RNA from the supernatant was prepared using a Total RNA Kit from
E.Z.N.A., and treated with DNase I (E.Z.N.A., Omega Bio-tek). Extracted
total RNA was quantified using a ND-1000 spectrophotometer (NanoDrop
Technologies). Total RNA (2–3 �g) was reverse transcribed into cDNA using
the High Capacity cDNA Archive Kit (Applied Biosystems) and incubated in
a PTC-100 thermal cycler (MJ Research) according to the manufacturer’s
protocol. Real-time PCR was performed with 20 ng cDNA for target genes
and a housekeeping gene PPIA: peptidylprolyl isomerase A (cyclophilin A)
(primers given in Table 1), using the SYBR Green PCR Master mix in an ABI
PRISM 7300 Sequence Detection System using universal instrument settings.

RT-PCR. Relative expression was determined by the comparative CT

method of relative quantification (RQ), calculated with the arithmetic formula
2��Ct

, where �Ct is the normalized signal level in a sample (�Ct � Ct of
target gene � Ct of endogenous control gene) (25).

Real-time quantitative RT-PCR was performed on samples from group 0
(controls), n � 5; group 1, n � 10; group 2, n � 12; group 3, n � 10; and
group 4, n � 11.

Statistics. Statistical calculations were performed using SPSS 15.0 statis-
tical package for windows (Chicago, IL). Values are expressed as mean �
SD. One-way ANOVA with Tukey’s post hoc test was used to examine
differences between groups. The nonparametric Kruskal-Wallis test was used
for the gel zymography results. The relationship between variables was
studied using Pearson product-moment correlation coefficient. Statistical dif-
ference was accepted at p � 0.05.

Table 1. Primer concentrations used for RT-PCR

Gene Forward primer Reverse primer

MMP-2
NM_214192 5-GGCTTGTCACGTGGTGTCACT-3� 5�-ATCCGCGGCGAGATCTTCT

MMP-9
NM_001038004 5�-GAAGCTTTAGAGCCGGTTCCA-3� 5�-GGCAGCTGGCAGAGGAATATC-3�

VEGFa
NM_214084.1 5�-ACGAAGTGGTGAAGTTCATGGA-3� 5�-CACCAGGGTCTCGATTGGA-3�

VEGFR1
AJ245445 5�-CACCCCGGAAATCTATCAGATC-3� 5�-GAGTACGTGAAGCCGCTGTTG-3�

VEGFR2
AF233076 5�-G ATGCTCGCCTCCCTTTGA-3� 5�-AGTTCCTTCTTTCAGTCGCCTACA-3�

TGFBR3
NM_214272.1 5�-AAA ATC CGT CAA CTG GGT GAT C-3� 5�-TTG GGA GCG AGA ACT TTC AGA-3�

PPIA Housekeeping gene
MN_214353 5ÀTACGGGTCCTGGCATCTTG (sense) 5ÀACTGGGAACCGTTTGTGTTG (antisense)
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RESULTS

There were no significant differences between the groups with
respect to Hb, body weight, age, gender, and for group 1–3 in
respect to time of hypoxia. Also pH, BE, and MABP were not
significantly different between the comparable groups (Table 2).

By in situ zymography, we found, for group 1–3, a dose-
dependent and linear increase in the net gelatinase activity in
liver tissue with fraction of inspired oxygen (FiO2), (Figs. 1
and 2A). The highest activity was found in the perivascular
and in the triade compartments (Table 2). There was a high
correlation between all three areas; vessel versus triade and
vessel versus parenchyma (r � 0.7, p � 0.001). In lung tissue,
there was a tendency to a dose-dependent increase in the
metalloproteinase activity with FiO2, most prominent in the
submucosa and vessel area, (Figs. 2B and 3; Table 3). Resus-
citation with 100% O2 induced significant higher values in the
submucosa and vessel area than in the hyperoxia controls who
received 100% O2 without preceding hypoxia. There was a
very high correlation between all three areas; submucosa
versus vessel and submucosa versus alveoli (r � 0.9, p �
0.001).

