
Surfactant Protein-C Promoter Variants Associated With
Neonatal Respiratory Distress Syndrome Reduce Transcription

JENNIFER A. WAMBACH, PING YANG, DANIEL J. WEGNER, PING AN, BRIAN P. HACKETT,
F.S. COLE, AND AARON HAMVAS

Edward Mallinckrodt Departments of Pediatrics [J.A.W., P.Y., D.J.W., B.P.H., F.S.C., A.H.] and Genetics [P.A.], Washington University
School of Medicine, St. Louis, Missouri 63110

ABSTRACT: Dominant mutations in coding regions of the surfac-
tant protein-C gene, SFTPC, cause respiratory distress syndrome
(RDS) in infants. However, the contribution of variants in noncoding
regions of SFTPC to pulmonary phenotypes is unknown. By using a
case-control group of infants �34 weeks gestation (n � 538), we
used complete resequencing of SFTPC and its promoter, genotyping,
and logistic regression to identify 80 single nucleotide polymor-
phisms (SNPs). Three promoter SNPs were statistically associated
with neonatal RDS among European descent infants. To assess the
transcriptional effects of these three promoter SNPs, we selectively
mutated the SFTPC promoter and performed transient transfection
using MLE-15 cells and a firefly luciferase reporter vector. Each
promoter SNP decreased SFTPC transcription. The combination of
two variants in high linkage dysequilibrium also decreased SFTPC
transcription. In silico evaluation of transcription factor binding
demonstrated that the rare allele at g.�1167 disrupts a SOX (SRY-
related high mobility group box) consensus motif and introduces a
GATA-1 site, at g.�2385 removes a MZF-1 (myeloid zinc finger)
binding site, and at g.�1647 removes a potential methylation site.
This combined statistical, in vitro, and in silico approach suggests
that reduced SFTPC transcription contributes to the genetic risk for
neonatal RDS in developmentally susceptible infants. (Pediatr Res
68: 216–220, 2010)

Pulmonary surfactant is a phospholipid and protein complex
that is synthesized by alveolar type II cells and maintains

alveolar expansion at end expiration. Developmentally regu-
lated deficiency of surfactant due to immaturity of alveolar
type II cells in prematurely born infants disrupts fetal-neonatal
pulmonary transition by causing alveolar collapse at end
expiration and neonatal respiratory distress syndrome (RDS)
(1). Neonatal RDS may also result from genetic disruption of
pulmonary surfactant metabolism as suggested by heritability
estimates (0.2–0.8 in twin studies), by rare, lethal mutations in
genes encoding surfactant protein-B, (SFTPB, gene ID 6439,
MIM 178640), surfactant protein-C (SFTPC, gene ID 6440,
MIM 178620), and the ATP-binding cassette, subfamily A,

member 3 (ABCA3, gene ID 27410, MIM 601615), and by
genotyping studies of common, nonsynonymous variants in
SFTPB and SFTPC (2–8). Furthermore, recent studies report
an increased risk of neonatal RDS likely attributable to sur-
factant deficiency in late preterm infants (�34 weeks gesta-
tion) (9–11).

SFTPC encodes surfactant protein-C (SP-C), a lung-specific
extremely hydrophobic peptide that spans the phospholipid
bilayer of pulmonary surfactant and contributes to mainte-
nance of alveolar expansion at end expiration (12). SFTPC is
genomically small (3.5 kb with a 3.7-kb promoter), located on
human chromosome 8, and directs the synthesis of an alter-
natively spliced 191 or 197 amino acid proprotein (proSP-C)
that undergoes sequential proteolytic cleavages to yield the
35-amino acid mature SP-C peptide (12,13). Studies per-
formed on fetal human lung tissue demonstrate developmental
regulation of SFTPC with mRNA detected by 13–15 weeks
gestation (14,15) and pro-SPC protein by 12–16 weeks (16);
SP-C expression increases with advancing gestational age to
approximately 15% of adult levels by 24 weeks gestation (15).

Dominantly expressed, rare, exonic mutations in SFTPC
cause respiratory dysfunction of varying severity and age of
onset among infants, children, and adults, which is thought to
result from aggregation of misfolded or misrouted proSP-C
peptides that exceed the capacity of cell stress response path-
ways to maintain cellular homeostasis (6,17–20). Further-
more, two common nonsynonymous variants that encode an
asparagine for threonine substitution at codon 138 (p.T138N,
rs4715) and an asparagine for serine substitution at codon 186
(p.S186N, rs1124) have been statistically associated with RDS
among premature infants �34 weeks gestation (21). However,
no comprehensive sequence analyses of the contribution of
rare variants in SFTPC to RDS have been performed.

