Aim: To compare six different potential bedside indicators of ETT malposition in a piglet model of neonatal lung injury.

Methods: Six anaesthetised and muscle-relaxed piglets with saline lavaged surfactant-deficient lungs (AaDO $_2$ >350mmHg in F $_{\text{IO2}}$ 1.0) conventionally ventilated were studied. Transient periods (30-120s) of ventilation with the ETT place in the oesophagus and a single main bronchus (MB) were compared with an appropriately placed ETT. During each period, colorimetric end-tidal CO $_2$ (Pedi-Cap $^{\$}$), flow at the airway opening (Florian), global/regional lung volume and tidal ventilation (electrical impedance tomography; EIT), Sp $_{\text{O2}}$ and heart rate were continuously measured.

Results: Compared to ventilation via a correct placed ETT; *Oesophageal ventilation*: Sp₀₂ decreased from 96% to 74%, without heart rate change. Pedi-Cap® demonstrated absence of tidal color change, and no expired tidal volume was seen on the Florian. EIT confirmed absence of any lung inflation.

MB ventilation: There was no significant difference between the $\mathrm{Sp}_{\mathrm{O2}}$, heart rate, Pedi-Cap® and peak inspiratory/expiratory tidal flows, EIT demonstrated a significant change in tidal volume ventilation with 97% occurring in the ventilated lung and 3% in the unventilated lung.

Conclusion: The Pedi-Cap and RFM were able to distinguish between endotracheal and oesophageal ventilation. EIT alone correctly identified all adverse events and might have a role in bedside monitoring of ventilated infants.

1332

EFFECT OF SURFACTANT AND PARTIAL LIQUID VENTILATION TREATMENT ON CEREBRAL HAEMODYNAMIC AND OXIGENATION IN PREMATURE LAMBS

C. Rey-Santano¹, V.E. Mielgo¹, X. Murgia¹,
E. Gastiasoro¹, H. Lafuente¹, S. Gomez-Urquijo²,
E. Ruiz-del-Yerro¹, B. Loureiro³, F.J. Alvarez-Diaz¹,
A. Valls-i-Soler³

¹Research Unit, Cruces Hospital, Barakaldo, ²Neuroscience, University of Basque Country, Leioa, ³Neonatal Unit, Cruces Hospital, Barakaldo, Spain

Background: Surfactant (SF) therapy in RDS has reduced mortality and morbidity in preterm infants. Although adverse-effects seem to be moderate,

fluctuation in cerebral circulation has been observed. Cerebral haemodynamic changes during partial-liquid-ventilation (PLV) have not been well described.

Aim: To evaluate the effect of SF and PLV treatment on oxygenation and on cerebral haemodynamic in premature lambs with RDS.

Methods: 18 preterm lambs (80-90%GE) were randomly assigned to: SF-Group, received Curosurf®(175mg/kg), PLV-Group, treated with perfluorocarbon(30ml/kg) Control-Group. or Systemic-arterial-pressure (SAP), heart rate(HR), oxygenation-index (OI) and arterial/alveolar-index (a/ADO₂) were determined during 3hours. Regionalcerebral-blood-flow (RCBF) was determined by microspheres-technique at foetal point (F), 1h and at 3h. Cerebral cortexes and periventicular zones (striatum, thalamus, hypothalamus, hippocampus) were grouped. Mean±SEM;Two-factor-ANOVA,p< 0.05

Results: Fetal blood gases were similar between groups (pH:7.30±0.07, PaCO₂:47±9mmHg, PaO₂:27±6mmHg). After 5-min of conventional-mecanical-ventilation a severe RDS was developed in all groups (IO>70, a/ADO2< 0.1), that was maintained stable in Control-Group throughout the experiment. SF and PLV treatments showed significant improvement of gas exchange (IO:6±2 and a/ADO₂:0.38±0.05, at1h). However, only SF treatment sustained this improvement along the time. HR and SAP remained stable.

	COR- TEX (F)	PERIVEN- TRICULAR (F)	COR- TEX (1 HOUR)	PERIVEN- TRICUL- LAR (1H)	COR- TEX (3H)	PERIVEN- TRICU- LAR (3H)
CON- TROL			98±13	156±30	102±9	158±15
PLV	135±8	204±18	102±17	178±30	167±23 #	305±46
SF			67±10	89±8	68±36 %	65±13#%

[RCBF (ml/100g/min)]

(#)vs.Control-group;(%)vs.PLV-group;

Conclusion: In SF and PLV treatment careful monitoring of pulmonary and cerebral haemodynamic status and cautious corrections of ventilator settings are mandatory to avoid alterations of RCBF. Supported: GV2007111046-FIS070733