Gel zymography revealed that the MMPs present in liver
tissue were mainly ProMMP-9 and to some extent ProMMP-2
(Fig. 4). There was a positive correlation between ProMMP-2
and ProMMP-9 (r � 0.5, p � 0.001) but no significant
difference within the groups.
Gene expression. In liver tissue, real-time quantitative RT-

PCR revealed that 100% oxygen treatment for 30 min led
to a significant down-regulation of VEGFR2 (41%) and
TGFBR3 (37%) 9 h after the hyperoxic event, compared with
the control group. For TGFBR3, there was also a down-
regulation in the 40% and 100% groups versus the control
group (Fig. 5). The expression of VEGFa, VEGFR1, MMP-2,

and MMP-9 showed no statistical significance within the five
groups (data not shown), but RT-PCR 9 h after reoxygenation
revealed a tendency to decreased MMP-9 expression with
increasing FiO2. There was a positive correlation between the

Figure 1. In situ zymography in liver tissue. Fluorescence signals representing
proteolytic activity (green) increases in liver sections after hypoxia and subse-
quent resuscitation. The activity is highest in the perivascular (arrow) and the
triade area (arrowhead) and increases proportionally to % oxygen used for
resuscitation. Broad spectrum MMP inhibitor phenanthroline (Phen) nearly abol-
ished gelatinolytic activity. Scale bar: 500 �m.

Table 2. Background data

Control Hyperoxia 21% 40% 100%

Weight (g) 1858 (130) 1870 (143) 1873 (108) 1842 (108) 1852 (117)
Age (h) 35.5 (1) 35.1 (2.8) 35.1 (2.1) 32.8 (4) 32.8 (5.8)
Gender M/F 3/3 5/6 5/5 6/6 5/5
Hb g/100 mL start 7.2 (0.8) 7.3 (1.5) 7.1 (0.9) 6.9 (1.3) 6.9 (1)
Hypoxia (min) 0 0 33.7 (8.4) 37.8 (15.3) 42.3 (15.2)
pH start 7.44 (0.05) 7.40 (0.05) 7.41 (0.06) 7.43 (0.05) 7.44 (0.06)

End hypoxia 6.91 (0.09) 6.91 (0.1) 6.94 (0.9)
End resuscitation 7.17 (0.09) 7.18 (0.06) 7.25 (0.11)
�2 h resuscitation 7.45 (0.05) 7.42 (0.08) 7.37 (0.05) 7.37 (0.05) 7.40 (0.08)
�5 h 7.45 (0.06) 7.38 (0.09) 7.35 (0.06) 7.37 (0.06) 7.43 (0.07)
�9 h 7.42 (0.08) 7.39 (0.11) 7.33 (0.06) 7.36 (0.08) 7.38 (0.11)

BE mmol/L start 1.1 (2.9) 1.5 (3.2) �0.1 (3.6) 0.6 (5.7) 2.3 (5.2)
End hypoxia �19.7 (4.2) �20 (3.7) �18.5 (4.7)
End resuscitation �14.7 (4.5) �13.9 (4.1) �11.7 (5.7)
�2 h 4.2 (4.5) 0.8 (6) �3.5 (5.8) �5.3 (3.9) �2.5 (7.7)
�5 h 1.2 (4.9) �0.6 (7.3) �2.7 (5.2) �4.7 (4.5) �0.1 (5.8)
�9 h 2.1 (6.1) �4.2 (7.2) �6.1 (4.8) �6.3 (5.2) �2.8 (7)

MABP mm Hg start 43.3 (3.4) 42.6 (17.3) 49.0 (8.4) 47.5 (7.8) 51.4 (8.3)
End hypoxia 22.5 (15) 22.8 (10.8) 22.0 (15.5)
End resuscitation 40.0 (15.8) 41.6 (12.1) 40.0 (11.7)
�2 h 42.6 (5.1) 44.8 (8.5) 41.8 (12.2) 36.8 (11.7) 40.5 (10.3)
�5 h 45.7 (16.4) 39.4 (9) 42.8 (10) 38.4 (10) 44.0 (9)
�9 h 38.1 (7.1) 40.1 (14.7) 35.2 (6.7) 39.0 (10) 39.4 (14.7)

Values are presented as mean (�SD).
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relative expression of VEGFR1 and VEGFa (r � 0.75, p �
0.001) and VEGFR1 and MMP-9 (r � 0.5, p � 0.004). In lung
tissue, the expression of VEGFa, VEGFR1, VEGFR2, TG-
FBR3, MMP-2, and MMP-9 showed no significant difference
between the five groups (data not shown).

