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ABSTRACT: Erythropoietin (Epo) is an erythropoietic, neurotropic,
and angiogenic factor, and may be involved in retinal development.
Studies in adult diabetic retinopathy patients reveal significantly
elevated vitreal Epo concentrations. It is unknown whether Epo plays
a similar role in retinopathy of prematurity. We sought to determine
whether Epo is present in the normally developing human eye. Fetal
serum and vitreous samples were obtained from 12 to 24 wk gesta-
tion. RNA was extracted from isolated retina for Epo mRNA and
hypoxia inducible factor-1� (HIF) mRNA determination by real-time
polymerase chain reaction. Fetal serum was isolated from the umbil-
ical cord. Serum and vitreous samples were analyzed for Epo protein
by enzyme-linked immunosorbent serologic assay. In fetal retina,
Epo mRNA increased with increasing gestational age, while HIF
mRNA remained constant. Epo protein increased with increasing
gestation in both vitreous and serum. At each gestational group
measured (12–14, 15–17, 18–20, and 21–24 wk), Epo concentrations
were significantly greater in vitreous than in serum (p � 0.05). Epo
mRNA and protein concentrations increase with increasing gesta-
tional age and are greater in the vitreous than serum. We speculate
that changes in Epo production following preterm delivery might
affect retinal vascular development. (Pediatr Res 63: 394–397,
2008)

Infants born at the limits of viability are susceptible to
specific morbidities. One such morbidity involves the ab-

normal growth and maturation of the vascular retina, termed
retinopathy of prematurity (ROP). Early studies in preterm
infants evaluating preventive strategies for ROP involved
limitations in light exposure and the addition of a variety of
nutrients to the preterm infant’s diet; however, no strategy
other than prevention of premature birth has been shown to be
effective in preventing ROP (1–4). The severity of the disease
can be attenuated by preventing hyperoxia in the first weeks of
life, as well as preventing episodes of hyperoxia and hypoxia
(5–7). Despite significant focus on decreasing the incidence of
ROP in extremely low birth weight infants, the disease re-
mains prevalent (1–4).
Watanabe and colleagues reported elevations in vitreal

erythropoietin (Epo) concentrations in patients with prolifer-
ative diabetic retinopathy (8), a disease with possibly similar
mechanisms of vascular injury and neovascularization as seen
in ROP. Those authors suggested that Epo is a potent isch-

emia-induced retinal angiogenic factor. In that study, blockage
of Epo in a mouse model of hypoxia-induced retinopathy was
shown to inhibit retinal neovascularization and endothelial
cell proliferation in vivo.
The role of Epo in the developing eye and its involvement

in the development of retinal vascular disease in preterm
infants has not been examined. If Epo concentrations are
negligible in the developing eye, then Epo administration after
preterm delivery might abnormally influence growth after
delivery. We hypothesized that Epo mRNA and protein are
present in the mid-gestation human fetal eye, and that Epo
mRNA and protein concentrations increase with increasing
gestation. Our objectives were to quantify Epo mRNA and
protein in the serum and vitreous during fetal development
between 12 and 24 wk gestation. In addition to Epo mRNA
concentrations, we sought to quantify hypoxia inducible factor
1� (HIF) mRNA concentrations to determine whether, similar
to other fetal tissues, retinal concentrations remain relatively
unchanged throughout the gestations tested and could be used
to normalize target mRNA data. In fetal liver and kidney, HIF
can be used as an endogenous control. HIF activity is post-
transcriptionally controlled through an oxygen dependent
ubiquitin proteosome degradation pathway (9,10); therefore,
concentrations remain stable and do not fluctuate under hy-
poxic conditions (11).

METHODS

A total of 52 samples were processed for measurement of Epo mRNA and
protein. Not all samples had obtainable protein or tissue. Gender could not be
determined on most samples (12) and that information was not collected.
Samples were collected between 12 wk and 24 wk gestation, for a total of 36
matched vitreous and serum samples (8 samples from 12 to 14 wk, 10 samples
from 15 to 18 wk, 10 samples from 19 to 21 wk, and 8 samples from 22 to
24 wk). The aqueous and vitreous were collected from both fetal eyes and
combined for each sample. Serum was obtained from all samples when
available by collecting blood still present in the umbilical cord arteries and
vein. Serum and vitreous were stored at �20°C until analyzed by enzyme-
linked immunosorbent serologic assay (R&D Systems, Minneapolis,1 MN).

