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ABSTRACT: Autoimmune diseases affect a significant segment of the
population and are typically thought to be multifactorial in etiology.
Autoimmune diseases due to single gene defects are rare, but offer an
invaluable window into understanding how defects in the immune
system can lead to autoimmunity. In this review, we will focus on
autoimmune polyendocrinopathy syndrome type 1 and recent advances
in our understanding of this disease. We will also discuss two other
monogenic autoimmune diseases: immunodysregulation, polyendocri-
nopathy, and enteropathy, X-linked and Autoimmune lymphoprolifera-
tive syndrome. Importantly, the knowledge and principles gained from
studying these diseases have been applicable to more common autoim-
mune diseases and have opened the door to better diagnostic and
therapeutic modalities. (Pediatr Res 65: 20R–25R, 2009)

Autoimmune disease affects approximately 3% of Ameri-
cans, with many of these diseases arising in childhood (1).

Despite its prevalence, the complex, polygenic inheritance of
most autoimmune disorders has been an obstacle in understand-
ing the pathogenesis of these diseases. Although recent technical
advances, including genome-wide association studies, have al-
lowed for the identification of genetic factors contributing to
autoimmunity, the individual impact of each of these genetic
factors is low. For example, 8 of the 10 chromosomal regions
associated with type I diabetes have an odds ratio of �2.0 (2).
The low impact of these genetic factors has made them difficult
to study. In contrast, studies of rare monogenic autoimmune
diseases have more readily yielded mechanistic insights into
autoimmune pathophysiology because of the obvious impact of
mutations in these single genes in provoking disease.
An example of a rare monogenic autoimmune diseases is

autoimmune polyendocrinopathy syndrome (APS) type I
(OMIM 240300), also known as autoimmune polyendocri-
nopathy candidiasis-ectodermal dystrophy, which is due to a
defect in autoimmune regulator (Aire). Studies of monogenic
diseases, like APS type I, have played a critical role in
informing us on how the immune system normally recognizes
self from nonself and how breakdowns in this system can
result in autoimmune disease. In this review, we will discuss
recent advances in our understanding of the clinical features,
genetics, pathophysiology, and diagnosis of this disease. In
addition, we will also touch on two other monogenic autoim-
mune diseases, Immunodysregulation, polyendocrinopathy,
and enteropathy, X-linked (IPEX) (OMIM 304790) and auto-
immune lymphoproliferative syndrome (ALPS) (OMIM

601859) (Table 1), and discuss recent advances in the study of
these syndromes.1

Clinical Findings and Molecular Genetics

APS type I is a rare disease, but is more common in certain
populations, including Iranian Jews (3), Finns (4), Sardinians
(5), and Norwegians (6). Clinically, APS type I is character-
ized by three major features: adrenal insufficiency, hypopara-
thyroidism, and mucocutaneous candidiasis (7). A clinical
diagnosis is based on the presence of two of these three
features. APS type I often manifests with mucocutaneous
candidiasis in infancy, followed by hypoparathyroidism and
adrenal insufficiency in childhood (7–9). In addition, a number
of other organ-specific autoimmune diseases, including ovar-
ian failure, testicular failure, autoimmune thyroiditis, autoim-
mune diabetes, autoimmune gastritis, and vitiligo, develop in
these patients at a lower incidence (8,10). The pace at which
disease manifestations are seen is quite variable, requiring
patients to be screened throughout their lifetime (7,8). For
example, in one series in Norway, the first clinical manifes-
tation of APS type I ranged from the first year of life to age
43 y (6).
Because APS type I is a monogenic disease, classical

positional cloning techniques could be used to map the gene
defect. In 1997, this defect was mapped to the Aire gene
(11,12). Interestingly, the genotype–phenotype correlation is
quite variable, with patients in the same family with the same
Aire mutation manifesting different organ-specific autoim-
mune diseases (6). More than 58 mutations have been de-
scribed in Aire (4). The two most common mutations are the
R257X mutation and a 13 bp deletion in exon 8. The fre-
quency of these mutations is population specific, with the
R257X mutation seen in the majority of Finnish APS type I
patients (12), and a 13 bp deletion in exon 8 (1094-1106del)
seen in the majority of APS type I patients in Britain (13) and
North America (14). Heterozygous carriers of these mutations
in general have not been found to manifest autoimmunity (15).
Interestingly, a G228W point mutation in Aire has been

