
REVIEW ARTICLE

Quantitative Ultrasound Methods to Assess Bone Mineral Status
in Children: Technical Characteristics, Performance,

and Clinical Application
GIAMPIERO I. BARONCELLI

Department of Pediatrics, “S. Chiara” University-Hospital, Pisa 56126, Italy

ABSTRACT: Measurement of bone mineral status may be a useful
tool in identifying the children who could be exposed to an increased
risk of osteoporosis in adulthood. Dual energy x-ray absorptiometry
and peripheral quantitative computed tomography may be used to
this purpose, but the exposure to ionizing radiation is a limiting factor
for preventive studies in large populations of children. In the last
years, quantitative ultrasound (QUS) methods have been developed
to assess bone mineral status in some peripheral skeletal sites such as
calcaneus, phalanges of the hand, and tibia. QUS techniques are safe,
easy to use, radiation-free, and devices are portable, so that they are
particularly indicated to assess bone mineral status in children. This
review will concentrate on the main methodological principles of
ultrasounds and the QUS variables derived from their application to
bone tissue, technical differences and performance of QUS methods,
factors influencing QUS measurements, normative data and results
obtained in children with disturbances of growth or affected by
disorders of bone and mineral metabolism, including the assessment
of fracture risk, and comparison among QUS, dual energy x-ray
absorptiometry, and peripheral quantitative computed tomography
methods. (Pediatr Res 63: 220–228, 2008)

In the last years, the demand for measurement of bone
mineral status to identify children who could be exposed to

an increased risk of osteoporosis in adulthood is rapidly
increased. Several disorders, by various mechanisms, may be
associated with a reduced bone mineral status; in particular,
patients with chronic or genetic diseases, malignancies, acute
or chronic disabilities caused by neuromuscular disorders, and
patients receiving prolonged glucocorticoid treatment are at
risk of fractures by minimal trauma caused by a severe reduction
in bone mineral status (1).
Moreover, there is a growing demand for assessing the effects

of some environmental factors on bone health, such as dietary
habits and various degrees of physical activity by using radiation-
free techniques.

DENSITOMETRIC TECHNIQUES FOR ESTIMATING
BONE MINERAL STATUS IN CHILDREN

Some densitometric techniques to assess bone mineral sta-
tus developed for adults have been adapted for the use in
children. Dual energy x-ray absorptiometry (DXA) is the most
commonly used technique for bone mineral status assessment
worldwide. The main advantages of DXA are its wide avail-
ability and short scanning times, but the subject is exposed to
ionized radiation that varies according to the machinery and
the examined skeletal site; anyway, radiation dose to patient
from DXA is minimal (0.08–4.6 �Sv and 6.7–31 �Sv for
pencil beam and fan beam methods, respectively) compared
with that given by many other investigations involving ioniz-
ing radiation (2). Nevertheless, an important shortcoming of
DXA is that it measures bone in two dimensions providing
only an estimation of bone density. Indeed, DXA measures an
integral areal density that is calculated as bone mineral con-
tent/bone surface area ratio, usually defined as bone mineral
density (BMD area or more simply BMD); thus, in growing
children, BMD is closely related to the large biologic variation
in BMD measurements mainly because of the age-related
changes in bone geometry. A partial correction of this con-
founding factor may be obtained by calculating the apparent
bone sizes by some mathematical formulas to obtain a more
accurate densitometric variable, defined as bone mineral ad-
justed density or volumetric BMD (3–6). However, there is no
agreement among the scientists with the use of this method to
correct BMD values.
Quantitative computed tomography (QCT) has some impor-

tant advantages compared with DXA because it provides a
three-dimensional assessment of the structural and geometric
properties of the examined bone, and a separation of cortical
and trabecular bone (6). A major disadvantage is the high-
radiation dose (50–100 �Sv), making it unsuitable for use in
the pediatric population (5). Peripheral QCT (pQCT) permits
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a three-dimensional analysis of some appendicular bones,
such as radius, ulna, and femur, by using a lower radiation
dose (�2 �Sv) when compared with axial QCT (5), but it is
not currently used for clinical purposes in children.
Quantitative ultrasound (QUS) is a relatively recent and non-

invasive method of estimating bone mineral status at peripheral
skeleton. In addition to bone density, QUS methods provide
some structural information, which may be important in deter-
mining the fracture risk (7–9). QUS technique is safe, easy to use,
and cost-effective; the devices are portable, only few minutes are
needed to perform the measurements, and it is radiation-free.
These characteristics are particularly indicated to assess bone
mineral status in children.
Despite its proven advantages, the use of QUS remains