The retina was removed from both eyes, and total RNA was extracted from
45 samples using TriZol (Invitrogen, Carlsbad, CA). Total RNA was quan-
tified by spectrophotometer. The RNA was reverse transcribed using the
cDNA Archive kit according to manufacture’s instruction (Applied Biosys-
tems Inc. [ABI] CA). Primers and probe specific for Epo (ABI) were used to
determine mRNA concentrations in all RNA samples using real time PCR
(PRISM 7500 Fast Thermocycler, ABI). cDNA reverse-transcribed from total
RNA was amplified over 40 cycles.
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In addition to Epo mRNA concentrations, HIF mRNA concentrations were
measured in 23 retinal samples. In previous studies, the use of common
“housekeeping” RNA, such as �-actin or GAPDH, did not remain constant
under hypoxic conditions (13) or over the gestations evaluated in the second
trimester. We tested HIF to determine whether, similar to other fetal tissues
(11), retinal concentrations remain relatively unchanged throughout the ges-
tations tested and could be used to normalize target mRNA data.

For quantitative PCR measurements, a standard curve was created by
reverse transcribing serial dilutions of total RNA isolated from Heb3B cells,
an immortalized cell line that produces Epo mRNA and protein constitutively.
Undiluted Hep3B total RNA was assigned a value of “100” for both Epo and
HIF assays (100 ng total RNA per 20 �L RT reaction).

Differences in mRNA concentrations and in Epo concentrations at each
gestational age group (plotted as mean plus or minus SE) were analyzed using
an unpaired t test and ANOVA analysis. The study was deemed not to
constitute human subject research by the Institutional Review Board at the
University of New Mexico, as no identifiable patient data were collected.

RESULTS

Epo mRNA concentrations were measurable in all fetal
retinal samples tested. Epo mRNA concentrations increased
with increasing gestational age (Fig. 1; R � 0.65, p � 0.05).
Similar to previous fetal tissues tested, HIF mRNA concen-
trations were unchanged over the range of gestational ages
tested (Fig. 2; R � 0.23, p � NS). The quantity of HIF mRNA
per total RNA measured in fetal retina was similar to that seen
in RNA isolated from Hep3B cells (total RNA for all samples
was 100 ng/20 �L reverse transcription reaction volume).

Both serum and vitreous Epo concentrations increased with
increasing gestation (Fig. 3; p � 0.05, 12–14 wk vs. 18–20 wk
and 21–24 wk). Vitreous Epo concentrations ranged from 1 to
12.5 mU/mL at 12–14 wk (median 7.5 mU/mL), 5–16.6
mU/mL at 15–17 wk (10.1 mU/mL), 1–29 mU/mL at 18–20
wk (14.1 mU/mL), and 15.7–34.1 mU/mL at 21–24 wk (26.8
mU/mL). Vitreous Epo concentrations were greater than se-
rum Epo concentrations at each gestational age group tested
(p � 0.05, 12–14 wk and 21–24 wk; p � 0.01, 15–17 wk and
18–20 wk).

DISCUSSION

The role of Epo in the developing eye has not been evalu-
ated. Moreover, the role of Epo in the development of retinal