To investigate the contribution of rare and/or noncoding
region variants in SFTPC to neonatal RDS in term or late
preterm infants, we used complete resequencing or genotyping
of SFTPC in newborns �34 weeks gestation with and without
RDS to identify variants statistically associated with neonatal
RDS, in silico evaluation of transcriptional function, and trans-
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fection of a murine pulmonary epithelial cell line to confirm
functional significance of statistically associated variants.

MATERIALS AND METHODS

Case-control study. We recruited 184 consecutive term and late preterm
newborn infants (�34 weeks gestation) with RDS and, separately, a control
group of 354 infants without respiratory symptoms who were referred to the
Division of Newborn Medicine at St. Louis Children’s Hospital for clinical
care (8) (Table 1). To standardize case phenotype, RDS was defined as the
need for supplemental oxygen (FiO2 �0.3) for �24 h, a chest radiograph
consistent with neonatal RDS, and the need for continuous positive airway
pressure or mechanical ventilation within the first 48 h of life. Controls (CON)
were term or late preterm infants without respiratory symptoms. Gestational
age for each infant was assigned based on best obstetrical estimate. We
excluded infants with congenital anomalies that could contribute to respira-
tory distress, known genetic causes of respiratory insufficiency (e.g. SFTPB or
ABCA3 deficiency), culture positive sepsis, chromosomal anomalies, late
onset RDS (�48 h), and transient tachypnea of the newborn (TTN) that
resolved within 24 h of life. A single twin from each pair of monochorionic
twins was included. The designation of RDS or control status was assigned
before any genetic studies and without knowledge of SFTPC genotype. We
obtained informed consent from parents of all infants.

We performed complete SFTPC resequencing, including the promoter and
intervening introns, for 269 infants (92 RDS, 177 CON). Interim analyses
revealed overrepresentation in the cases of the minor allele at three SFTPC
promoter sites; so, we performed genotyping of these three variants in an
additional 269 infants (92 RDS, 177 CON) using 5� nuclease assays. This
study was approved by the Human Research Protection Office of Washington
University School of Medicine.

DNA isolation, sequencing, and genotyping. We isolated DNA from
blood using Puregene DNA isolation kit (Qiagen). We bidirectionally se-
quenced all translated exons, introns, and promoter region of SFTPC (�6kb
total) from 269 infants as previously described (22). We used Phred, Phrap,
PolyPhred, and Consed (http://www.phrap.org/phredphrapconsed.html) to
identify and annotate single nucleotide polymorphisms (SNPs) in sequencing
chromatograms and Prettybase (http://pga.mbt.washington.edu) to extract a
final file with genotypes. We obtained human SFTPC reference sequence
from Alamut (version 1.5; Interactive Biosoftware, Inc., Rouen, France). We
used 5� nuclease assays (Taqman, Applied Biosystems) and the ABI 7500
FAST Real Time PCR system to genotype the three promoter sites identified
in interim analyses for an additional 269 infants.

Statistical methods. After anonymously linking individual genotype and
phenotype information, we used SAS (version 9.1.3; SAS Institute, Cary, NC)
to perform interim analyses using race-stratified Fisher’s exact test to deter-

mine the association of SFTPC variants with risk of RDS. For our final
analyses, we performed race-stratified logistic regression controlling for the
effects of estimated gestational age and gender (23) to determine the associ-
ation of the identified promoter variants with risk for neonatal RDS. To
control for inflated type 1 error because of multiple association tests required
for each of the SFTPC variants (n � 80), we used a modified false discovery
rate (FDR) approach (24) based on the number of effective tests. Specifically,
we considered the gene variants within one haplotype block as one effective
test, and we determined an adjusted p value using the formula: p � 0.05/(1 �
1⁄2 � 1⁄3 � 1⁄4 � ��� �1/n), where n is number of effective tests. Based on this
calculation, we determined a p value of 0.01 as a criterion for statistical
significance.

In silico functional analysis of SNPs. To identify transcription factor
binding motifs and determine the predicted functional significance of pro-
moter region variants, we used TFSEARCH95 (www.cbrc.jp), an application
that predicts transcription factor consensus sites based on a weighted matrix.