DISCUSSION

In situ zymography demonstrated that resuscitation of
newborn pigs with supplementary oxygen results in a dose-
dependent increase in the net gelatinase activity in liver and
lungs. Gel zymography in liver revealed that the main
proportion was ProMMP-9 (92 kD) and to some extent
ProMMP-2 (72 kD). We also found a significant down-
regulation of VEGFR2- and TGFBR3 expression in liver
tissue 9 h after the 30 min exposure to 100% oxygen versus
the otherwise equally treated control group. To our knowl-
edge, our study is the first to point out a decreased expres-
sion of these two genes, important for angiogenesis and
tumorogenesis, several hours after a relative brief episode
of hyperoxia.

MMPs are usually in a balanced state with their natural
inhibitors, the tissue inhibitors of MMPs (TIMPs) and the
alpha-macroglobulins. ROS and reactive nitrogen species
(RNS) are involved in a MMP activation pathway resulting
in a conformational change without removal of the propep-
tide domain (26). They can cause the full length form (72
kD proMMP-2 and 92 kD proMMP-9) to be proteolytically
active (11).
In situ zymography is used to localize gelatinase activity,

mainly in relation to expression and activity of MMPs in

tissue sections. It reflects the endogenous MMP/TIMP balance
in the tissue (12) representative of the net proteolytic activity.

In liver tissue, we found a linear increase in the proteolytic
activity for the gelatinases proportional to the oxygen supply
by resuscitation. We have in a previous study demonstrated
that o-tyrosine, a specific marker of hydroxyl radical attack, is
also linear and dose dependently increased after use of sup-
plementary oxygen for resuscitation (27). The highest and
significant increased values were measured perivascularly and
in the triads, areas with the best oxygenation and metabolite
supply.

By in situ zymography, in lung tissue, we found a stepwise
increase in the MMP activity proportional to the oxygen
supply during reoxygenation. This is most prominent perivas-
cularly and in the submucosa rich in endothelial cells and with
a high accessibility toward inducing factors such as cytokines
and ROS/RNS. It did not reach statistical significance p �
0.083 (perivascular), p � 0.093 (submucosa) like in Munke-
by’s study at 2.5 h (9) or in liver tissue in this study. One

Figure 2. In situ zymography in liver and lung tissue. (A). Quantification of in
situ gelatinolytic activity in liver tissue for the hypoxia-reoxygenated groups in
arbitrary units (AU) of fluorescence. There is a dose-dependent, significant
increase in the net proteolytic activity according to % oxygen delivered by
reoxygenation; p � 0.002 and p � 0.024 for 100% vs 21% or 40%. (B)
Quantification of in situ gelatinolytic activity in lung tissue for the hypoxia-
reoxygenated groups. There is a dose-dependent and linear increase according to
% oxygen delivered for resuscitation, but NS.

Figure 3. In situ zymography in lung tissue. Net in situ gelatinolytic activity
increases in lungs after hypoxia-resuscitation. Fluorescence photomicrographs of
lung sections showing in situ zymography in sham operated (Ctl) and hyperoxia
(Hyp) controls and after reoxygenation with 21, 40, or 100% O2. Fluorescence
signal representing proteolytic activity (green) shows a tendency to increase after
hypoxia-resuscitation in blood vessels (arrows) and submucosa (arrowheads),
although only the 100% group displayed statistically significant differences when
compared with the hyperoxia group (see Table 2). Broad spectrum metalloprotein-
ase inhibitor 1,10-phenanthroline (Phen) nearly abolished fluorescence signal, indi-
cating that constitutive and induced gelatinolysis was essentially related to metallo-
proteinase activity. Hoechst dye was used as a nuclear marker (blue). Images are
representative of pictures obtained from five animals per group. Scale bar: 150 �m.
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reason could be that a more extensive regular exposure of the
lung to high oxygen levels and ROS/RNS could make them
more resistant across time. It is likely that changes in the lung
occur at early time points, before compensatory mechanisms
set in.

