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Decreased arterial carbon dioxide tension (PaCO2) results in
decreased cerebral blood flow, which is associated with dimin-
ished cerebral electrical activity. In such a situation, cerebral
fractional oxygen extraction (CFOE) would be expected to in-
crease to preserve cerebral oxygen delivery. This study aimed to
determine whether changes in blood gases in infants less than 30
wk’ gestation were associated with changes in background elec-
troencephalograms (EEG) and CFOE. Thirty-two very low birth
weight infants were studied daily for the first three days after
birth. Digital EEG recordings were performed for 75 min each
day. CFOE, mean blood pressure and arterial blood gases were
measured midway through each recording. EEG was analysed by
(a) spectral analysis and (b) manual calculation of interburst
interval. Blood pressure, pH and PaCO 2 did not have any effect
on the EEG. On day one, only PaCO2 showed a relationship with
the relative power of the delta frequency band (0.5–3.5 Hz) and
the interburst interval. The relative power of the delta band

remained within normal limits when PaCO2 was between 24 and
55 mm Hg on day one. There was a negative association between
PaCO2 and CFOE. The associations between PaCO2 and EEG
measurements were strongest on day one, weaker on day two,
and absent on day three. The slowing of EEG and increased
CFOE at lower levels of PaCO2 are likely to be due to decreased
cerebral oxygen delivery induced by hypocarbia. When PaCO2

was higher, there was suppression of the EEG. (Pediatr Res 58:
579–585, 2005)

Abbreviations
PaCO2, arterial carbon dioxide
CFOE, cerebral fractional oxygen extraction
CSvO2, cerebral venous oxygen saturation
CSaO2, cerebral arterial oxygen saturation
P90, 90

th centile

Periventricular leukomalacia is an important cause of neu-
rologic morbidity in very low birth weight infants (1) and has
been associated with severe hypocarbia during the first 24 h
after birth. This effect of arterial carbon dioxide tension
(PaCO2) on the brain is likely to be mediated through its effect
on cerebral blood flow, which is decreased by hypocarbia. In
such a situation, cerebral fractional oxygen extraction (CFOE)
would be expected to increase, as cerebral oxygen delivery is
reduced (8). Decreased cerebral oxygen delivery would also be

expected to be associated with reduced cerebral electrical
activity. A positive relationship between cerebral blood flow
and integrated amplitude of the EEG has been demonstrated on
a group of infants between 27 and 33 wk’ gestation (9).
However, no studies have described the relationship between
background cerebral electrical activity and PaCO2 in very low
birth weight infants.
Electroencephalography provides a noninvasive technique

for monitoring cerebral electrical activity. The normal EEG
pattern of infants less than 30 wk’ gestation is markedly
discontinuous and consists of long isoelectric periods called
interburst intervals, interspersed with bursts of high voltage
and mixed frequency activity (10). Two separate studies have
linked adverse neurologic outcome of such infants with an
abnormal background EEG activity characterised by prolonged
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interburst intervals (11,12). When the interburst interval was
longer than 30 s in premature newborns less than 28 wk’
gestation and longer than 25 s in infants above 28 wk’ gesta-
tion, death and developmental motor abnormalities including
mild distal hypertonia and spastic diplegia or tetraplegia were
observed more frequently (12). Measuring interburst intervals
therefore appears to be a useful method of quantifying EEG in
infants less than 30 wk’ gestation. However, if it has to be done
manually, the process is time consuming.
An automatic method for quantifying the EEG is by spectral

analysis based on the principle of Fast Fourier Transformation.
The results of this approach for premature infants less than 30
wk’ gestation during the first four days after birth has been
previously described (13). When the EEG spectrum was di-
vided into delta (0.5–3.5 Hz), theta (4–7.5 Hz), alpha (8–12.5
Hz) and beta (13–30 Hz) frequency bands, the relative power
of the delta band appeared to be best for the quantitative
analysis of the EEG of these very premature infants (13). The
coefficient of repeatability (8%) of the relative power of the
delta frequency band was acceptably low (13). The normal
range of the relative power of the delta band was between 62%
and 76% (n � 22) on the first day after birth, and between 65%
and 82% (n � 28) on the second day after birth (13). This
present study describes the relationship between EEG spectral
analysis and arterial blood gases.
The purpose of this study was to determine the relationship

between cerebral electrical activity, the balance between cere-
bral oxygen delivery and utilisation as measured by CFOE,
mean blood pressure and arterial blood gases in newborn very
low birth weight infants less than 30 wk’ gestation.

