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ABSTRACT: Insulin treatment of children with insulin-dependent
diabetes mellitus improves whole body protein balance. Our recent
study, conducted in pubertal children with type 1 diabetes with
provision of both insulin and amino acids, indicated a positive effect
of insulin on protein balance, primarily through decreased protein
degradation. The current study was undertaken to assess the effect of
insulin on protein metabolism in adolescents with type 1 diabetes
during oral provision of a complete diet. Whole-body protein metab-
olism in six pubertal children (13—17 y) with type 1 diabetes mellitus
was assessed with L-[1-'>C]leucine during a basal (insulin-
withdrawn) period and during infusion of 0.15 U/kg/h regular insulin
with hourly meals to meet protein and energy requirements. Net
leucine balance was significantly higher with insulin and nutrients
(13.1 £ 6.3 wmol leucine/kg/h) than in the basal state (—21.4 = 2.8,
p < 0.01) with protein degradation decreased from 138 £ 5.6 wmol
leucine/kg/h to 108 = 5.9 (p < 0.01) and no significant change in
protein synthesis. Even with an ample supply of nutrients, insulin
does not increase whole-body protein synthesis in pubertal children
with type 1 diabetes mellitus and positive protein balance is solely
due to a substantial reduction in the rate at which protein is degraded.
(Pediatr Res 65: 109-112, 2009)

Protein metabolism in a human body is a continuous pro-
cess involving both the degradation of body protein and
continual protein synthesis. Lean body mass can be gained or
lost because of changes in either of these processes or simul-
taneous changes in both. Although provision of insulin clearly
reverses the negative nitrogen balance associated with diabe-
tes and increases lean body mass (1), the mechanism by which
insulin exerts an anabolic effect is still somewhat unclear.

In young, growing animals insulin stimulates protein syn-
thesis in muscle tissue even in the absence of provision of
nutrients (2—4) although this ability of insulin to stimulate
protein synthesis declines with age (5,6). Similarly, provision
of insulin to adults with type 1 failed to stimulate protein
synthesis in muscle tissue (7,8) and in the whole body
(7,9,10), but rather the anabolic effect was due to a reduction
in the rate of protein degradation.

Studies in prepubertal (11) and pubertal children (12) with
type 1 diabetes also failed to demonstrate an increase in
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whole-body protein synthesis with provision of insulin. How-
ever, the interpretation of these results is complicated by the
ability of insulin to induce changes in the plasma levels of
amino acids. In normal subjects providing amino acids along
with insulin increased the rate of whole-body protein synthesis
(13,14). Two studies in subjects with type 1 diabetes have also
reported enhanced whole-body protein synthesis with provi-
sion of both insulin and amino acids (15,16) although a further
study suggested that the insulin and amino acids suppressed
the rate of protein degradation in muscle tissue without im-
pacting on the rate of protein synthesis (17). Because studies
with amino acids and insulin reported somewhat contradictory
findings, the current study was undertaken to examine the
effect of insulin on whole-body protein metabolism in growing
adolescents with type 1 diabetes who were provided with a
more realistic provision of nutrients as oral meals containing
sufficient protein, carbohydrate, and fat to meet energy needs.

METHODS AND SUBJECTS

Six pubertal adolescents (Table 1) enrolled in the study approved by the
institutional review board and conducted at the General Clinical Research
Center of Stony Brook University Medical Center. All subjects gave written
assent and their parents provided written parental permission after the pur-
pose, nature, and potential risks of the study were explained.

Protocol. The study was conducted on two consecutive days (study day 1
and 2) each of which lasted 7 h. Subjects were admitted to the General
Clinical Research Center in the evening preceding study day 1. Insulin was
withdrawn from the subjects with the following schedule. For those on
subcutaneous insulin injections, the last dose of the long-acting insulin was
administered 36 h before the beginning of study day 1; for those on
intermediate-acting insulin, the last dose was given 24 h before beginning
study day 1; and for those on short-acting insulin, the last dose was given
8 h before the study began. For subjects on subcutaneous insulin injec-
tions, short-acting insulin was provided in the interval between study day
1 and 2 and was discontinued 8 h before beginning study day 2. For
subjects on insulin pumps, the pump was reconnected between study day
1 and 2 and discontinued 4 h before the beginning of study day 2. Both
study days began after an overnight fast.

On study day 1, subjects were assessed during 3 h of insulin withdrawal
and for 4 h with the infusion of insulin at a rate of 0.15 U/kg/h after an initial
bolus of 0.15 U/kg. During the 4 h of insulin infusion, subjects also consumed
hourly meals. The liquid meals consisted of 3% of energy as fat, 63% of
energy as carbohydrate, and 33% of energy as protein (Carnation Instant
Breakfast made with skim milk) and were given so that each meal contained
1/12 of the subject’s caloric requirement, calculated as 1.4 times the estimated
basal energy expenditure (18).

