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ABSTRACT: Regulatory T cells and T helper 17 cells are two
recently described lymphocyte subsets with opposing actions. In
this review, we discuss the mechanisms that promote development
of these cells from common precursors and the specific factors
that impact their cell numbers and function. Altered regulation of
this key developmental checkpoint may contribute to the patho-
physiology of autoimmune diseases by tipping the balance toward
inflammation. We also present recent findings that suggest how
the equilibrium between regulatory T cells and proinflammatory T
helper subsets might be pharmacologically restored for therapeu-
tic benefit. (Pediatr Res 65: 26R–31R, 2009)

The recent discovery of two novel subsets of CD4� T
lymphocytes has led to a paradigm shift in the understand-

ing of how autoimmune responses are both mediated and
regulated. One of these cell subsets, CD4� T helper 17 (Th17)
lymphocytes, is a key effector cell in rodent models of human
diseases including collagen arthritis and experimental autoim-
mune encephalomyelitis (EAE), a model of multiple sclerosis.
A second CD4� T lymphocyte subset, termed regulatory T
(Treg) cells, is essential for dominant immunologic tolerance.
Surprisingly, both Th17 and Treg cells can develop from naïve
CD4� T cell precursors under the influence of the same
cytokine, transforming growth factor �1 (TGF�1). In this
review, we discuss the ontogeny of Treg and Th17 cells, as
well as their known immune functions. We present the hy-
pothesis that certain forms of autoimmunity may result when
CD4� T cell differentiation is biased away from Treg cells and
toward the Th17 cell phenotype. Finally, we discuss ways that
the Th17/Treg cell balance might be modified to restore im-
mune homeostasis, resulting in therapeutic benefit in autoim-
mune conditions.

Regulatory T Lymphocytes

CD4� lymphocytes with suppressor properties have been
known to exist for many years. However, the central role of
CD4� CD25� Treg cells expressing the transcription factor
forkhead box protein 3 (Foxp3) in immune regulation was
initially disclosed by studies involving the inbred Scurfy
mouse strain. In these animals, frameshift mutations in Foxp3
transmitted by X-linked inheritance result in a fatal syndrome
of extensive immune activation, leading to oversecretion of
numerous cytokines and multiorgan infiltration by inflamma-

tory cells (1). Orthologous mutations were shown to be re-
sponsible for the human condition immune dysregulation-
polyendocrinopathy-enteropathy-X-linked (2–4). Foxp3 gene
transfer to CD4� CD25� T cells confers suppressive proper-
ties (5–7), confirming that Foxp3 in these cells is sufficient to
suppress proliferation and cytokine secretion by effector Th
cells. Although Foxp3 itself may not specify Treg cell lineage
commitment (8,9), maintenance of the regulatory phenotype
in thymically derived Treg cells requires constitutive Foxp3
expression (10). Moreover, depletion of Treg cells in adult or
neonatal mice induces the Scurfy phenotype, whereas adop-
tive transfer of relatively small numbers of Foxp3-expressing
Treg to these animals provides complete protection from dis-
ease (11). Taken together, these experiments emphasize the
dominant role of Treg cells in maintaining immunologic tol-
erance throughout life.
Foxp3-expressing Treg cells exist in at least two forms.

Antigen-specific “natural” Treg (nTreg) cells develop as a
distinct lineage in the thymus, from where they are exported as
a cell type dedicated to maintaining self-tolerance (12). The
nTreg cells derived in the thymus are anergic in vitro (13) but
exhibit proliferation at steady state in vivo (14). These cells
express the high-affinity form of the interleukin-2 (IL-2) re-
ceptor but depend on an exogenous source of IL-2 to maintain
Foxp3 expression (15).
A second type of Foxp3� CD4� lymphocyte, termed “in-

duced” regulatory T (iTreg) cell, is not formed in the thymus.
Rather, iTreg cells differentiate from mature naïve CD4� T
cells in peripheral lymphoid organs and other tissues upon
cellular activation in the presence of TGF�1 (16,17). In
contrast to nTreg cells, the iTreg cell phenotype seems to be less
stable. Thus, iTreg cells constitute of a dynamic pool of CD4�

