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ABSTRACT: Insulin administration is the primary therapy for type
1 diabetes mellitus (T1DM). Current available insulin therapies do
not successfully enable children with T1DM to reach glycemic goals
without side effects such as hypoglycemia and weight gain. Pram-
lintide is a synthetic analog of human amylin that acts in conjunction
with insulin to delay gastric emptying and inhibit the release of
glucagon and is indicated for use in patients with type 1 and type 2
diabetes. Recent studies in adult patients have examined the role of
glucagon-like peptide 1 (GLP-1) and agents that bind to its receptor
in type 1 diabetes. It is hypothesized that a major component of the
glycemic effect is attributable to the known action of GLP-1 to delay
gastric emptying and to inhibit glucagon secretion. Further studies with
the use of amylin analogs and long-acting GLP-1 agonists as congeners
with insulin in T1DM are indicated in children. In recent years, our
better understanding of the pathophysiology of diabetes has led to the
development of new therapies for diabetes. This article reviews the
potential use of these newer pharmacologic agents as adjunctive therapy
in T1DM in children and adolescents. (Pediatr Res 65: 370–374, 2009)

Type 1 diabetes mellitus (T1DM) is an autoimmune pro-
cess with a strong genetic component causing destruction

and dysfunction of the pancreatic �-cells. It involves both
insulin and amylin deficiencies. Insulin administration is the
primary therapy for T1DM.
Current standards of care recommend intensive diabetes

management and lowering hemoglobin A1c (HbA1c) to as
close to normal as possible. However, 87 years after the
discovery of insulin, physicians and patients still struggle for
optimal diabetes control because of limitations of insulin
therapy.
The Diabetes Control and Complication Trial demonstrated

the direct relationship between glycemic control as predicted
by HbA1c and onset and prevention of microvascular com-
plications (1,2). Studies show a strong correlation between
HbA1c and plasma glucose levels both at fasting and over
postprandial periods (3,4). Studies also suggest that postpran-
dial hyperglycemia is an important risk factor for the devel-
opment of macrovascular disease (5,6). Increased glycemic
variability seems to correspond with elevated markers of
oxidative stress and inflammation associated with cardiovas-

cular disease (7). Thus, reductions in postprandial glycemic
variability may be an important step in lowering complica-
tions related to diabetes (8). However, as insulin doses are
pushed in an attempt to normalize blood glucose after meals,
risk of hypoglycemia and excessive weight gain occur.
This failure to achieve and maintain euglycemia in majority

of children with T1DM provides an impetus to seek newer
adjunctive therapies that are both safe and effective. In recent
years, our better understanding of the pathophysiology of diabe-
tes has led to the development of new therapies for diabetes. This
article reviews the potential use of newer pharmacologic agents
as adjunctive therapy in T1DM in children.
Pathophysiology of type 1 diabetes and rationale for ad-

junctive therapy. The postprandial glucose profile is deter-
mined by several factors: the rate and extent of glucose
absorption, secretory patterns of various hormones (insulin,
glucagon, amylin, and incretin hormones), and their effects on
hepatic and peripheral tissue glucose metabolism. Studies
have shown that the postmeal responses of insulin, glucagon,
and glucose differ between individuals with and without dia-
betes. Typically in a person without diabetes, the blood glu-
coses are tightly controlled (9). Postprandially, the concurrent
increases in blood glucose and insulin results in suppression of
hepatic glucose production by suppressing glycogenolysis and
gluconeogenesis and increase in glucose uptake and utilization
by the peripheral tissues particularly muscle and fat. In those
with diabetes, insulin release is deficient, paradoxical rise in
glucagon contributes to postprandial hyperglycemia (10).
Role of gastric emptying. Gastric-emptying rate is an im-