In vitro functional analysis of SNPs. We created the reporter plasmid
SFTPC_WT_luc by subcloning the 3.7-kb human SFTPC promoter (kind
gift of J. Whitsett) into a HindIII site of the firefly luciferase reporter
vector pGL4.10(luc2; Promega, Madison, WI). We generated the three
SFTPC promoter variants associated with RDS (SFTPC_1167G_luc,
SFTPC_1647A_luc, and SFTPC_2385T_luc) and a combination of variants
in high linkage dysequilibrium (LD; SFTPC_1647_2385) by site-directed
mutagenesis (Stratagene, La Jolla, CA) and confirmed all construct sequences
by DNA sequencing. To evaluate the effect of each promoter variant or
combination on transcription, we used Fugene 6 (Roche Applied Science,
Indianapolis, IN) to transiently transfect MLE-15 cells (kind gift of J.
Whitsett), an immortalized mouse lung epithelial cell line with functional and
morphologic characteristics similar to pulmonary type II epithelial cells
(25,26). Twenty-four hours after seeding MLE-15 cells (1.5 � 105 cells/well
in 12-well plates) in HITES medium (RPMI 1640 medium with 2% FBS,
supplemented with 5 �g/mL insulin, 10 �g/mL transferrin, 5 ng/mL sodium
selenite, 10 nM �-estradiol, 10 nM hydrocortisone, 2 mM L-glutamine, 10
mM HEPES, 100 U/mL penicillin and 100 �g/mL streptomycin), we cotrans-
fected each SFTPC reporter construct with pGL4.74 (hRluc-TK) vector
(Promega) with six replicates for each construct. After 48 h, we lysed the cells
and measured luciferase activities using the dual-luciferase reporter assay
system (Promega). We normalized relative light units of firefly luciferase
activity with Renilla luciferase activity and performed all transfections three
times. We compared normalized luciferase activity between the wild type
promoter and each construct using paired t tests.

RESULTS

SFTPC variants associated with neonatal RDS. We
identified 80 variants within SFTPC and its promoter with
complete resequencing of 269 infants (Table S1,
http://links.lww.com/PDR/A61). Analyses using Fisher’s ex-
act test revealed overrepresentation in cases of the minor
alleles at genomic positions g.�1647(A) and g.�2385(T)
among infants of European descent with RDS and
g.�1167(G) among infants of African descent with RDS
(Table 2). The alleles at g.�1647 and g.�2385 are in strong
LD (r2 � 0.75 for African descent infants, r2 � 0.84 for
European descent infants). Race-stratified logistic regression
models that included gestational age and gender (23) per-
formed on the final cohort of 538 infants revealed overrepre-
sentation of the minor alleles of all three promoter variants
(g.�1167, g.�1647, and g.�2385) among infants of Euro-
pean descent with RDS (Table 3). There was a trend toward
overrepresentation of the minor allele of g.�1167(G) among
infants of African descent with RDS; however, this trend did
not achieve statistical significance. The variants at g.�1647
and g.�2385 were not associated with neonatal RDS in the
African descent infants. In addition, no deleterious variants in
SFTPB or ABCA3 were identified in any of the RDS infants.

Two promoter region variants are within transcription
factor binding sites. By using TFSEARCH95, we found that

Table 1. Characteristics of case-control group (538)

RDS CON p

African descent
Total* 40 215
Sex*

Female 11 108 0.009
Male 29 107

Birth weight (mean 	 SD) 3.00 (	0.97) 3.11 (	0.47) 0.272
EGA (weeks) 37.8 (	2.6) 38.9 (	1.7) 0.0006
Route of delivery*

Vaginal 17 142 0.084
C-section 17 73
Unknown 6 0

European descent
Total* 144 139
Sex*

Female 58 63 0.403
Male 86 76

Birth weight (mean 	 SD) 3.10 (	0.65) 3.12 (	0.63) 0.787
EGA (weeks) 37.2 (	2.1) 38.2 (	1.6) �0.0001
Route of delivery*

Vaginal 74 62 0.115
C-section 60 75
Unknown 10 2

*Number of infants.

217SP-C PROMOTER VARIANTS AND NEONATAL RDS



the minor allele at g.�1167 disrupts a SOX (SRY-related high
mobility group box) consensus motif and introduces a
GATA-1 site, at g.�2385 removes a myeloid zinc finger
(MZF-1) binding site, and at g.�1647 removes a potential
methylation site. These findings suggest that two of the three
statistically identified SFTPC promoter variants could regulate
transcription by altering transcription factor binding and the
third by altering methylation.