T cells capable of acquiring and losing Foxp3 expression,
based on the regulatory needs of the host (18,19). Under
certain conditions in vivo, Foxp3� CD4� iTreg cells at muco-
sal surfaces can undergo epigenetic DNA changes, which
result in a more stable iTreg cell phenotype (20). The respec-
tive contributions of nTreg and iTreg cells to tolerance remain
incompletely defined. Possibilities include complementary
roles based on overlapping but nonredundant functions, or
simple additive models based largely on cell numbers. In some
model systems, iTreg cells are preferentially induced in the
mesenteric lymph nodes and in the lamina propria of the
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intestine, and may be particularly important at mucosal sur-
faces, where TGF�1 is abundant. Localized stores of retinoic
acid promote this process (21–23). Other Foxp3� IL-10-
producing CD4� T lymphocytes with regulatory properties
have been described (24,25).
TGF�1 does not seem to be required for differentiation of

nTreg cells in the thymus, but it does plays a role in nTreg cell
function by supporting their survival in the periphery. This
role of TGF�1 in nTreg cell survival is highlighted by obser-
vations in TGF�1 and conditional T cell-specific TGF-�
receptor II knockout mice, which develop a lethal syndrome
resembling the Scurfy phenotype during the neonatal period.
Intrathymic development of nTreg cells in these animals seems
to proceed normally, whereas survival of Foxp3� cells in
peripheral lymphoid tissues is impaired (26–30). However,
early thymic development of nTreg cells is deficient in mice
lacking the TGF� receptor I, suggesting that the thymus
produces another cytokine that substitutes for TGF� (31).
Both nTreg and iTreg cells have been shown to suppress

immune effector cells by a variety of cell contact dependent
and independent mechanisms. These include the production of
cytokines such as IL-10 and IL-35, sequestration of cytokines
essential for cell growth such and IL-2, surface expression of
the immunosuppressive molecule cytotoxic T lymphocyte-
associated antigen 4 (CTLA-4), and utilization of the perforin-
granzyme pathway to kill activated targets or tumor cells
(32–39). In addition, Treg cells may influence immune re-
sponses indirectly by modulating dendritic cell function (40).
It seems plausible that the mechanisms of iTreg and nTreg cell
function may be nonredundant.

Th17 Cells

Before the elucidation of Th17 cells as a unique CD4� T
lymphocyte subset, it was believed that fully differentiated
effector CD4� T cells existed in two forms: Th1 cells, the
effectors of cell-mediated immunity, and Th2 cells, which
promote humoral immune responses (41). The signature cy-
tokine of Th17 cells, IL-17A (formerly IL-17), was first
identified by subtraction hybridization experiments (42), and
was later shown to induce joint damage in murine models of
arthritis (43). It was subsequently proposed that IL-17-
secreting CD4� T cells might represent a distinct lineage (44).
This hypothesis was recently confirmed (45,46). The biology
of Th17 CD4� lymphocytes has been the subject of several
recent reviews (47–51).
Th17 cells are derived from naïve CD4� precursor cells and

secrete a characteristic profile of cytokines including IL-17A,
IL-17F, IL-21, and IL-22. Th17 cells have been shown to have
a role in immunity to extracellular pathogens. However, the
considerable interest that has been generated surrounding
these cells is a result of studies challenging the dogma that
most organ-specific autoimmune diseases are Th1-mediated.
In EAE (52) and collagen-induced arthritis (53), deletion of the
p19 chain of IL-23, a cytokine critical for Th17 cell growth,
results in protection from disease and specific absence of Th17
cells. In contrast, inhibition of Th1 cell differentiation via muta-

tion of the IL-12 receptor does not. These findings point to a
unique role for Th17 cells in organ-specific autoimmune disease.
Upon binding to their respective receptors, Th17 cytokines

exhibit a variety of proinflammatory effects. IL-17A, and the
related cytokines IL-17B-E, are capable of binding to the
receptor IL-17RA receptor, which is expressed on a variety of
cell types, including hematopoeitic cells, fibroblasts, endothe-
lial, and epithelial cells. Receptor engagement results in ex-
pression of proinflammatory chemokines, and this effect is
further enhanced in the presence of other proinflammatory
cytokines such as tumor necrosis factor alpha (47,54). IL-21
acts in an autocrine fashion to promote Th17 cell growth and
differentiation and has effects on humoral immunity (55,56).
Among its effects, IL-22 promotes dermal acanthosis and has
an important role in a mouse model of psoriasis (57).