portant determinant of postprandial blood glucose. The rate of
gastric emptying has a direct effect on the rate of glucose
appearance after a meal as a result of absorption of glucose
and simple carbohydrates from the proximal small intestine
(11). Postprandial glucose can be as much as 34% higher in
normal healthy subjects who empty their stomachs rapidly
than in those who have a slower gastric emptying rate (12).
Gastric emptying in patients with diabetes is an area of much
controversy. There are studies that suggest that there is accel-
erated, normal, and delayed gastric emptying in T1DM (13–
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15). In T1DM patients and healthy subjects, acute hypergly-
cemia slows gastric emptying of both solids and nutrient
liquids, when compared with euglycemia (16,17). Patients
with known autonomic neuropathy and longstanding diabetes
have gastroparesis (18).
Rationale for adjunctive therapy. Glucose homeostasis is

dependent on the complex interplay of multiple hormones:
insulin, glucagon, amylin, and gastrointestinal peptides, in-
cluding glucagon-like peptide-1 (GLP-1) and gastric inhibi-
tory peptide. By the addition of adjunctive therapies, glucose
homeostasis may be achieved by a more balanced approach
(19). The mechanism of action for adjunctive therapies in
T1DM is summarized in Table 1.

REPLACEMENT OF AMYLIN AS PHYSIOLOGIC
APPROACH TO THE TREATMENT OF DIABETES

Amylin physiology and pathophysiology. In 1987, it was
reported that pancreatic beta cells secrete another hormone,
which was identified as amylin (20). In type 1 diabetes, owing
to the destruction of the �-cells, patients have an absolute
deficiency of both insulin and amylin. Amylin and insulin
have complementary actions in regulating glucose homeosta-
sis. Amylin has glucose lowering effects by (1) suppression of
endogenous glucagon production, especially in the postpran-
dial state; (2) slowing of gastric emptying time; and (3)
reduction of postprandial hepatic glucose production. It also
causes centrally mediated induction of satiety.
Effects on gastric emptying. Amylin seems to normalize

gastric motility and gastric-emptying time (19,21). Amylin
thus regulates delivery of nutrients to the small intestine and
the rate of glucose appearance in the blood.
Pramlintide: synthetic analog of amylin. Pramlintide is a

synthetic analog of human amylin. In 2005, pramlintide was
approved by the Food and Drug administration for use in
patients with diabetes treated with mealtime insulin who have
not achieved glycemic goals. Pramlintide reduces postprandial
glycemia and glucose fluctuations, resulting in improved gly-
cemic control without associated weight gain (22).
Native amylin is glue like and unstable as a compound

solution and has a propensity to aggregate and adhere to the
surfaces. Pramlintide has similar physiologic effects as native
amylin. Pramlintide is a peptide and is therefore administered
systemically, e.g. via s.c. injection. It does not impede the
glucagon response to hypoglycemia or attenuate the effects of
counterregulatory hormones triggered by hypoglycemia (cat-
echolamines, growth hormone, cortisol, and glucagon) (23).
Clinical studies in type 1 diabetes. Short-term clinical

studies in patients with T1DM showed that mealtime amylin

replacement with pramlintide slows the rate of nutrient deliv-
ery from the stomach to the small intestine (24,25) and
prevents an abnormal increase in glucagon after meals
(26,27). All of these effects were achieved with pramlintide
doses of 30 or 60 �g, which resulted in plasma pramlintide
concentrations similar to the postprandial amylin levels seen
in healthy subjects. In our experience in adolescents with
T1DM, increasing the insulin dose by 60% before a meal did
not correct immediate postprandial hyperglycemia. Pramlint-
ide was effective in decreasing immediate postprandial hyper-
glycemia in adolescents with T1DM (28,29). We have also
found that postprandial hyperglycemia is considerably re-
duced in adolescents with T1DM when treated with premeal
30 �g pramlintide and postmeal insulin, without significant
side effects (unpublished data).
Long-term clinical studies in adults with T1DM show that

adjunctive therapy with pramlintide facilitates further im-
provement of overall glycemic control without the increase in
body weight and/or severe hypoglycemia (30–32). In a mul-
ticenter study of 480 T1DM patients (16–70 y of age), White-
house et al. (30) showed that treatment with pramlintide led to
a mean reduction in HbA1c of 0.67% from baseline to week
13 that was significantly greater than the reduction with
placebo (0.16%); a significant treatment difference was sus-
tained through week 52. Ratner et al. (31) showed that the
addition of pramlintide 60 �g three times or four times daily
to insulin led to significant reductions in HbA1c of 0.29% and
0.34%, respectively, compared with a 0.04% reduction in
placebo group, over 52 wk.
Effects on weight. Several studies have assessed the effect