vascular disease in preterm infants has not been determined.
We found increasing concentrations of both Epo mRNA and
protein with increasing gestation in the human fetal eye.
Similar to other fetal tissues, we measured significant but
unchanging HIF mRNA concentrations with increasing ges-
tation. The finding of increasing Epo protein concentrations
with increasing gestation, and importantly, Epo concentrations
that exceeded those found in serum at each gestation tested
suggests a role for Epo in human retinal development. In
animal models, exposure to low levels of oxygen, deemed
“hypoxic conditioning,” results in up-regulation of Epo and its
receptor (14). The increase in Epo concentration is thought to
play a role in protecting against retinal damage, primarily by
inhibiting gene expression for enzymes involved in apoptosis.
In addition, neuroprotection of retinal photoreceptors can be
induced by hypoxic preconditioning or by increasing systemic
Epo concentrations (15).
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Figure 2. Retinal HIF-1� mRNA concentrations in the developing human
eye. HIF mRNA concentrations (23 samples measured) were similar over
increasing gestational ages (r � 0.23, p � NS). Values are presented as retinal
HIF mRNA concentration/Hep3B HIF mRNA concentrations per total RNA
loaded.
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Figure 3. Serum and vitreous Epo concentrations. A total of 36 samples
were measured for serum and vitreous Epo concentrations: 8 samples from
12–14 wk, 10 samples from 15–18 wk, 10 samples from 19–21 wk, and 8
samples from 22–24 wk. Values shown are mean � SEM. Both serum (clear
bars) and vitreous (solid bars) Epo concentrations increased with increasing
gestation (p � 0.05, 12–14 wk vs. 18–20 wk and 21–24 wk). Vitreous Epo
concentrations were greater than serum Epo concentrations at each gestational
age group tested (p � 0.05, 12–14 wk and 21–24 wk; p � 0.01, 15–17 wk and
18–20 wk).
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Figure 1. Retinal Epo mRNA concentrations in the developing human eye.
Epo mRNA concentrations (45 samples measured) increase with increasing
gestational age (r � 0.65, p � 0.05). Values are presented as retinal Epo
mRNA concentration/Hep3B Epo mRNA concentrations per total RNA
loaded.
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Watanabe and colleagues reported significant elevations in
vascular endothelial growth factor (VEGF) and Epo in the
vitreous of patients with proliferative diabetic retinopathy,
although regression analysis showed that Epo was more
strongly associated with active disease than VEGF (8). Those
authors suggested that Epo is a potent ischemia-induced reti-
nal angiogenic factor, because blockage of Epo is shown to
inhibit retinal neovascularization and endothelial cell prolif-
eration in vivo. Other authors have described Epo as an
endogenous retinal survival factor (15–17).
Research has demonstrated that in addition to hematopoi-

etic properties, Epo plays a developmental role in angiogen-
esis (18,19). Epo receptors are found on endothelial cells,
neuronal cells, and accessory cells throughout the developing
fetus. In response to Epo administration, angiogenic events
such as endothelial cell proliferation, organization, and che-
motaxis are demonstrated in vitro and in vivo. Epo is also
shown to promote neurogenesis and has neuroprotective prop-
erties as well. Epo is found in the cerebral spinal fluid of both
animals and humans, both neonatal and adult (20). Epo re-
ceptor expression has been demonstrated in most cerebral
cell types, including endothelial cells, neurons, and astro-
cytes (20–22). Epo and Epo receptor expression is elevated
during early development, but decreases up to 100-fold
after birth (22,23). Epo receptor deficient mice have an
increased rate of cerebral apoptosis, as well as areas of
cerebral hypoplasia (24).
Similar to adult renal and fetal hepatic cells, neuronal cells

have increased Epo gene expression in response to hypoxia
(25). This pathway is mediated primarily by hypoxically
regulated vascular growth factors (26). A variety of insults,
including cerebral ischemia, seizures, and head injury result in
increased growth factors. In response, the Epo/Epo receptor
system is up-regulated, ultimately promoting cell viability
(25–27). This neuroprotection is a result of repressing apopto-
sis and blocking nitric oxide-meditated toxicity (28,29). Ani-
mal studies have demonstrated dose-dependent effects, includ-
ing reduced infarct volume, increased blood flow, and
improvement in long-term outcome/relearning (14,30,31).
Although numerous randomized placebo-controlled studies

have not reported significant differences in the incidence of
ROP between Epo treated and placebo infants, retrospective
reports have postulated that use of Epo may be associated with
increased rates of ROP (32–35). Brown and colleagues re-
ported an association between cumulative doses of Epo and
risk for ROP (33); however, the authors were unable to
separate the relationship among extreme prematurity, Epo
doses, and ROP. A recent Cochrane review (36) speculated
about a relationship between Epo and ROP, primarily due to
the inclusion of a study, summarized in a letter to the editor,
of early Epo and iron administered to preterm infants (32).
Moreover, although numerous studies have reported an in-
creased risk of ROP in relation to blood transfusions (37,38),
no studies have reported Epo administration as a factor in-
creasing the risk of ROP (2–4).
The relationship between exogenous Epo and ROP remains

speculative, but should be monitored closely in future Epo
studies. In addition, the relationship between endogenous Epo

and ROP remains to be determined. It is possible that elevated
vitreal Epo concentrations in utero, followed by decreased
Epo concentrations after extremely preterm delivery create an
abnormal cycle of vascular stimulus and suppression that
eventually leads to ROP. We speculate that treatment of
preterm infants with exogenous Epo may influence vitreal Epo
concentrations; however, the timing of Epo treatment remains
to be determined. We conclude that Epo is involved in human
retinal vascular development and continue to evaluate the role
of Epo in the developing human eye.
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