A short exposure to 100% oxygen without preceding
hypoxia (group 4) did not result in increased activity and
showed significant lower mean values than the group re-
ceiving 100% during resuscitation, indicating that hyper-
oxia alone is not sufficient to trigger changes at this level,
and that the hypoxic event is the factor that sets in motion
an imbalance in proteolysis.

Gelatin zymography is a sensitive method to detect the
gelatinases MMP-2 and MMP-9 in tissue samples. We found
mainly 92 kD MMP-9 and to a lesser extent 72 kD MMP-2,
probably due to an earlier up-regulation of MMP-9 after
reoxygenation/reperfusion (28) and a stronger 92 kD MMP-9
activation after oxidative stress. The gel zymography did not
reveal differences in the expression of MMP-gelatinases
within the three groups going through hypoxia and reoxygen-
ation. One reason could be that the liver homogenates reflect
the total parenchymal MMP activity, diluting the differences
seen in perivascular areas with numerous endothelial cells, but
we do not exclude the possibility that other metalloproteinases
with gelatinase activity being present in the tissue contribute,
at least in part, to net gelatinase activity. Gel zymography
reveals the MMPs expression and not the intrinsic activity and
is thereby not perfectly comparable to in situ zymography.
Oxidative stress may inactivate TIMPs without affecting
MMP activity and thereby increase the MMP/TIMP, which
would favor net gelatinase activity (29) like we found by in
situ zymography.

In this hypoxia-reoxygenation model, we find the same
pattern in two organ systems regarding net gelatinase activity
as a marker of tissue injury and tissue repair, and the findings
support the presumption that ROS and RNS participates in the
activation of MMPs at the sites of liver- and lung injury.
Increased MMP-9 activity after hyperoxia has been linked to
later BPD development (30). There is also an increasing body
of research showing that MMPs, and specifically MMP-2 and
MMP-9, are involved in tumor growth and metastasis and may
have a role in acute lymphoblastic leukemia (ALL) (31,32).
VEGFR2. Exposure to 100% oxygen for just 30 min re-

sulted in a 41% reduction in VEGFR2 mRNA expression

Figure 4. Gel zymograms from liver tissue. Representative zymograms of
proMMP-9 and proMMP-2 activities in liver tissue protein extracts in sham
operated (Ctl) and hyperoxia (Hyp) controls and after reoxygenation with 21, 40,
or 100% O2. Between the five groups, no significant differences were found. To
the right, human MMP-2 and MMP-9 standards were used to determine the bands
representing mainly ProMMP-9 and to some extent ProMMP-2.

Figure 5. Relative gene expression VEGFR2 and TGFBR3. Relative RNA
expression of VEGFR2 (A) and TGFBR3 (B) was determined in liver tissue
by quantitative RT-PCR. Both VEGFR2 and TGFBR3 showed a decreased
expression in the hyperoxia group vs control * (p � 0.013, p � 0.028). For
TGFBR3, a down-regulation in the 40% and 100% groups was also seen vs
control § (p � 0.013, p � 0.025). Two independent analysis (in duplicates)
were done for each individual. Values are expressed as mean (�SD).
VEGFR2: control 53.4 (4.6), hyperoxia 31.5 (6.9), 21% 37.7 (13.6), 40% 38.6
(15.7), 100% 40.1 (11.8). TGFBR3: control 32.4 (7.5), hyperoxia 20.4 (5.2),
21% 21.6 (7.2), 40% 19.4 (9.5), 100% 20.0 (5.2).

Table 3. In situ zymography in liver and lung tissue

Control Hyperoxia 21% 40% 100%

Liver
Perivascular 68.3 (10.7) 72.84 (8.7) 65.86 (7.1) 70.82 (8.4) 87.90 (13.2)
Triade 48.51 (6.0) 50.98 (7.3) 51.88 (4.6) 50.91 (6.2) 62.03 (11.2)
Parenchym 39.14 (5.5) 41.57 (8.0) 40.95 (5.0) 42.40 (7.2) 47.58 (11.1)

Lung
Perivascular 62.54 (11.6) 56.38 (13.3) 73.82 (11.7) 75.51 (3.2) 82.55 (9.8)
Submucosa 55.55 (10.6) 51.44 (13.6) 62.17 (12.2) 65.89 (5.9) 75.01 (7.6)
Alveoli 53.83 (10.6) 50.18 (12.2) 53.03 (7.5) 60.88 (8.2) 66.68 (9.6)