of pramlintide on weight control in adults with T1DM. Ratner
et al. (31) reported a significant reduction in body weight from
baseline to week 52 of 0.4 kg in the pramlintide treatment
groups, compared with a 0.8-kg gain in body weight in the
placebo group. A 29-wk study by Edelman et al. (32) of 296
patients with T1DM showed that pramlintide treatment sig-
nificantly reduced weight (pramlintide �1.3 � 0.30, placebo
�1.2 � 0.30 kg), despite equivalent HbA1c reductions rela-
tive to placebo.
The mechanism underlying the observed weight reduction

with pramlintide is not fully understood. The effects seem to be
centrally mediated. High-density amylin sites are identified in the
dorsal raphe and nucleus acumbens, the regions in brain that
control feeding behavior. Pramlintide’s effect on appetite targets
peripheral episodic satiety signals (33). In rodents, amylin dose
dependently reduced food intake and body weight by affecting
the size and duration of meals (34,35). In a randomized, double
blind, placebo-controlled crossover study, preprandial injection
of pramlintide elicited a 20% reduction in ad libitum food intake
in insulin-treated patients with T2DM (36). In another study,
low-dose pramlintide reduced food intake and meal duration in
healthy, normal-weight subjects (37).
Other effects. Pramlintide reduced postprandial markers of

oxidative stress, including nitrotyrosine and oxidized LDL
that are associated with increased risk of cardiovascular dis-
ease and diabetic microvascular complications in a study (38).
Adverse effects and practical considerations. The most

common adverse effects include nausea, vomiting, and an-

Table 1. Mechanism for adjunctive therapy in T1DM

Class of drug Drug Main mechanism of action

Synthetic amylin
analogs

Pramlintide Delayed gastric emptying,
glucagon suppression

GLP-1 receptor
agonists

Exenatide Delayed gastric emptying,
glucagon suppression,
(�enhancement of
insulin secretion)
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orexia. Rates of nausea in studies have ranged from 9.5 to
59% with most cases being mild to moderate in nature and
resolving in 2–8 weeks. Pramlintide in itself does not cause
hypoglycemia. When coadministered with insulin, it increases
the risk of insulin-induced hypoglycemia. Insulin doses may
need to be reduced by 20–50%. Pramlintide should be avoided
in patients with gastroparesis because it slows gastric empty-
ing. Currently, weight-based pramlintide dosing information
is unavailable. In adults with T1DM, pramlintide is usually
initiated at a dose of 15 �g and titrated in 15-�g increments to
a final dose of 60 �g based on tolerability to nausea. If the
45-�g and 60-�g doses are not well tolerated, a maintenance
dose of 15–30 �g can be used. Pramlintide is taken by s.c.
injection just before mealtimes and should be administered in
a separate syringe at an injection site distinct from that of
concurrent insulin. Pramlintide is yet to be approved for use in
children. In general, candidates for treatment include patients
who have failed to achieve glycemic control despite individ-
ualized insulin management, and who are able to monitor
blood glucose frequently and are under the care of healthcare
professional skilled in the use of insulin.
In conclusion, amylin replacement with pramlintide as an

adjunct to insulin therapy potentially represents a novel and
more physiologic approach toward improved metabolic con-
trol in children with T1DM. However, more short-term and
long-term studies with pramlintide are needed in the pediatric
population.