described in an Italian family with an autoimmune syndrome
that is inherited in an autosomal dominant manner (16). This
autoimmune syndrome differs from the classic APS type I in
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that some family members have only autoimmune thyroiditis.
A mouse model with a knockin of this G228W point mutation
in Aire recapitulates the disease seen in this family (17). Thus,
Aire-associated mutations can also result in an autoimmune
syndrome that differs from APS type I in phenotype and
inheritance pattern.
Most studies looking at common, isolated autoimmune

endocrinopathies, however, have not identified Aire as a sus-
ceptibility gene. Polymorphisms in Aire did not seem to be
associated with isolated adrenal insufficiency (18), type I
diabetes (19), or vitiligo (20). Additionally, the two most
common mutations in Aire were not seen in a large group of
patients with isolated adrenal insufficiency, type I diabetes, or
autoimmune thyroiditis (21). One small study suggested an
association between an Aire intronic polymorphism and sys-
temic sclerosis and thyroiditis (22). Other studies have sug-
gested an association between Aire polymorphisms and alo-
pecia areata (23) and vitiligo (24). Larger scale studies will
have to be done to validate these findings because these
associations could be due to chance alone.

Pathophysiology of APS Type I

Aire is predominantly expressed in the thymus, suggesting
an important role in immune regulation (25). Within the
thymus, Aire is expressed in a subset of stromal cells known
as medullary thymic epithelial cells (mTECs). mTECs have
the unusual property of displaying a variety of peripheral
self-antigens, including known autoimmune targets such as
insulin and thyroglobulin (26–28) (Fig. 1A). This expression
of peripheral self-antigens had been proposed to be important
in allowing self-reactive T cells that recognize these self-
antigens to be deleted. In this process, termed negative selec-
tion, T cells that recognize self-antigen in the thymus would
be prevented from being released into the body and thus
prevented from causing autoimmune disease. It was, therefore,
hypothesized that Aire might be playing an important role in
driving the expression of these peripheral self-antigens in
mTECs.
Indeed, Aire-deficient mice, developed as a model of hu-

man APS type I, have decreased expression of a number of
organ-specific self antigens in mTECs (29). Additionally,
these mice also have defective negative selection of T cells in
the thymus (30,31). Like humans with homozygous null mu-
tations in Aire, these mice develop tissue-specific autoimmune
disease in multiple organs. The autoimmune disease is char-
acterized both by a lymphocytic infiltrate in the targeted organ
and the presence of serum autoantibodies reactive against the
targeted organ.

These data are consistent with a model in which self-
reactive T cells in the thymus are normally removed from the
T-cell repertoire (Fig. 1A). Aire plays an important role in the
normal thymus in that it increases the expression of thymic
self-antigens, and the presentation of these antigens drive the
negative selection of self-reactive T cells (32). Without Aire,
a number of self-antigens are no longer transcribed in mTECs
and self-reactive T cells can escape into the periphery to cause
autoimmunity (Fig. 1B). These self-antigens have been shown
to be enriched for organ-specific self-antigens (29), perhaps
explaining why APS type I patients develop a number of
organ-specific autoimmune diseases.
More recently, Aire has been proposed to play an additional

role in guarding against autoimmunity in extrathymic immune
sites (33,34). Studies in a mouse that expresses a fluorescent
tag in Aire-expressing cells showed that a unique subset of
cells in the lymph node and spleen also express Aire (33). Like
mTECs, these cells, termed extrathymic Aire-expressing cells
(eTACs), are able to delete autoreactive T cells in a transgenic
system. Furthermore, these eTACs, like mTECs, express a
number of organ-specific antigens in an Aire-dependent man-
ner. The antigens expressed in eTACs were nonoverlapping
with mTECs, suggesting that these two cell types may have
nonredundant functions and protect against a different reper-
toire of self-reactive T cells.
The mechanism by which Aire functions to up-regulate

thymic self-antigen expression in mTECs remains to be fully
elucidated. The Aire protein contains a number of domains
that suggest that it plays a role in transcription (32). In
particular, Aire contains two PHD (plant homeodomain) do-
mains, which have recently been shown in a number of
proteins to bind trimethylated histone H3 (H3K4me3) (35,36).
Unlike the PHD domains in these other proteins, PHD1 in
Aire seems to bind histone H3 in the unmethylated state
(37,38). Despite this difference, this finding nevertheless sug-
gests a link between Aire and chromatin pattern recognition.
Additionally, Aire has been shown to bind to three proteins with
described roles in transcription: 1) positive transcription elonga-
tion factor b (pTEFb) (39), 2) DNA-dependent protein kinase
(DNA-PK) (40), and 3) cAMP response element-binding protein
(CBP) (41,42). How these proteins interact together in Aire-
mediated transcription remains to be determined.