TGF�1 and Th17 Cell Differentiation

In view of the established role of TGF�1 in Treg cell biology,
the finding that TGF�1 is also essential for Th17 differentiation
in mice was of considerable interest. Three groups demonstrated
that culture of naïve, CD4� murine lymphocytes in the presence
of low concentrations of TGF� and the proinflammatory cyto-
kine IL-6 results in acquisition of the Th17 cell phenotype
(58–60). The role of TGF� in human Th17 cell differentiation
has been controversial. However, recent studies (61–63) have
shown that TGF� is required for Th17 differentiation from naïve
CD4� T cells, albeit in minute amounts. IL-23, IL-21, and the
proinflammatory cytokines IL-1 and IL-6 also promote human
Th17 cell growth and differentiation.
An explanation of the two possible fates of a naïve CD4� T

cell after exposure to TGF�1 requires an understanding of the
transcription factors involved in Th17 cell differentiation.
Exposure of a naïve CD4� T cell to TGF�1 and IL-6 results
in induction of ROR�t, a orphan retinoic acid nuclear recep-
tor, that directs Th17-specific differentiation (64). The effects
of IL-6 are mediated at least in part by STAT3 (65), which
induces ROR�t (66). In mice, another retinoic acid receptor,
ROR�, has been shown to act synergistically with ROR�t to
promote Th17 cell differentiation (67).
The divergent fates of a CD4� lymphocyte after exposure

to TGF�1 are accounted for, at least in part, by molecular
antagonism that occurs between the transcription factors spe-
cific for these cell types, ROR�t and Foxp3 (63,68,69). This
interaction, whereby Foxp3 inactivates ROR�t function, in-
volves the Foxp3 exon-2 encoded sequence and does not
require nuclear translocation of Foxp3 or association with
DNA (18). A similar interaction has been shown to occur
between Foxp3 and the Th17-specific transcription factor
ROR� (70). These findings do not preclude the possibility that
Foxp3 affects Th17 differentiation in additional ways via
transcriptional effects, as other studies have reported (18,71).
It is important to note that certain cytokines antagonize

Th17 cell differentiation. For example, IL-2 is a potent inducer
of Foxp3, and also inhibits Th17 cell differentiation via a
STAT5-dependent mechanism (72). Cytokines associated
with Th1 or Th2 cell differentiation, including IL-4, IL-12,
and interferon-�, direct naïve CD4� lymphocytes toward
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other lineages. The dendritic cell-derived cytokine IL-27 is a
potent inhibitor of Th17 cell differentiation (73,74). Cell
activation in the presence of this cytokine and TGF�1 results
in generation of the Tr1 cell phenotype (75,76), which can
confer protection against murine EAE (77).
Although Th17 cell differentiation seems to be fundamen-

tally similar in humans and mice, there may be some impor-
tant interspecies differences. Whereas most murine naïve
CD4� T cells have the potential to develop into Th17 effector
cells, in humans this potential seems to be restricted to a small
subset of naïve CD4� cells bearing the cell surface marker
CD161 (78).
Studies examining the effects of Treg cells on Th17 cell

differentiation have shown mixed results. In coculture exper-
iments, iTreg cells do not retard Th17 cell differentiation from
naïve CD4� T cell precursors, and may even augment Th17
cell differentiation in the presence of IL-6, through a contact-
dependent mechanism involving expression of TGF�1 on
their cell surface (79). However, these observations do not
necessarily reflect the effects of iTreg cells in vivo, because
adoptive transfer of these cells results in amelioration of
inflammation in a mouse model of colitis, accompanied by a
reduction in numbers of mucosal IL-17-producing T cells
(22). On balance, it seems that once the iTreg cell differenti-
ation pathway gains ascendancy, iTreg cells are likely to retard
generation of Th17 cells at mucosal surfaces.

Immune Deviation in the iTreg/Th17 Pathway: A Novel
Approach to Treatment of Autoimmune Disease?

The identification of Th17 cells as effectors of tissue-
specific autoimmunity has led to a flurry of scientific activity
aimed at inhibiting these cells and their secreted products. An
intriguing alternative approach involves pharmacologically
altering iTreg and Th17 cell differentiation or expansion, using
cytokines, cytokine inhibitors, and small molecule inhibitors
of key signaling pathways. There has been progress in this
rapidly evolving field.
Proinflammatory cytokine antagonists. The in vitro Th17-