Values are expressed as mean (�SD). In perivascular liver tissue, p � 0.002, p � 0.024, and p � 0.011 for 100% vs 21%, 40%, and Control group. In liver
triade, p � 0.023 for 100% vs Control group. In lung tissue, hyperoxia induced significant lower values than resuscitation with 100% (perivascular p � 0.015,
submucosa p � 0.030) and NS differences between the 21, 40, and 100% groups (ANOVA with Tukey’s post hoc test). In lung tissue, n � 5, 5, 4, 4, 5 and in
liver tissue, n � 6, 7, 7, 7, 6 for the Control-, 21%-, 40%-, 100%- and hyperoxia group, respectively.
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measured 9 h later in liver tissue. This may raise some
concerns because VEGFR2 is the major mediator of endothe-
lial cell mitogenesis and survival, as well as of angiogenesis
and microvascular permeability (33). A decrease in VEGFR2
expression has been linked to the pathogenesis of hyperoxic
lung injury. The very early postnatal period seems to be a
critical period for this hyperoxia induced lung injury (18). In
mouse liver, VEGFR2 is expressed in the endothelial cells of
the sinusoids and portal vein (34), but its role in the liver is
unknown. As in the lungs, VEGFR2 could play a role in
endothelial cell damage and tissue remodeling.
TGFBR3. A short exposure to 100% oxygen also reduced

the TGFBR3 mRNA expression by 37% 9 h after the hyper-
oxic event. TGFBR3 seems to have essential roles in cardio-
vascular and hepatic organogenesis and developmental pro-
cesses may be disrupted by TGFBR3 deficiency (35).The
transforming growth factor � (TGF�) family regulates a va-
riety of biologic processes including cell growth, migration,
angiogenesis, ECM production, apoptosis, and cancer progres-
sion (36,37). Our results could also suggest a potential
relevance to recent studies that have revealed that loss of
TGFBR3 expression may have important consequences dur-
ing cancerogenesis (19–21). In addition, also a significantly
lower plasma level of TGFBR3 has been found in children
with ALL compared with controls (38).

There are complex inter-relationships between the MMP,
VEGF, and TGF� pathways, a simplified model can be
viewed in Fig. 6.

A relatively long period of postnatal maturation in mam-
mals allows for interactions with the environment. Devel-
opmental plasticity during critical periods of maturation
may result in long-term alterations like blunting of adult
hypoxic response after early postnatal hyperoxia exposure,
reviewed in Ref. 39. The results of this study, determined in
such a critical time window, could contribute to shed light on
possible pathologic long-term alterations of this developmen-
tal plasticity.

To differentiate between oxygen given for resuscitation and
oxygen given without preceding hypoxia seems clinically
highly relevant. Still oxygen is used for both newborn resus-

citation and stabilization and effects of just a relative short
oxygen exposure is important to address.
Limitations. This study has been done in a neonatal, not

perinatal, model of hypoxia-reoxygenation. Therefore, caution
must be taken when interpreting the current findings in the
context of birth asphyxia. Measuring expression and activity
at one time-point does not mirror the whole pathophysiolog-
ical process post hypoxia and reoxygenation. Although the
perinatal development of pigs and humans is not identical, it
should be emphasized that the pig lung and liver resembles the
human not only structurally but also in their immunologic and
metabolic functions (40–42).

In conclusion, this study focuses on changes in gene ex-
pression and tissue repair mechanisms related to hypoxia-
reoxygenation and brief oxygen treatment in a newborn
model.

The dose-dependent increase that we found in the net
gelatinolytic activity (MMP-2 and MMP-9) indicates that
using 40% or 100% oxygen for newborn resuscitation in-
creases tissue damage and influences remodeling processes.
Receiving 100% oxygen for 30 min without preceding
hypoxia provoked a decreased expression of VEGFR2 and
TGFBR3 in liver tissue and rises concerns about subsequent
impaired angiogenesis and tissue remodeling. We hypothesize
that there could be a vulnerable time frame in the neonatal
period where a brief exposure to oxygen induces genetic
alterations that can lead to long-lasting consequences such as
an increased risk of cancer.
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