Promoter region variants decrease transcription. Each of
the three SFTPC variants significantly decreased transcription
of the SFTPC promoter as measured by decreased luciferase
reporter activity relative to the wild type construct (Fig. 1).
The construct for g.�1167 reduced SFTPC promoter tran-

scription by approximately 59% (p � 1.7 � 10�6), g.�1647
by approximately 19% (p � 0.005), and g.�2385 by approx-
imately 13% (p � 0.03). The construct with the two variants
in high LD (g.�1647 � g.�2385) reduced transcription by
approximately 56% (p � 0.003). We transfected each pro-
moter construct three times with similar findings. These find-
ings suggest that the minor alleles at each of the three statis-
tically identified SFTPC promoter variants and the
combination of g.�1647 and g.�2385 reduce transcription.

DISCUSSION

We found that three SFTPC promoter SNPs were statisti-
cally overrepresented among infants of European descent with
RDS, were predicted by in silico testing to impact transcrip-
tion, and functionally decreased transcription in a murine
alveolar epithelial cell line. In contrast to exonic SFTPC
mutations that result in pulmonary disease in children and
adults due to protein misfolding (6,17,18), these findings
suggest that a proportion of the risk for neonatal RDS is
attributable to transcriptional regulation of SFTPC. Popula-
tion-based analyses of these variants are underway to deter-
mine the attributable risk of these variants to neonatal RDS.

In the absence of an accompanying change in protein
structure, mutations in the regulatory regions of genes may be
overlooked as a mechanism for phenotypic variation and
generally require functional analysis of gene expression, such
as transient transfection. The phenotypic variation associated
with these cis-regulatory mutations is presumed to be caused
by changes in transcript abundance. In a review of 107 human
genes with identified cis-regulatory polymorphisms, 63%
demonstrated allelic differences in expression of 2-fold or
greater with transient transfection (27). For example, two
common variants within the promoter of the SFTPB gene have
been associated with decreased gene transcription. The g.�18
C�A variant is associated with decreased SP-1 binding and
lower concentrations of SP-B in the bronchoalveolar lavage
fluid of healthy adult volunteers (28). The g.�384 G�A
variant impairs binding of TTF (thyroid transcription factor)-1
and reduces transcriptional activity in H441 cells (29).

Table 2. Fisher’s exact test: genotype association of SFTPC
variants with RDS

Genotype CON RDS Fisher’s p

European descent
rs8192321

(g.�1167)
AA 82 62 0.140
AG 2 6

rs8192337
(g.�1647)

GG 82 59 0.015
AG 0 5

rs8192335
(g.�2385)

GG 85 63 0.016
GT 0 4
TT 0 1

African descent
rs8192321

(g.�1167)
AA 89 20 0.093
AG 3 3

rs8192337
(g.�1647)

GG 90 23 0.375
AG 1 1

rs8192335
(g.�2385)

GG 90 23 0.375
GT 1 1

Race-stratified Fisher’s exact analyses of the association of SFTPC variants
with RDS. Three promoter variants were statistically associated with neonatal
RDS: the minor alleles at g.�1647 and g.�2385 were overrepresented among
infants of European descent with RDS and the minor allele at g.�1167 was
overrepresented among infants of African descent with RDS.

Table 3. Logistic regression: genotype association of SFTPC
variants with RDS

Genotype CON RDS Regression Odds ratio (CI)

European
descent

rs8192321
(g.�1167)

AA 132 129 0.019 4.14 (1.26–13.57)
AG 4 13

rs8192337
(g.�1647)

GG 137 131 0.017 12.75 (1.58–103.15)
AG 1 11

rs8192335
(g.�2385)

GG 136 132 0.016 13.0 (1.60–105.09)
GT 1 10
TT 0 1*

African descent
rs8192321

(g.�1167)
AA 207 35 0.058 3.68 (0.96–14.17)
AG 7 4

rs8192337
(g.�1647)

GG 210 39 0.491 2.29 (0.22–24.07)
AG 3 1

rs8192335
(g.�2385)

GG 210 38 0.417 2.78 (0.24–32.55)
GT 2 1

Race-stratified logistic regression of the association of SFTPC variants with
RDS. Estimated gestational age and gender were incorporated into the models
as covariates. The minor alleles of three promoter variants were overrepre-
sented at g.�1167, g.�1647, and g.�2385 among infants of European
descent with RDS; there was a trend toward overrepresentation of the minor
allele at g.�1167 among infants of African descent with RDS.