promoting effects of IL-1 and IL-6 on human Th17 cell
differentiation and growth suggest that antagonists of these
cytokines might retard Th17 differentiation in vivo and pro-
mote differentiation of naïve CD4� cells toward regulatory
cell pathways. In vivo evidence supporting the role of IL-6
antagonism on Th17 cell differentiation is provided by a study
in EAE, in which administration of neutralizing anti-IL-6
antibodies resulted in inhibition of disease and reduced num-
bers of myelin oligodendrocyte glycoprotein peptide-specific
Th17 and Th1 cells (80). In this study, increased numbers of
peptide specific, Foxp3� CD4� cells were not observed. In a
different report, mice genetically deficient in the naturally
occurring IL-1 inhibitor IL-1 receptor antagonist IL-1RA were
found to develop destructive arthritis, associated with expan-
sion of Th17 cells. This effect was found to be indirect and
dependent on IL-23 (81).
No studies examining the effects of antagonists of IL-1 or

IL-6 on Th17 or iTreg cell differentiation in humans have been
reported. However, Tocilizumab, a humanized MAb directed

against IL-6R�, has been used in Japan for treatment of
Castleman’s disease since 2005 (82), and phase III studies
of its use in rheumatoid arthritis (83,84) and juvenile
systemic idiopathic arthritis (85) have been completed.
Anakinra, a soluble recombinant IL-1 receptor antagonist is
already approved for treatment of systemic forms of arthri-
tis. It will be of interest to examine Th17 and iTreg cell
populations in patients treated with these medications. In-
terestingly, human therapeutic use of infliximab, a MAb
against the proinflammatory cytokine tumor necrosis factor
alpha results in increased numbers of iTreg cells in patients
with rheumatoid arthritis (86,87) and Crohn’s disease (87).
The mechanism of this effect is unclear but may be medi-
ated by dendritic cells.
Interleukin-2. Treg cells express a high affinity form of the

IL-2 receptor, consisting of three chains: a � chain (CD122),
a common � chain, and an � chain (CD25). Binding of IL-2 to
its receptor on Treg cells has been shown to enhance expres-
sion of Foxp3 via a STAT-5 dependent pathway, and promote
cell survival (72). Humans with genetic mutations in CD25
suffer from a syndrome of immune dysregulation resembling
immune dysregulation-polyendocrinopathy-enteropathy-X-
linked, further emphasizing the importance of this receptor
complex for maintaining normal Treg cell function (88,89).
However, in addition to its effects on Treg cells, IL-2 also
promotes the growth of other T lymphocytes that express a
lower affinity form of the IL-2 receptor, consisting of a �
and a � chain but lacking a � chain. A monoclonal anti-
mouse IL-2 antibody that blocks binding of IL-2 to the
lower affinity form of its receptor but allows for binding of
this cytokine to its high-affinity receptor via a putative
exposed epitope was recently reported (90). Thus, IL-2/
anti-IL-2 immune complexes containing this antibody al-
low for selective stimulation of Treg cells. In a subsequent
report, IL-2-containing immune complexes were adminis-
tered to nonobese diabetic mice, which suffer from a form
of autoimmune diabetes mellitus. This treatment resulted in
increased numbers of Treg cells in inflamed pancreatic
islets, and protection from diabetes (91). Selective stimu-
lation of Treg cells via the high-affinity IL-2 receptor rep-
resents an exciting concept in treatment of autoimmunity.
However, application of this concept to humans would
require development of an anti-IL2 antibody with proper-
ties similar to that used in murine studies.
Retinoic acid. In humans, vitamin A is absorbed from the

diet. Its principal physiologically significant metabolite in vivo
is the trans isomer of retinoic acid, all-trans retinoic acid
(ATRA) (92). Recent studies have shown that ATRA mark-
edly influences the fate of naïve T cells activated in the
presence of TGF�1. ATRA inhibits Th17 cell differentiation,
and promotes Foxp3 expression in vitro. This effect occurs
independent of IL-2 and STAT5 (93), is potent enough to
override the Th17-promoting effects of IL-6, and is associated
with down-regulation of the Th17 cell-specific transcription
factor ROR�t. Moreover, iTreg cells generated in vitro by cell
activation in the presence of TGF�1 and ATRA were effective
at preventing disease in a mouse model of colitis, whereas
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iTreg generated in the presence of TGF�1 alone were only
partially protective (22).
These recent studies provide insight into how an essential