controversial. In fact, there is a general scepticism about the
use of QUS techniques for the assessment of bone mineral
status because of poor knowledge on the physical mechanisms
of ultrasounds in assessing bone characteristics, technological
diversity among QUS devices, use of different QUS variables
to estimate bone mineral status, and difficulty to compare the
results obtained by QUS devices with those acquired by the
x-ray-based densitometric techniques. Recent studies have
clarified most of these aspects leading to clinical application
of QUS methods in a large number of disorders.

ULTRASOUND CHARACTERIZATION OF BONE
TISSUE AND DERIVED VARIABLES

Ultrasound is a traveling mechanical vibration and the
mechanical and structural properties of the medium progres-
sively alter the shape, intensity, and speed of the propagating
wave (8). Based on this principle, the velocity of transmission
and the amplitude of the ultrasound signal are influenced by
the bone tissue, reflecting its density, architecture, and elas-
ticity (7–10). However, ultrasound velocity measurement does
not selectively assess each component of bone tissue influ-
encing ultrasound transmission through bone; indeed, ultra-
sound velocity is influenced by structural bone variables that
are also dependent on bone density (11). Studies in vitro dem-
onstrated that ultrasound velocity was related more strictly to
bone density than to bone elasticity (12,13). Ultrasound velocity
is related to specific biomechanical properties of bone, such as

elastic modulus (a measure of resistance to deformation) and
compressive strength (bone’s load-carrying capacity) (7–10).
The attenuation of an ultrasound wave through a medium

occurs by a reduction in its amplitude and results in a loss of
acoustic energy. The predominant attenuation mechanism in
cancellous bone is scattering (redistribution of the energy in
one or more directions), whereas absorption (dissipation of the
energy in the medium by a conversion to heat) predominates
in cortical bone (8). A main difference between ultrasound
velocity and ultrasound attenuation is that, in contrast to
velocity, no theoretical relationship has been established be-
tween attenuation of the signal and mechanical properties of
cancellous bone (8,10).

Figure 1. Methods to calculate some QUS variables related to ultrasound velocity (A) and ultrasound attenuation (B). SoS is calculated as the ratio of the
distance traveled by the impulse (the distance between the probes) and the time taken by the signal to travel that distance. AD-SoS reflects the
amplitude-dependent velocity with a threshold of 2 mV; BTT is the interval between the time when the first peak of the signal received reaches its maximum
level and the time measured whether no bone but only soft tissue should be present between the two transducers; BUA is the slope of the regression line of
attenuation against frequency, according to the formula BUA � �db/�MHz.

Figure 2. The graphic trace measured at proximal phalanx of the index
finger (assessed by QUS device DBM Sonic, IGEA, Carpi, Italy) in a
10.7-y-old boy receiving long-term glucocorticoid treatment for severe
asthma (A) and in a healthy boy with the same age for comparison (B). Note
the different morphology of the ultrasound signal in the patient compared with
that of the healthy child showing reduced amplitude and number of the peaks
with a delayed time in reaching the first peak of 2 mV, associated with a lower
AD-SoS value (1789 m/s and 1925 m/s, respectively) (see legend of Fig. 1 for
technical details, personal cases).
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Two main variables can be measured by QUS devices,
which derive from velocity or attenuation of the ultrasound
waves through the bone tissue. In Figure 1 are schematized the
main methods for calculating the QUS variables related to
velocity, by the analysis of the ultrasound signal, and the
attenuation as a function of frequency. The QUS variables
reflecting ultrasound velocity inside the bone, expressed as
meter per second, are known as speed of sound (SoS), that is
a pure parameter of velocity independent of ultrasound wave
attenuation (7,8,10,14), and amplitude-dependent SoS (AD-
SoS) that is partly amplitude-dependent (14,15). AD-SoS
derives from the measurement of the interval between the start
time of the transmitted signal and the time the signal received
reaches the predetermined minimum amplitude value of 2 mV
for the first time (14,15). A variable more recently got ready
is the bone transmission time (BTT), expressed as microsec-
ond, that reflects the bone properties independent of the
confounding effect of soft tissue (see below) (14,16). SoS is a
variable usually measured by QUS methods applied to the
heel, radius, tibia, and patella, whereas AD-SoS and BTT are
the main variables measured by the phalangeal QUS device.
The most common variable reflecting ultrasound attenua-