DIABETES AND THE INCRETIN EFFECT

The incretin effect was first described after the observation
that insulin responses to oral glucose exceeded those mea-
sured after administration of equivalent amount of i.v. glu-
cose. In healthy individuals, incretin effect is responsible for
50–70% of insulin response to oral glucose (39). Most post-
prandial hormones have incretin-like effects; the two predom-
inant incretin hormones are gastric inhibitory peptide and
GLP-1. GLP-1 seems to be responsible for most of incretin
effect on pancreatic beta-cell function.
Physiology of GLP-1. GLP-1 is released from intestinal

L-cell, which is the major source, with small quantities re-
leased from pancreatic alpha cells. It exerts its actions through
a specific G protein-coupled receptor expressed on islet
�-cells (40). GLP-1 receptors (GLP-1R) are found in many
tissues, including pancreatic islets, stomach, small intestine,
kidney, lung, brain, and pituitary gland. It is a potent suppres-
sor of glucagon in vivo. The insulinotropic action of GLP-1 is
glucose dependent. It also stimulates insulin synthesis through
enhancing proinsulin gene transcription (41). The biologic
half-life of GLP-1 is very short, about 2 min, because of
enzymatic degradation by dipeptidyl peptidase-IV and renal
clearance (42). It inhibits both gastric acid secretion and
gastric emptying after meals via vagal afferent central mech-
anisms (43,44) and contributes to reducing postprandial gly-
cemic excursions (44).
GLP-1 in diabetes. Studies have suggested that endogenous

secretion of GLP-1 is defective in T2DM (45). The existing
literature about GLP-1 in T1DM produces conflicting results.

A study has reported a lack of GLP-1 secretion in patients
with T1DM in response to a meal (46). Another study has
reported normal GLP-1 response to meal among patients with
T1DM compared with healthy subjects (47). However, fasting
GLP-1 levels were lowest in patients with T1DM. In one
pediatric study, decreasing �-cell function during the first year
of T1DM was associated with increasing postprandial blood
glucose, glucagon, and GLP-1 (48).
Effect on glycemic excursions after meals in T1DM. Sev-

eral small, short-term studies in adults suggest that GLP-1
may have the potential for therapeutic use in T1DM (49).
Continuous i.v. infusion of GLP-1 without insulin in patients
with T1DM who had detectable insulin responses to meals,
prevented a rise in blood glucose levels after ingestion of a
meal after overnight fasting (50). This was accompanied by
suppression of the abnormal glucagon response to the meal.
There is potential for s.c. GLP-1 to improve short-term gly-
cemic control in patients with T1DM when administered
before meals in addition to insulin. In a study of patients with
T1DM and absent residual insulin secretion, postprandial
blood glucose levels were significantly reduced with GLP-1 in
a 5-d study period without an increase in significant hypogly-
cemia or a change in dose of insulin (51). In another study in
patients with T1DM, where three patients had residual insulin
secreting capacity, GLP-1 when compared with placebo re-
duced glucagon levels by 50% and increased C-peptide levels
to a small but significant degree (52).
GLP-1 and pancreas. In addition to these glucoregulatory

effects, GLP-1 may be important in beta-cell proliferation and
survival, making it an attractive candidate for assessment in
prolongation of beta cell survival (53). In animal studies,
GLP-1 is associated with induction of pancreatic duodenal
homeobox 1 (pdx1) gene expression (54,55). Pdx1 is a tran-
scription factor, which is primarily expressed in the endocrine
pancreas and subsets of enteroendocrine cells in the duode-
num and is critical for pancreatic development and formation
(55). GLP-1 actions may be mediated through pdx1, and thus
influence beta-cell proliferation and survival (56). Further-
more, GLP-1 regulates a subset of genes, including proinsulin,
GLUT-2, and glucokinase that are known transcriptional tar-
gets of pdx1 action (57). Apoptosis-related cell death is a
feature of both type 1 and type 2 diabetes mellitus. GLP-1 has
antiapoptotic properties independent of its action on glucose
regulation and islet proliferation. In mice with streptozotocin-
induced diabetes, which causes apoptosis, treatment with ex-
endin-4, a GLP-1 receptor analog, resulted in euglycemia
significantly longer than those that were not treated with
GLP-1 (58). The increase in �-cell mass observed after treat-
ment with GLP-1R agonists is thought to arise from direct
stimulation of �-cell proliferation, and via enhancement of
islet neogenesis (59). More recent evidence suggests that
GLP-1 also preserves �-cell mass via inhibition of apoptosis
(60). These parameters are difficult to assess in human sub-
jects. There is evidence that experimentally induced changes
in �-cell mass of nonobese diabetic mice early in the course of
the autoimmune process can inhibit the subsequent develop-
ment of disease (61). As T1DM is thought to result from
progressive �-cell destruction and failure to regenerate �-cell
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mass, it remains possible that intervention with GLP-1R ago-
nists will modify the natural course of �-cell destruction
and/or regeneration, resulting in clinically detectable improve-
ments in insulin secretion and glucose control.
Exenatide. Exenatide is a synthetic version of exendin-4, a