dietary component may exert its effects in part by contributing
to a salutary balance between iTreg cells and Th17 immune
effector cells. The World Health Organization has recom-
mended dietary vitamin A supplementation, due in part to the
possible beneficial effects of vitamin A on innate and acquired
immune function. Maintenance of mucosal tolerance is one
plausible way by which vitamin A could also exert beneficial
immune effects. Together, these data suggest the possibility an
additional approach to treatment of autoimmune disease, by
alteration of the iTreg/Th17 cell balance using pharmacologic
ATRA analogues.
Type I interferons. Interferon �1 has been used clinically to

treat multiple sclerosis for several years, even though the
mechanisms of action have not been well understood. Shino-
hara et al (94) showed that engagement of the Type I inter-
feron receptor on dendritic cells resulted in IL-27 secretion,
and suppression of Th17 cell generation in coculture experi-
ments. This effect was mediated through inhibition of an
intracellular phosphoprotein, osteopontin. In an EAE model,
mice whose dendritic cells were deficient in osteopontin,
displayed higher serum concentrations of IL-27, fewer IL-17�

cells (but more interferon �� cells) in lymph nodes, and
delayed onset of EAE. These findings provide a possible
mechanism whereby interferon-�1 has been used beneficially
to treat multiple sclerosis (95). By extension, they support
further investigation of IL-27 itself for treatment of Th17
cell-mediated autoimmune diseases.
Environmental toxins. The aryl hydrocarbon receptor

(AhR) is a transcription factor best known as the ligand for the
toxin dioxin. However, it also binds to other toxins and to
endogenous ligands. Using gene expression profile analysis,
murine Th17 cells were shown to express the AhR. Activation
of AhR by addition of an exogenous toxin resulted in in-
creased expression of IL-17 and IL-22 by Th17 cells, and
enhanced pathology in an EAE model. IL-22 expression was
abrogated and EAE was ameliorated in AhR-deficient mice
(96). In a different study, the AhR was shown to directly
regulate Foxp3 expression via a mechanism involving modu-
lation of TGF� signaling. Depending on which AhR ligand
was used, opposite effects on Treg cell and Th17 cell differ-
entiation were observed. Whereas dioxin favored Treg cell
differentiation and suppressed EAE, another toxin,
6-formylindolo[3,2-b]carbazole, retarded Treg cell develop-
ment, favored Th17 cell differentiation, and caused more EAE
pathology (97).
These initial reports leave a number of questions unan-

swered regarding how different AhR ligands lead to markedly
different outcomes. However, they are intriguing in that they
provide a possible link between the environment and an
autoimmune diathesis. Furthermore, they provide another po-
tential therapeutic target for small molecules inhibitors aimed
at biasing CD4� T cell differentiation toward Treg cells and
away from the Th17 cell pathway.

Conclusion

Current understanding of the role of iTreg cells in the
maintenance of immune tolerance can best be described as
a work in progress. Available evidence suggests that their
antiinflammatory properties may be most critical at muco-
sal surfaces, where exposure to environmental microbial
antigens, dietary factors and environmental products is
most prominent. From a translational perspective, iTreg

cells differ from nTreg cells in that polyclonal generation
and expansion of the former can be accomplished easily in
vitro, a potentially very useful property for immunothera-
peutic applications.
Until its essential role in Th17 cell biology was discov-

ered, TGF�1 was believed to possess primarily antiinflam-
matory, antimitotic, and profibrotic properties. The shared
requirement for this cytokine in iTreg and Th17 cell differ-
entiation leads naturally to the hypothesis that an imbalance
between these two cell types may lead to tissue inflamma-
tion, primarily at but not necessarily restricted to mucosal
surfaces (Fig. 1). By extension, this hypothesis offers nu-
merous potential pharmacologic targets for immunomodu-
lation. The rapid pace of basic science advances in this field
paired with animal models of human diseases offers numer-
ous opportunities for the practical application of this hy-
pothesis in the near future.

Figure 1. Induced Treg (iTreg) cells and Th17 cells are derived from a
common naïve conventional T (Tconv) precursor population in mice. In
humans, Th17 cells may come from a unique CD161� subset derived in the
thymus. Both iTreg and Th17 cells require TGF�1 for their development,
although the Th17 pathway is favored in the presence of IL-6. The peripheral
Treg (pTreg) cell pool is comprised of iTreg cells and “natural” Treg (nTreg) cells
derived in the thymus. Both IL-2 and TGF�-1 may stabilize Foxp3 expres-
sion, although some Treg cells can ultimately lose it. The fate of cells that exit
the pTreg compartment is unknown, although recent data suggest that they
could survive and develop into another type of Th cell.
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