On study day 2, L-[1-"*C]leucine was infused as a primed infusion to
assess whole-body protein kinetics as previously described (12,19). A priming
amount of 6 wmole/kg L-[1-'*C]leucine (Cambridge Isotopes, Andover, MA)

Abbreviations: KIC, a-ketoisocaproate; MPE, moles percent excess



110 BRAZIUNIENE ET AL.

Table 1. Characteristics of the subjects

Mean = SEM Range

Gender 3M:3F

Age (y) 151 12.8-17.1
Duration of diabetes (y) 9+25 0.7-15.9
Height (cm) 168 = 1 164.2-172.6
Weight (kg) 584 1.8 52.8-64.5
Height velocity (cm/y) 459 14 1.7-10.6
Weight velocity (kg/y) 3.77 £ 1.54 1.74-9.18
Tanner stage 3.8+0.2 3.0-4.0
Insulin dose (U/kg/d) 0.85 = 0.04 0.72-0.97
Hemoglobin A1C (%) 8.9 *+0.6 7.4-11.1

was administered, followed by a continuous infusion (6 wmol/kg/h). As with
study day 1, study day 2 consisted of 180 min (3 h) of basal period without
feeding and 240 min (4 h) when insulin was infused continuously along with
L-[1-"*C]leucine and hourly, oral meals were consumed.

The glucose concentration in arterialized blood samples (20) was moni-
tored every 15 min during the 4 h of insulin infusion with a Beckman glucose
analyzer (Beckman instruments, Fullerton, CA). In addition, blood samples
were also collected before the start of tracer infusion and every 15 min during
the last hour of each segment of the study (basal and during insulin infusion
with oral nutrients) for the determination of the enrichment of '*C leucine and
a-ketoisocaproate (KIC), for the concentration of insulin and for the concen-
tration of amino acids in plasma. Samples of expired air were collected at the
same time as the blood samples. Expired air was collected into evacuated
glass vacutainer tubes for the determination of '*CO, isotopic enrichment.
The rate of CO, production was determined by respiratory gas exchange using
a ventilated hood (Delta Track Respiratory Gas Monitor, Yorba Linda, CA)
during the last hour of the basal and insulin with oral nutrient periods. The
enrichment of expired '*CO, due to diet alone was determined on study day
1 and used to correct '*CO, production from L-[1-'*C]leucine on study day 2.

Plasma glucose and insulin. The concentration of plasma glucose was
measured with a Beckman II Glucose Analyzer based on glucose oxidase.
Plasma insulin concentrations were determined by radioimmunoassay (Diag-
nostic Products Corp., Los Angeles, CA).

Plasma amino acids. The concentration of amino acids in plasma were
determined by high pressure liquid chromatography with a Waters system
with fluorescence detection of the ortho-phthalaldehyde/3-mercaptopropionic
acid derivative.

Protein kinetics. Measurement of the enrichment of L-[1-'*C]leucine and
KIC from the plasma was as described previously (12,19,21). Briefly the
enrichment of L-[1-'*C]leucine was measured with a VG MD 800 quadrupole
gas chromatography mass spectrometry (Fisons MD 800, San Jose, CA) after
conversion to the tertiary butyldimethylsilyl- and quinoxalinol tertiary bu-
tyldimethylsilyl-derivatives, respectively. The abundance of '*CO, in breath
was measured by gas isotope ratio-mass spectrometry at the General Clinical
Research Center at the University of Vermont with a VG SIRA II Isotope
Ratio Mass Spectrometer (Middlewich, Cheshire, UK) as described previ-
ously (22).

Calculations. All kinetic data were calculated at near steady state condi-
tions of ["*C]leucine and ["*C]KIC isotopic enrichment in the plasma and
13CO, isotopic enrichment in expired air achieved during the last hour of the
basal and insulin plus nutrient periods. Plasma a-KIC was taken to represent
the enrichment of leucine at the site of oxidation, i.e. intracellular ['*C]leucine
(23). Data were analyzed with a stochastic model described by Golden and
Waterlow (24), where leucine flux (Q) is calculated from the rate (i) and
enrichment of infusate (Ei) and the enrichment of plasma KIC (Ep):

Q (n mole/kg/h) = i Ei/Ep

The contribution of infused leucine to total flux was subtracted from Q to
obtain endogenous flux.

The rate of leucine oxidation was calculated by dividing the rate of expired
13CO, production by plasma KIC enrichment with a correction of 0.8 for
recovered CO, (19). The rate of nonoxidative leucine disposal (NOLD or
protein synthesis) and the rate of appearance of leucine from protein degra-
dation were calculated from flux (Q) with the following equation:

Q = NOLD + oxidation = protein degradation + leucine intake and net
leucine balance, an index of net protein accretion or anabolism, was calculated
as protein degradation—protein synthesis.