naturally occurring 39-amino acid peptide originally isolated
from the salivary secretions of the lizard Heloderma suspec-
tum. It is a partial structural analog of human GLP-1, sharing
53% amino acid sequence homology. It binds to and activates
human GLP-1 receptor. It is not a substrate for dipeptidyl
peptidase-IV and has a much longer half-life than GLP-1.
Clinical studies of exenatide in T1DM. Exendin-4 admin-

istration before a meal in adults with T1DM resulted in a
significant reduction in postprandial blood glucose values
which were comparable with those of healthy control subjects.
Plasma glucagon concentrations were abnormally high com-
pared with those of control subjects with insulin alone, but the
concentrations were reduced and did not differ from control
subjects after exendin-4 was added. Antihyperglycemic effects
of the drug were attributed to suppressed glucagon secretion
and delayed gastric emptying rather than insulinotropic effect.
Only one patient had significant hypoglycemia during the
single-dose study (62).
The literature regarding appropriate insulin adjustment in

patients with T1DM who are using exenatide is inconclusive.
Researchers have administered GLP-1 for 5 d to patients with
T1DM without any reduction in their insulin dosage and a
single episode of mild hypoglycemia was observed in one
patient of 23 subjects. A single dose study showed that 50%
reduction in meal-related insulin requirement was associated
with infusion of GLP-1 (63).
Adverse effects and practical considerations. Nausea is the

most common side effect and is dose dependent, can occur in
30–50% of patients as seen in adults with type 2 diabetes
mellitus, although is usually transient. There is a risk of mild
to moderate hypoglycemia when exenatide is used with a
sulfonylurea in T2DM. Exenatide results in a moderate reduc-
tion in weight, which does not seem to be related to the
adverse gastrointestinal effects. Exenatide has resulted in low
levels of antiexenatide antibodies in approximately 40% of
patients but had no effect on glucose control. About 6% of
patients developed high antibody levels, which could result in
a diminished response (64). Postmarketing cases of acute
pancreatitis are reported in patients treated with exenatide
including six cases of hemorrhagic and necrotizing pancreati-
tis. All patients required hospitalization and two deaths were
reported (www.fda.gov). Exenatide and other potentially sus-
pect drugs should be promptly discontinued and not restarted
if pancreatitis is suspected. Exenatide is approved for use in
adults with T2DM in conjunction with metformin or oral
hypoglycemic agents. Exenatide is not approved by the Food
and Drug administration approved for treatment of T1DM or
use with insulin. There are no studies with use of exenatide in
children. Currently, studies are underway examining the role
of exenatide in T1DM in children and adults.
In conclusion, insulin replacement therapy remains the

corner stone of diabetes management for patients with T1DM.
Despite islet transplantation and advances in the delivery and

pharmacology of insulin, such as the development of contin-
uous s.c. insulin infusion and rapid- and long-acting insulin
analogs, many children with T1DM still fail to achieve gly-
cemic targets. The limitations of insulin therapy with hypo-
glycemia and inadvertent weight gain become increasingly
evident as patients approach glycemic targets.
The search for adjunctive agents in treatment of T1DM is

stimulated by ongoing difficulties in safely achieving the
target necessary to prevent metabolic complications in T1DM.
More studies are needed to establish safety and efficacy of the
above therapies in the pediatric population.
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