tion through bone is known as broadband ultrasound attenu-
ation (BUA), that is a measure of the frequency dependence of
the attenuation of the signal, and is expressed as dB/MHz.
BUA is approximately linear and is expressed on a logarith-
mic over the range 0.1–1 MHz. The increase of BUA as a
function of the frequency is estimated by comparing the
amplitude spectrum for a reference material with that of the
measured sample (7,8,10). This parameter is commonly as-
sessed by calcaneal QUS devices.
To improve precision some calcaneal QUS devices provide

additional ultrasound variables derived from the mathematical
combination of both SoS and BUA, defined as stiffness index
[(0.67 � BUA) � (0.28 � SoS) � 420] (17,18) and quanti-
tative ultrasound index [0.41 � (BUA � SoS) � 571] (19),

expressed as percent. However, the clinical usefulness of these
QUS variables should be validated in children.
Phalangeal QUS device, by the analysis of the changes in

the ultrasound graphic trace occurring during the crossing
inside the finger, may provide information on the amplitude
and the number of peaks of the ultrasound wave that could be
useful in clinical setting, as found in adults (20,21). Currently,
very few data are available in children; Figure 2 shows this
aspect.

MAIN TECHNICAL CHARACTERISTICS OF
QUS METHODS

The majority of QUS devices are appointed to only one
skeletal site, such as proximal phalanges of the hand, heel, and
tibia, but a multisite QUS device able to measure (by using
different probes) one or more skeletal sites, such as tibia,
radius, third phalanx of the hand, and fifth metatarsal, is also
available on the market. In children, the tibia (midshaft) and
radius (distal third) are the skeletal sites usually measured by
the multisite QUS device.
QUS devices differ among them for technical characteris-

tics, including frequency of emitted ultrasounds, pathways of
ultrasound transmission inside the bone, skeletal site and region-
of-interest (ROI) measured, bone components examined, and
QUS variables assessed to estimate bone mineral status and their
precision (Table 1, 22,23).
QUS devices generate pulsed acoustic waves with a range

of center frequency between 500 kHz and 1.25 MHz, accord-
ing to the manufacturer, which is considerably lower than the
frequencies commonly used in echography.
The transmission of the ultrasound waves in calcaneal QUS

devices occurs by a thermally controlled water bath in which
the foot must be placed or by coupling gel (water- or oil-
based), whereas others are gel-free (dry system) by using
isopropyl or ethylic alcohol (70%). Phalangeal and multisite

Table 1. Site of measurement and ROI, bone components, pathways of ultrasound transmission, and QUS variables and their precision of
the main QUS methods

Skeletal site of
measurement ROI Bone components at the ROI

Pathways of ultrasound
transmission inside the bone

QUS measurements

Variable CV% sCV%

Heel Midcalcaneus* Trabecular bone (�90%) with a thin
cortical shell

Transverse SoS 0.2–3.9 ––
BUA 2.7–7.0
SI/QUI 1.9–2.7

Patella† Maximal transverse
diameter

Trabecular bone with a thin cortical
shell

Transverse SoS 0.5–2.5 ––

Proximal phalanges
of the hand (digit
II–V)

Distal end of diaphysis
below the condyles

Cortical bone (�60%) Transverse AD-SoS 0.3–0.9 1.7‡
Trabecular bone (�40%) BTT 1.0–3.5 0.4§
Small medullary canal

Radius Distal third Cortical bone (�95%) Axial SoS 0.4–0.9 ––
Thumb Ultradistal end of

diaphysis
Trabecular bone with a thin cortical
shell

Transverse SoS 0.6 ––

Tibia Midshaft Cortical bone (�100%) Axial SoS 0.3–1.0 3.3‡

CV indicates coefficient of variation � (	SD/mean
 � 100); sCV, standardized coefficient of variation; SI, stiffness index (17,18); QUI, quantitative ultrasound
index (19).
* The location and size of the ROI vary according to the device.
† Currently not available on the market.
‡ (	SD/mean
 � 100)/(dynamic range/mean) (22,23).
§ The precision error of BTT was standardized to AD-SoS as reference parameter by some calculations (14).
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QUS devices use coupling gel for the transmission of the
ultrasounds to the examined skeletal site.
The pathways of ultrasound transmission inside the bone