*TT individual was combined with GT group for statistical analyses.

Figure 1. Three individual promoter variants—SFTPC_1167G, SFTPC_1647A,
and SFTPC_2385T—and the combination, SFTPC_1647A_2385T, decrease
transcriptional activity of human SFTPC promoter relative to the wildtype
promoter. Data are mean 	 SD from one representative experiment (n � 6
replicates per construct). The experiments were performed three times with
similar results. *p � 1.7 � 10�6; **p � 0.0045; †p � 0.030; ‡p � 0.0026.
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Similar to exonic SFTPC mutations, these promoter vari-
ants appear to act in a dominant fashion, as the presence of a
single copy of the minor or risk allele increases the risk for
RDS among European descent infants and was sufficient to
decrease gene expression in vitro. A single infant was ho-
mozygous for the rare variant at g.�2385; otherwise, all
individuals were heterozygous. Cis-regulatory mutations may
act in a codominant fashion due to allele-specific transcript
abundance, whereas mutations in the coding sequence are
more likely to act in a recessive fashion. Because of the nature
of transcriptional regulation, the effect of cis-regulatory mu-
tations may be limited temporally or spatially depending on
the specific regulatory site affected (30). For these three
promoter variants in SFTPC, the context-dependent regulation
of gene expression may have important implications for the
developmentally susceptible infant who requires a threshold
of SFTPC expression for successful fetal-neonatal pulmonary
transition. Although full-term mice with genetically abrogated
SFTPC expression are viable at birth, have normal pulmonary
function, exhibit normal lung morphology, and have similar
rates of surfactant synthesis, secretion, and pool size, their
pulmonary surfactant is functionally deficient due to reduced
hysteresivity and instability at low bubble volumes (31).
When these mice are subjected to a significant pulmonary
insult (e.g. intratracheal bleomycin), they exhibit greater in-
flammation, increased collagen accumulation, and delayed
recovery when compared with wild-type mice (32). Surfactant
from SP-B�/� SP-C�/� mice exhibit microbubble stability by
bubble surfactometer when compared with surfactant from
SP-B�/� SP-C�/� mice, indicating that SP-C plays a role in
stabilization of phospholipid film (33).

To our knowledge, the only other study to evaluate a
statistical association of SFTPC variants and neonatal RDS
used genotyping strategies and found that two common non-
synonymous SNPs, c.413C�A (p.T138N, rs4715, minor al-
lele frequency approximately 0.20) and c.557G�A (p.S186N,
rs1124, minor allele frequency approximately 0.22) were
overrepresented among Finnish preterm infants with RDS
(21). We did not find these associations in our study, perhaps
because of the differences in mean gestational age [38.2 weeks
(United States) versus 28.6 weeks (Finnish)] or differences in
ethnicities between the two populations. However, the range
of gestational ages in our cohort was more limited than that of
the Finnish cohort, and these polymorphisms may be more
influential during earlier periods of development.

When we performed race-stratified analyses, both gender
and gestational age were incorporated as covariates into the
final regression model. Gender was a significant predictor for
RDS risk among African descent infants but not for European
descent infants in our study; estimated gestational age was an
independent predictor of RDS risk for both races. We also
considered the possibility of an inflated type I error rate and
used a FDR approach to correct for multiple tests. The pro-
moter variants that we found to be statistically associated with
RDS among infants of European descent approximated the
FDR p value and were further validated in a transient trans-
fection system to decrease transcription of a reporter gene. It
is also possible that the African descent cohort may have been

underpowered to detect associations with the three promoter
SNPs identified in European descent infants because of the
limited number of African descent infants with RDS. This
disparity reflects what we observe clinically as there are fewer
infants of African descent with RDS (34), and our study
enrolled infants consecutively. Finally, the frequencies of the
three transcriptionally active promoter SNPs were too low to
provide statistical power to assess associations with disease
severity.

Taken together, these data suggest that SFTPC promoter
variants increase the risk for neonatal RDS in late preterm and
term infants by reducing SFTPC transcription. This combined
statistical, in silico, and in vitro approach suggests that re-
duced SFTPC transcription contributes to the genetic risk for
neonatal RDS in developmentally susceptible infants.
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