Statistics. Two tailed paired t test was used to compare data in the basal
and infusion periods. Data are expressed as mean = SEM. p < 0.05 was
considered significant.
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Figure 1. Change in serum glucose and insulin concentrations. Plasma
concentrations of glucose (mg/dL) (@) and insulin (nU/mL) () in six
pubertal children with type 1 diabetes. The time from 0 to 180 min represents
the basal period during which time subjects were withdrawn from insulin
treatment. From 180 to 420 min, subjects received an intravenous infusion of
0.15U regular insulin/kg/h along with oral ingestion of nutrients. Plasma
glucose and insulin were determined as described in Materials and Methods.

RESULTS

Three male and three female subjects with a mean age of
15 y and a duration of type 1 diabetes of 9 y participated in the
study (Table 1). The subjects were growing, with a height
velocity of 4.6 cm per year. During the period of insulin
withdrawal, the plasma glucose levels were 338 = 38.6
mg/dL, whereas the plasma insulin levels were 28.3 = 9.8
pU/mL (Fig. 1). With the infusion of insulin and oral intake of
nutrients, the concentration of glucose in the plasma declined
significantly (p < 0.001) to 254 = 14.1 mg/dL and insulin
rose significantly (p = 0.05) to 156.6 = 19.9 pU/mL. The
concentrations of amino acids in the plasma are shown in
Table 2. There were significant changes in the concentration
of alanine, serine, glycine, tryptophan, isoleucine, leucine, and
lysine between the basal period and the period of insulin and
oral nutrients.

The enrichment of plasma leucine was 5.22 = 0.066 moles
percent excess (MPE) in the insulin-withdrawn state and
declined to 4.56 = 0.119 with the infusion of insulin and the
provision of oral nutrients. The enrichment of plasma KIC was
significantly (p < 0.001) lower than that of leucine both in the
basal state, 4.20 = 0.096 MPE and during provision of the
insulin and nutrients, 3.42 = 0.100 MPE. Plasma KIC enrich-
ment was taken to represent the enrichment of leucine within
tissues and was therefore used to calculate protein kinetics.
With plasma KIC enrichment the calculated rate of whole-
body protein synthesis was 117 = 6.4 umol leucine/kg body
weight/h during insulin withdrawal and did not change signif-
icantly with the provision of insulin and oral nutrients, 121 *
6.4 pmol leucine/kg body weight/h (Fig. 2). Protein degrada-
tion was significantly higher during insulin withdrawal, 138 *
5.6 pmol leucine/kg body weight/h than during the provision
of insulin and oral nutrients, 108 = 5.9 umol leucine/kg body
weight/h (p < 0.01). Protein oxidation was significantly lower
(p < 0.01) in the insulin withdrawal period (21.4 = 2.8) than
during the provision of insulin and oral nutrients (62.7 * 7.3).
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Table 2. Concentration of amino acids in plasma during the basal
period and during provision of insulin and oral nutrients

Basal period Insulin + nutrients

(nmoles/L) (nmoles/L)
Alanine 187 £ 14 267 * 14*
Glutamic acid 4528 47 £2.6
Asparagine 54 £6.3 58 =48
Serine 85+ 4.8 71 = 2.4%
Glutamine 408 = 37 371 =21
Histidine 96 * 14 106 = 9.7
Glycine 126 £ 49 109 = 3.7*
Threonine 89 £ 6.5 80 £ 4.3
Arginine 57 %55 54 4.1
Aspartic acid 20 £0.9 19 = 0.7
Phenylalanine 73 +49 79 = 3.0
Tyrosine 70 = 5.1 64 =25
Valine 333 £ 17 317 £ 12
Methionine 26 £2.0 20 = 2.1
Tryptophan 99 £ 8.2 134 = 7.0*
Isoleucine 140 = 7.6 111 = 4.9%
Leucine 280 = 16 217 = 10*
Lysine 107 = 8.7 147 = 117

Amino acid concentrations in plasma were determined by HPLC as de-
scribed in Methods. The differences between the basal period and during
provision of insulin and oral nutrients are significant at * p < 0.01 and
Tp < 0.05.

Whole-body protein balance was negative in the absence of
insulin (—21.4 *= 2.8) and increased significantly with the
provision of insulin and oral nutrients (13.1 = 6.3, p < 0.01)
(Fig. 2).

If the enrichment of plasma leucine is used instead of the
enrichment of plasma KIC to calculate protein kinetics, the
magnitude of the change in leucine balance is the same. With
plasma leucine enrichment, the change in balance was not due
to changes in the rate of protein degradation alone, but was the
result of a decrease in both protein synthesis and degradation.