are determined by two main factors: the position of the transduc-
ers (one or more ultrasound signal transmitters and one or more
ultrasound receivers) with respect to the examined bone, which
depends on the QUS method, and the bone components at the
ROI. In Figure 3 are schematized the main QUS methods and the
skeletal sites usually assessed in clinical practice. Technology of
phalangeal and calcaneal QUS devices is based on the principle
of the transverse ultrasound transmission (ultrasound transmitters
and receivers are placed on opposite sides of the examined bone
with a variable distance among them according to the bone plus
soft tissues thickness). Multisite QUS device equipped with the
probe for midtibia and distal third of radius is based on the axial
transmission along the cortical bone (the probe contains a set of
two transmitters and two receivers positioned on one side of the
bone, at a fixed distance, such that SoS that travel along the
length of the examined bones is measured using the “critical
angle” concept); the velocity of an ultrasound wave traveling
through a few centimeters of bone and parallel to its axis within
the outer 2–6 mm is measured (24).
Precision of QUS variables in children is reported to be

better for SoS than for BUA (25–27), as found in adults (8),
and it is similar to that reported for DXA (28–30). Foot
positioning is a main cause of measurement imprecision in
BUA caused by regional variation in trabecular bone structure
(31), and this may be a limiting factor in longitudinal mea-
surements.

EFFECT OF BONE SIZE AND GEOMETRY, SOFT
TISSUE THICKNESS, AND ANTHROPOMETRIC

FINDINGS ON QUS VARIABLES

Bone size may affect the measurement of QUS variables,
mainly at the heel (25,32,33). In growing children, it has been
estimated that only 6% of AD-SoS values may be related to
finger width, indicating that bone width is only a minor con-
founder on AD-SoS measurements at the proximal phalanges of
the hand (22). Tibial length, which partly reflects its size, is
negatively correlated with SoS values (34).
A close relation between body height and bone geometry

exists because the biomechanical forces applied to the skele-
ton depend on body height (35). It has been demonstrated that
heel width (bone plus soft tissue), a parameter partly reflecting
the geometry of the calcaneus, was correlated negatively with
SoS and positively with BUA (33). Human phalangeal inves-
tigations showed that AD-SoS was significantly correlated
with cortical thickness and cortical area, but not by cross-
sectional area of the medullary canal (36–38). In women,
tibial SoS (midshaft) was correlated with cortical thickness
(39), whereas radial SoS (distal third) was correlated with both
cortical thickness and area (40); no data are available for
children.
Some evidences indicate that the thickness of the surround-

ing soft tissues at the heel (41), proximal phalanges of the
hand (36), and tibia or radius (42) may influence the QUS
variables. A practical way of minimizing the measurement

error could be to perform an adequate correction for the
overlying soft tissue. Phalangeal QUS device is able to mea-
sure the reference SoS of the subject’s soft tissue by applying
the probes to the soft tissue area of the first interdigital space.
The value is then automatically used by the device when
measuring AD-SoS in the phalanx to take account, at least in

Figure 3. Schematic representation of QUS devices currently used to assess
bone mineral status in children. X-ray films are used to represent the skeletal
site of measurement, and the approximate ROI is depicted on the right side for
each device. In light blue is the probe(s) and in red are the transducers; the
yellow arrows indicate the principal pathways of the ultrasound waves from
the emitter transducer(s) to the receiving transducer(s). The proportion of
devices and transducers, as well as the dimensions of the ROI, with respect to
the examined bone is not kept for graphic reasons. The yellow rectangle
approximately indicates the ROI for phalangeal (distal end of diaphysis of the
first phalanx of the hand; the last four fingers of the hand are measured and
the result is the mean of the four fingers; DBM Sonic, IGEA, Carpi, Italy) and
tibial (midshaft; Sunlight Omnisense, Tel Aviv, Israel) QUS devices. The
yellow rings indicate the approximate locations of the manufacturer’s ROI for
two calcaneal QUS devices; the surface area of the ROI may be different
among the calcaneal QUS devices according to the manufacturer. Note the
different bone composition at the ROI for phalangeal, tibial, and calcaneal
QUS devices (see Table 1 for more details).
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part, of soft tissue interference (22). Nevertheless, BTT vari-
able is largely independent of soft tissue bias, and so it
represents an accurate parameter to assess bone mineral status
at phalanges of the hand (14).
Anthropometric findings, including pubertal stages, are ad-