Identification of Novel Autoantigens in APS Type I

Much headway has recently been made in identifying the
autoantigens associated with the clinical features seen in APS
type I. Utilizing sera from APS type I patients with hypo-
parathryoidism, investigators recently identified NACHT

Table 1. Monogenic autoimmune diseases, altered proteins due to genetic mutations, and clinical findings

Disease Altered protein Clinical manifestations

APS type I Aire Major: hypoparathyroidism, adrenal insufficiency, mucocutaneous candidiasis;
minor: type I diabetes, hypothyroidism, vitiligo, gonadal failure, gastritis,
pernicious anemia, hepatitis, alopecia, keratitis, etc.

IPEX FoxP3 Diarrhea, dermatitis, hemolytic anemia, diabetes mellitus, and thyroid autoimmunity
ALPS IA: Fas IB: Fas ligand IIA: Caspase 10

IIB: Caspase 8
Lymphadenopathy, splenomegaly, hemolytic anemia, thrombocytopenia,
hypergammaglobulinemia
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(NAIP �neuronal apoptosis inhibitory protein�, CIITA �MHC
class II transcription activator�, HET-E �incompatibility locus
protein from Podospora anserina� and TP1 �telomerase-
associated protein�) leucine-rich-repeat and pyrin protein 5
(NALP5) as a parathyroid autoantigen (43). Autoantibodies to
NALP5 seem to be present specifically in APS type I patients
with hypoparathyroidism, making the autoantibody response
against NALP5 a potential diagnostic marker for parathyroid
involvement in APS type I. Whether Aire-deficient mice also
share serum reactivity against NALP5 and whether NALP5 is
Aire regulated in the thymus remain to be addressed.
In Aire-deficient mice, a number of antigens important in

preventing organ-specific autoimmunity have been identified
(44–46). Identification of these antigens in mice have played
an important role in understanding the pathophysiology of
APS type I. Interphotoreceptor retinoid-binding protein,
IRBP, for example, has been identified as the antigen impor-
tant in preventing eye autoimmunity (44). Remarkably, loss of
expression of this antigen in the thymus results in eye auto-
immunity in mice, demonstrating that lack of a single thymic
antigen is sufficient to result in disease.
Interestingly, the presence of autoantibodies against type I

interferon (IFN-� and �) has been independently reported by
five groups (6,47–49). In all five studies, there was a striking
correlation (nearly 100%) between the presence of antitype I
interferon antibodies and the presence of Aire mutations.
Notably, patients heterozygous for the dominant negative
G228W point mutation also demonstrated type I interferon
autoantibodies (49). These antibodies seem to appear early in
the disease course, thus making this a useful diagnostic tool in
identifying APS type I patients.
The actual contribution of anti-interferon autoantibodies to

APS type I has been the subject of much speculation. Type I
interferons are important in defense against pathogens and
adaptive immunity (50). Given that many APS type I patients
present with mucocutaneous candidiasis, the possible role of
anti-interferon autoantibodies in causing an immune dysregu-
lation that results in this infection has been proposed (51). In

support of this proposal, monocytes and dendritic cells from
APS type I patients have been shown to down-regulate a
number of genes that are known to be driven by interferon
(52). Furthermore, sera from APS type I patients seem to
down-regulate these genes in monocytes in a cell culture
system. However, this hypothesis does not explain why APS
type I patients are not more susceptible to other fungal or viral
infections. Thus, further study will be needed to elucidate the
role of these autoantibodies in disease pathogenesis.