DISCUSSION

This study demonstrates an anabolic effect of insulin with
the provision of oral nutrients in adolescents with type 1
diabetes due to a reduction in the rate at which whole-body
protein is degraded. An earlier study had demonstrated re-
duced protein degradation when insulin was given along with
intravenous amino acids compared with a state of insulin
withdrawal (12) consistent with studies in adults with type 1
diabetes (8,9,16,17) and prepubertal children with type 1
diabetes (11).

In the study of Godil et al. (12), provision of insulin and
amino acids improved protein balance, but overall balance
was still negative indicating an overall loss of body protein. In
the present study, oral nutrients including carbohydrate and fat
were provided and at a higher level of caloric intake than in
the earlier study and in this study, protein balance improved
from —21 to +13 wmol leucine/kg body weight/h. It is not
possible to distinguish an effect of increased caloric intake
from an effect due to increased provision of amino acids
because the present study had both increased energy and
increased amino acids (leucine intake increased from 31 to 76
pmol leucine/kg body weight/h). However, the present study
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Figure 2. Leucine kinetics in type 1 diabetic adolescents during insulin
withdrawal and insulin replacement with oral nutrients. A, The mean values +
SE during insulin withdrawal (LJ) and insulin replacement with oral nutrients
(H). B, Values during insulin withdrawal (left) and insulin replacement with
oral nutrients (right) for each individual subject. Protein synthesis (nonoxi-
dative leucine disposal), protein degradation, leucine oxidation, and leucine
balance were calculated from the enrichment of plasma ['*CIKIC, '3C02, and
CO, production as described in Materials and Methods. The data are ex-
pressed as umoles of leucine/kg body weight/h during a basal, insulin
withdrawn period (0—180 min) and during the provision of 15 U insulin and
oral nutrients (180—429 min). Differences between the basal period and
during the infusion of insulin + oral nutrients were statistically significant,
*p < 0.01.

does confirm that even with the provision of adequate nutri-
ents, the main anabolic effect of insulin is the reduction in the
rate of whole-body protein degradation rather than an increase
in the rate of protein synthesis.

If whole-body protein synthesis was already maximally
stimulated by the amount of insulin circulating in the basal
state, it might not be possible for a further increase in insulin
to affect protein synthesis. In this study, the measured basal
concentrations of insulin were 28.3 * 9.8 wU/mL. However,
in this study, as in that of Godil er al. (12), insulin concen-
trations were measured with an insulin-antibody radioimmu-
noassay. This assay overestimates insulin concentrations if
insulin antibodies are present in the serum samples. Although
the changes in insulin concentration between the basal and fed
periods represent real changes, it is possible that the measured
basal levels are inappropriately high. Another limitation of the
present study is that measurement of whole-body protein
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metabolism could mask changes in individual tissues, e.g.
muscle tissue or changes in individual proteins. Although it is
technically possible to measure the rate of muscle protein
synthesis and to isolate particular proteins for study, the
techniques involve multiple biopsies and, therefore, are not
appropriate in children.

The inability of insulin to stimulate protein synthesis ob-
served in the present study is consistent with a number of
studies of whole-body (9,16) and muscle protein metabolism
(8,17) in adults and studies of whole-body protein metabolism
in prepubertal children with type 1 diabetes (11,12). The
results of the present study contrast with other studies of both
whole-body (13-16) and muscle protein metabolism (25-27)
and animal studies suggesting that insulin-stimulated protein
synthesis in muscle by enhancing the initiation of mRNA
translation (reviewed in 28). It is possible that insulin has a
greater effect on protein synthesis in muscle tissue as sug-
gested by the results from animal studies (28) and that this
effect is masked in measurements of whole-body protein
metabolism by other types of tissues in which protein synthe-
sis is not affected. The studies of muscle tissue in adults (8,17)
tend to suggest that is not the entire explanation for the
differing conclusions among studies. A more likely explana-
tion has been provided by Fujita et al. (29) who have sug-
gested that the differences among studies may be reconciled
by whether or not amino acids were provided in addition to
insulin. In their study, rates of protein synthesis in muscle
tissue were increased when insulin increased blood flow and
amino acid delivery. It is possible that in the present study oral
feeding did not increase amino acid concentrations sufficiently
to facilitate the stimulation of protein synthesis.

In conclusion, our study suggests that the primary anabolic
effect of insulin on protein metabolism in adolescents with
type 1 diabetes mellitus at the level of the whole-body is
inhibition of whole-body proteolysis. No evidence of the
ability of insulin to stimulate protein synthesis was apparent in
these adolescent subjects, even when they received plentiful
amounts of amino acids and energy through adequate feeding.
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