ditional factors influencing QUS variables assessed at the heel
(18,25,26,43), proximal phalanges of the hand (16,22,44,45),
and tibia or radius (46,47), indicating that skeletal growth and
gender-dependent bone maturation are important determinants
of QUS measurements; so, the auxologic parameters should be
taken into consideration in QUS measurements and clinical
interpretation of results.
QUS variables are usually measured at only one side that is

the nondominant hand, left or right tibia and radius, and right
heel. In healthy children, no difference in QUS variables
between right and left side has been reported for proximal
phalanges of the hand (22) and midshaft tibia (23), but con-

trasting results are reported for the heel, likely because of
anatomical differences related to structural heterogeneity of
calcaneus (48,49).

NORMATIVE DATA FOR QUS VARIABLES

Some studies have reported normative data for QUS vari-
ables measured at the heel (available only for children above
6 y) (25,26,50–52), proximal phalanges of the hand (14,16,53),
tibia (midshaft) (46,54), and radius (distal third) (46). A large
reference database according to the main anthropometric find-
ings, including pubertal stages and bodymass index, expressed as
centiles, has been recently provided for phalangeal QUS (Fig. 4)
(16). Pediatric reference values for calcaneal (51) and tibial and
radial (46) QUS, expressed as mean and SD, are depicted in
Figures 5 and 6, respectively.

Figure 4. Static distance curves for AD-
SoS and BTT measured at the distal end of
the proximal phalangeal diaphysis of the
hand (DBM Sonic, IGEA, Carpi, Italy) in
healthy male (n � 1513) and female (n �
1531) subjects, expressed as centiles (97th
to 3rd). Figure reproduced from Baroncelli
et al., Bone 39:159–173. Copyright ©
2006 Elsevier Inc, with permission.

Figure 5. Values of SoS and BUA mea-
sured at the heel (Sahara, Hologic Inc.,
Waitham, MA) in healthy male (n � 1676)
and female (n � 1623) subjects, expressed
as mean � SD. In both sexes, the peripu-
bertal drop of SoS was not significant (p �
NS).
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Distance curves for QUS variables may be a useful tool to
assess the position of an individual in comparison with a
reference population and to examine the trajectory of the
examined QUS parameter in longitudinal measurements (16).
Moreover, the possibility to calculate the Z-score for QUS
variables according to the main anthropometric findings has
an important clinical impact for estimating the degree of
reduction of bone mineral status. Indeed, Z-score is the more
appropriate method to express bone mineral status in children
(1,4,55), and a value, for each QUS variable, below �2.0
Z-score could identify a condition of “low bone mineral status”
according to the anthropometric variable considered, as sug-
gested for DXA measurements by the International Society for
Clinical Densitometry (55).

QUS MEASUREMENT IN PATIENTS WITH BONE
AND MINERAL DISORDERS AND ASSESSMENT OF

FRACTURE RISK

Some studies demonstrated that a reduced value of a QUS
variable, both velocity- and attenuation-based, is associated
with a reduced bone mineral status in children with distur-
bances of growth or disorders affecting bone health (Table 2,
56–75). QUS and DXA parameters, measured at different
skeletal sites, showed similar results, suggesting that both
methods are able to identify a reduced bone mineral status.
Furthermore, it has been shown that in an otherwise healthy

pediatric population (76,77), and in children with bone and
mineral disorders or chronic diseases (30,60), QUS measure-
ments detected a reduced bone mineral status in children suffer-
ing fractures. Fielding et al. (60), by calcaneal QUS, demon-
strated that a value of BUA Z-score ��2 proved to be as
sensitive as a spinal BMD Z-score ��2 in identifying children
with prior low-impact fractures. Similar data were found by
Baroncelli et al. (30) measuring AD-SoS at phalanges of the hand
and spinal BMD and BMD volume by DXA. Moreover, Hart-
man et al. (42) in severely handicapped institutionalized children
and adolescents found that tibia SoS Z-scores correlated nega-
tively with the presence of past fracture.