The Role of Thymic Antigen Expression in More
Common Autoimmune Diseases

The importance of identifying thymic self-antigens extends
beyond understanding the pathogenesis of APS type I. In
addition to APS type I, more common autoimmune diseases
have also been linked to decreases in thymic antigen expres-
sion. In type I diabetes, decreased levels of thymic insulin
expression are linked to disease. Polymorphisms in the Vari-
able Number of Tandem Repeats region upstream of the
insulin promoter result in variation in the amount of insulin
expression in the thymus. Population studies show that alleles
that result in higher levels of insulin expression in the thymus
is associated with protection against the development of type
I diabetes (53,54). This protection is thought to be conferred
by the promotion of negative selection of T cells reactive to
the autoantigen insulin. Furthermore, in mice, the loss of
thymic expression of proinsulin 2 also predisposes to autoim-
mune diabetes (55).
An analogous situation occurs with the � chain of the

acetylcholine receptor (CHRNA1) and Myasthenia Gravis.
The relative thymic expression level of this antigen varies
relative to a single nucleotide polymorphism in the promoter
region. Additionally, increased expression of this thymic an-
tigen is correlated with later age of onset of disease (56,57).
Interestingly, a correlation seemed to exist between level of
Aire expression and CHRNA1 expression in purified human
mTEC samples, suggesting that Aire may play a role in thymic

Figure 1. Negative selection of T cells in normal and Aire-deficient thymi. A, Thymic negative selection in the normal state. Progenitor T cells undergo T-cell
receptor rearrangement in the thymus, which generates by chance a subset of self-reactive cells (black circles). These progenitor T cells undergo negative
selection in the thymus to eliminate these self-reactive cells. In the normal thymus, mTECs express Aire, a putative transcription factor that drives the expression
of a large number of organ-specific self-antigens. The expression of these self-antigens (e.g., insulin, and IRBP) allows self-reactive T cells that recognize the
self-antigens displayed on mTECs to be deleted. This negative selection of self-reactive T cells is a key element of self-tolerance. B, A defect in thymic negative
selection in APS type I. Aire-deficient individuals do not up-regulate the expression of organ-specific self-antigens, thus preventing the deletion of self-reactive
T cells that recognize these self-antigens. These self-reactive T cells can escape into the periphery and cause organ-specific autoimmune disease. Gray ovals
represent T cells; black ovals represent self-reactive T cells.
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expression of CHRNA1 in the thymus. In vitro studies also
indicated that Aire is able to drive the expression of a
CHRNA1 reporter construct.

Other Monogenic Autoimmune Diseases

IPEX. IPEX is a very rare X-linked disorder that results in
a severe autoimmunity syndrome that is lethal in infancy
unless treated with immunosupression (58) and/or bone mar-
row transplantation (59). This severe autoimmunity manifests
as a constellation of diarrhea, dermatitis, diabetes mellitus,
thyroiditis, and hemolytic anemia (Table 1) (60,61). Impor-
tantly, an exaggerated response to viral infections is seen,
further suggesting an over-activation of the immune system in
general.
In 2001, patients with the IPEX syndrome were found to

harbor mutations in the Foxp3 gene (62,63). These patients
were noted to have mutations in the same gene as scurfy mice,
a mouse strain with severe autoimmunity and lymphoprolif-
eration (64). Studies in mice have shown that Foxp3 plays an
important role in the development and function of regulatory
T (Treg; �65,66�) cells. This regulatory T-cell population has
been shown to dampen immune responses in a variety of
settings, including autoimmune diseases.
More recently, the pathogenesis of IPEX has been further

defined. First, selective ablation of Foxp3-expressing cells in
mice results in severe autoimmunity and lymphoproliferation,
demonstrating that a decrease in the number of these Foxp3-
expressing cells is sufficient to cause severe autoimmune
disease (67). Second, the suppressive function of Tregs seems
to depend on the expression of cytotoxic T lymphocyte anti-
gen (CTLA)-4 by Tregs (68), because selective loss of
CTLA-4 in FoxP3-expressing cells results in a severe auto-
immunity. Third, loss of expression of interleukin (IL)-10 by
Foxp3-expressing cells results in inflammation in the gut and
lung (69), suggesting that expression of specific cytokines by
Tregs may have specific, nonredundant functions.
A number of studies have investigated whether Treg defects