These results suggest that in children QUS devices could be
used to a similar extent as measurement by DXA to estimate
bone mineral status and bone fragility, but current data are not
sufficient to establish which of them is the best choice. Indeed,
QUS and DXA do not measure identical properties of bone
tissue, so that they do not capture the same patients. It should
be considered that QUS parameters are influenced not only by
bone density as occurs for DXA, but also by bone structure
and composition, so that they give additional information,
compared with DXA, on some aspect regarding bone quality
(7,8,10). In fact, some QUS parameters are able to detect
collagen and organic matrix abnormalities in vitro (76,78) and
in vivo (79), giving some information on the organic compo-
nents of bone material. Anyway, there are too few data linking
bone mineral status by DXA, pQCT, or QUS measure to
fracture rate in children, and further studies in a large number
of subjects are needed to investigate this crucial aspect.
Some authors raised the question that QUS methods have

major limitations in that these techniques do not analyze bone
mass, density, and geometry separately (6) giving only an
integral estimation of bone mineral status, as occurs for DXA
(4–6). Although QUS variables yield many data that, at
present, may be difficult to interpret, they are always linked
with the properties of bone tissue, and reduced values of the
QUS variables are related to a reduced bone mineral status and
are able to identify a population of children with an increased
risk of fractures. The actual position of QUS methods in the
diagnosis of a reduced bone mineral status in children should
be considered similar to that of DXA, and QUS measurements
may be a viable initial screen for assessing bone mineral status
in children.
Furthermore, preliminary studies suggested that some QUS

methods might be a useful tool for assessing bone mineral
status and skeletal development in term and preterm infants
(80). This is not an argument of the present review that is
limited only to QUS measurement in children. At any rate, the
results are very encouraging for a future clinical use of some
QUS methods in term and preterm newborns.

Figure 6. Values of SoS measured at
tibia (midshaft, upper panels) and radius
(distal third, lower panels) by Sunlight
Omnisense 7000P (Tel Aviv, Israel) in
healthy male (tibia, n � 485; radius, n �
447) and female (tibia, n � 590; radius, n �
544) subjects, expressed as mean � SD.
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COMPARISON AMONG QUS METHODS, AND
BETWEEN QUS METHODS AND DXA OR pQCT
Few studies have shown comparison data between two or

more skeletal sites by using the same or different QUS meth-
ods in children. Lequin et al. (81) showed a modest but

significant correlation (r � 0.29, p � 0.01) between calcaneal
and tibial SoS, measured by two different QUS techniques.
Schonau et al. (82), by using the same QUS device, found a
good correlation between SoS measurements at the distal end
of the proximal phalanx of the thumb and patella (r � 0.81,

Table 2. Summary of some QUS studies, some of these also reporting DXA measurements, in children with disturbances of growth or
disorders affecting bone health

Disease/disorder n Skeletal site of measurement QUS device QUS variables DXA variables Reference