can also contribute to more common autoimmune diseases.
Although the loss of Treg cells due to Foxp3 mutations have
been well linked to the IPEX syndrome, subtle changes in the
number and function of Tregs in other more common, poly-
genic autoimmune diseases are less clear. For example, the
role of Tregs in the pathogenesis of type I diabetes mellitus
has been controversial. One article reported a reduction in the
percentage of Tregs in CD4� lymphocytes in patients with
type I diabetes (70), whereas several others have reported no
differences in Treg frequency between these patients and
controls (71–73). Thus, the generalizability of decreased Treg
numbers as a common pathogenic mechanism in autoimmune
disease remains to be determined.
A syndrome related to IPEX has been described in two

patients with mutations in the IL-2 receptor alpha (CD25)
gene (74,75). The Foxp3 gene was found to be wild type in
both of these patients. In one patient, homozygous mutations
in CD25 resulted in defective secretion of IL-10 by CD4� T
lymphocytes (75). Because IL-10 is important in the down-
regulation of inflammation, this finding suggests a possible

mechanism by which homozygous mutations in CD25 may
phenocopy IPEX.
ALPS. As its name suggests, ALPS is characterized by

lymphadenopathy, splenomegaly, hypergammaglobulinemia,
and autoimmune diseases (76). The autoimmune features of-
ten manifest as hemolytic anemia and thrombocytopenia, and
can also include a number of additional autoimmune diseases
such as hepatitis, uveitis, and vasculitis. Like APS type I and
IPEX, the pathophysiology of ALPS was largely worked out
utilizing a mouse model that phenotypically resembled pa-
tients with ALPS (76).
This mouse model, the MRL lpr/lpr mouse, played a key

role in demonstrating that ALPS patients have a defect in
the ability of their lymphocytes to undergo apoptosis.
Patients with ALPS were noted to have an increase in
double-negative T cells (developing T cells that have not
yet expressed CD4 or CD8 on their cell surface) much like
MRL lpr/lpr mice (77). Because MRL lpr/lpr mice have
defective expression of Fas, a key mediator of apoptosis,
ALPS patients were also suspected of having this defect
(78,79). Indeed, subsets of patients were found to have
heterozygous mutations in TNFRSF6, the gene encoding
Fas (ALPS type Ia) (78) (Table 1).
Additionally, mutations in the Fas-mediated apoptosis path-

way were also found (Table 1). A patient with Systemic Lupus
Erythematosus and lymphoproliferation was found to have a
mutation in the TNFSF6 gene encoding Fas ligand, the bind-
ing partner for Fas. This disease subtype was termed ALPS
type Ib (80). Patients with ALPS type IIa have mutations in
the gene encoding caspase 10, a protein downstream of Fas
in the apoptotic pathway (81). ALPS type IIa patients seem to
be distinguishable from the other subtypes in that they
manifest a more severe lymphoproliferation and autoimmu-
nity, and a resistance to apoptosis in both lymphocytes and
dendritic cells is seen. Finally, patients with homozygous
mutations in caspase 8, another downstream mediator of the
apoptosis pathway, have been termed ALPS type IIb (82).
Unexpectedly, however, these patients seem to have immu-
nodeficiency rather than autoimmunity (83).
The mechanism by which defects in apoptosis results in

autoimmunity still awaits clarification. The increased num-
bers of double negative T cells points to an aberrant
contraction of the immune response. It has been postulated
that lymphocytes that recognize self-antigens may be more
dependent on Fas-mediated apoptosis than lymphocytes
that recognize external antigen (82). This assertion, how-
ever, remains to be proven.

Summary

Despite the rarity of monogenic autoimmune diseases, these
diseases have played an invaluable role in our understanding
of the pathophysiology of autoimmune diseases in general.
Mouse models of these diseases have been instrumental in
unraveling the cellular and molecular pathways at play in
these diseases. Out of these basic science advances may come
more targeted diagnostic and therapeutic approaches to auto-
immune diseases. An example of a promising antigen-targeted
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therapeutic is the utilization of Tregs as a treatment for type I
diabetes. In a mouse model for type I diabetes, transfer of a
small number of antigen-specific Tregs could reverse disease
(84,85). Similarly, studies in Aire-deficient mice and APS
type I patients have resulted in the identification of new
antigens that may be useful in the diagnosis and prediction of
autoimmune disease. Taken together, these basic science ad-
vances in the study of monogenic autoimmune diseases are
making major contributions to our ability to diagnose and treat
patients with autoimmunity.
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