Bone and mineral
disorders

135 Proximal phalanges of
the hand

DBM Sonic 1200, AD-SoS2 L-BMD2 30
IGEA, Carpi, Italy L-vBMD2

Genetic disorders 50 Proximal phalanges of
the hand

DBM Sonic 1200, AD-SoS2 –– 56
IGEA, Carpi, Italy

Chronic rheumatic
diseases

53 Heel Cuba McCue, Ultrasonics
Compton, Winchester, UK

BUA2 L-BMD2 57

Chronic rheumatic
diseases

40 Tibia midshaft, Radius
distal third

Omnisense 7000S, Sunlight,
Tel Aviv, Israel

SoS2 L-BMD2 58

Juvenile idiopathic
arthritis

70 Heel Cuba McCue, Ultrasonics
Compton, Winchester, UK

SoS2 –– 59
BUA2

Chronic diseases and/or
fragility fractures

42 Heel Achilles Plus. Lunar Co,
Madison, WI, USA

SoS2 TB-BMD2 60
BUA2 L-F-BMD2

L-F-vBMD2
Inflammatory bowel
disease

10 Heel Cuba McCue, Ultrasonics
Compton, Winchester, UK

SoS2 –– 61
BUA2

Crohn disease 35 Tibia midshaft, Radius
distal third

Sunlight Omnisense, Sunlight,
Tel Aviv, Israel

SoS2* L-BMD2 62

Celiac disease 41 Tibia midshaft, Radius
distal third

Omnisense 7000P, Sunlight,
Tel Aviv, Israel

SoS2 L-BMD2 63

End-stage renal failure 30 Proximal phalanges of
the hand

DBM Sonic 1200, AD-SoS2 TB-L-BMD2 29
IGEA, Carpi, Italy

Severely handicapped
institutionalized

87 Tibia midshaft, Radius
distal third

Omnisense 7000S, Sunlight,
Tel Aviv, Israel

SoS2 –– 42

Severe cerebral palsy 67 Heel Sahara, Hologic Inc,
Waitham, MA, USA

QUI2 –– 64

Acute lymphoblastic
leukemia

54 Proximal phalanges of
the hand

DBM Sonic 1200, IGEA,
Carpi, Italy

AD-SoS N –– 65

Acute lymphoblastic
leukemia

37 Tibia midshaft SoundScan Compact, Myriad
Ultrasound System,
Rehovot, Israel

SoS2 –– 66

Acute lymphoblastic
leukemia

42 Heel QUS-2, Quidel, BUA 2 TB-BMD2 67
San Diego, CA, USA L-BMD2

Sickle cell disease 80 Heel Achilles Plus, Lunar Co,
Madison, WI, USA

SoS2† –– 68
BUA2

HIV-infected 44 Heel Cuba McCue, Ultrasonics Compton,
Winchester, UK

BUA2 –– 69

HIV-infected 44 Proximal phalanges of
the hand

DBM Sonic BP, AD-SoS2 –– 70
IGEA, Carpi, Italy BTT 2

Central precocious
puberty, idiopathic
short stature after
Gn-RH agonist
treatment

25 Heel UBIS 3000, DMS, Montpellier, France SoS N L-BMD2‡ 71
BUA2‡ L-vBMD N

Delayed puberty 45 Tibia midshaft, Radius
distal third

Omnisense 7000P, Sunlight,
Tel Aviv, Israel

SoS2 –– 72

Isolated growth
hormone deficiency

68 Proximal phalanges of
the hand

DBM Sonic 1200, AD-SoS2 –– 73
IGEA, Carpi, Italy BTT 2

Insulin-dependent
diabetes mellitus

30 Tibia midshaft, Radius
distal third

Omnisense 7000S, SoS2 –– 74
Sunlight, Tel Aviv, Israel

Insulin-dependent
diabetes mellitus

86 Proximal phalanges of
the hand

DBM Sonic 1200, AD-SoS2 –– 75
IGEA, Carpi, Italy

L indicates lumbar spine; F, femoral neck; TB, total body; N, normal values;2, reduced values; Gn-RH, gonadotrophin-releasing hormone; vBMD,
volumetric bone mineral density.
* Only 19.2% of patients had a value ��1 Z-score.
† Only in male patients.
‡ Only in children with idiopathic short stature.
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p � 0.01), whereas the correlation coefficients between thumb
and patella against calcaneus were 0.48 and 0.40, respectively.
By using the same QUS device, a low (r � 0.39, p � 0.02)
(42) or a good correlation (r � 0.77, p � 0.05) (62) between
tibial (midshaft) and radial (distal third) SoS was reported.
The different bone components at the ROI (Table 1) could
explain, at least in part, these divergent results.
Studies in healthy children and in patients with disturbances

of growth, disorders of bone and mineral metabolism, or chronic
diseases have shown a wide range of correlation between QUS
variables measured at the heel (17,18,27,28,57,60,67), proximal
phalanges of the hand (29,30,83,84), midshaft tibia or distal third
of the radius (58,85) and central, peripheral, or total body BMD
assessed by DXA. A mild correlation (r � 0.22) between calca-
neal QUS and radial volumetric total BMD by pQCT was found
(35).
These data confirm that QUS and DXA provide different

information on bone tissue as they are influenced by different
factors.

CONCLUSIONS

The growing knowledge on the physical mechanisms re-
lated to the ultrasound characterization of bone tissue and the
clinical application of QUS methods have shown that these
techniques are a useful tool to assess integral bone mineral
status and fracture risk in children.
Although QUS devices are based on a similar technology,

they differ among them for the skeletal site of measurement,
performance, accuracy, measured QUS variables, and norma-
tive data. Large databases according to the main anthropomet-
ric findings from early childhood to young-adulthood are
needed for a correct interpretation of the results in clinical
setting.
The simplicity of use (that requires, however, an adequate

training of the operators) of the QUS devices, the lack of
radiation exposure for the child, the possibility to perform the
examination at bedside, and the low cost represents clear
advantages of QUS methods compared with x-ray-based den-
sitometric techniques, as DXA and pQCT. However, too few
comparative data on the estimation of fracture risk by using
these methods are available in children to define which is the
best among them for this purpose.
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