METHODS

This was a prospective observational study performed on infants born at
Liverpool Women’s Hospital with birth weight less than 1500 g and gestation
less than 30 wk. Ethical approval was obtained from the Local Research Ethics
Committee and informed parental consent was obtained. The upper limit of 30
wk’ gestation was chosen, as sleep wake cycling is typically not seen below
this gestation (14,15). Infants with significant intra-ventricular haemorrhages
(defined as haemorrhages extending beyond the germinal matrix) have abnor-
mally prolonged periods of EEG discontinuity and were therefore also ex-
cluded (11).

Electroencephalography (EEG). Digital EEG and electrocardiography re-
cordings were performed for 75 min using a Micromed 16-channel system on
each of the first three days after birth. Six electrodes were placed on the frontal
(Fp1, Fp2), central (C3, C4) and occipital (O1, O2) positions bilaterally
according to the International 10-20 System (16). A reference electrode was
placed at the vertex (Cz). Skin impedance of less than 2 k� was maintained for
all recordings. A sampling rate of 256 Hz was used for digitisation.

The EEG was analysed by a qualitative approach as well as by quantitative
methodology. MB and RA experienced at reporting EEGs did the qualitative
reporting. They were blinded to PaCO2, PaO2, pH and cranial ultrasound
findings and the results of the quantitative analysis of the EEG (see below).
During reporting, the EEG was viewed as four bipolar channels (Fp1-C3,
C3-O1, Fp2-C4 and C4-O2) using a high pass filter of 0.3 Hz, a low pass filter
of 70 Hz, a notch filter of 50 Hz, a base time of 10 s and a gain of 100 �V.
Reports described discontinuity, abnormal transients, asymmetry and asyn-
chrony.

Quantitative analysis of EEG was by (a) spectral analysis and (b) manual
calculation of the interburst interval. To calculate the interburst intervals, gross
artefacts (activity with no identifiable normal EEG activity) were identified by
eye and removed. The interburst interval was defined as a period between
electrical bursts during which activities were lower than 30 �V in all leads and
calculated manually (17). The 90th centile for interburst interval (P90) was then
calculated for the first 60-min of artefact free recording.

Spectral analysis using Fast Fourier transformation was performed using the
manufacturer’s software (Micromed). The 75 min of EEG was subjected to
spectral analysis. The spectrum was sub-divided into delta (0.5–3.5 Hz), theta
(4–7.5 Hz), alpha (8–12.5 Hz) and beta (13–30 Hz) bands. The absolute power
of a band was defined as the integral of all the power values over the frequency
range and expressed as �V2 (Fig. 1). The relative power (RP) of a frequency
band was defined as the ratio of the absolute power of that frequency band to
the total power of all frequency bands and expressed as a percentage (Fig. 1).
The absolute and relative powers of each band were calculated for every 10-s
epoch. Gross artefacts (activity with no identifiable normal EEG activity) were
identified by eye and removed manually in 10-s epochs. The first 60 min of
artefact free EEG was then used to calculate the median absolute and the
median relative powers of each band.

Cerebral fractional oxygen extraction (CFOE). Measurements were made
during an EEG recording. The Hamamatsu NIRO 500 and a pulse oximeter in
beat-to-beat mode (Datex-Ohmeda) with partial jugular venous occlusion was
used to measure cerebral venous oxygen saturation (CSvO2). The CSvO2 value
was the mean of five partial jugular venous occlusions made over a 5 to 10 min
period and selected using preset criteria (8,18). Cerebral arterial oxygen
saturation (CSaO2) was assumed to be equal to peripheral arterial oxygen
saturation. CFOE was calculated using the formula: CFOE � CSaO2–CSvO2/
CSaO2 (8,18).

To determine the intraobserver repeatability of CFOE measurements, stud-
ies were conducted on a group of ten infants with median gestation of 27 wk
(range: 24–30) and median birth weight of 970 g (range: 575–1410). Two
CFOE measurements (each a mean of five occlusions) were made on each baby
five minutes apart. The optodes were removed and replaced between measure-
ments. The coefficient of repeatability was calculated by plotting the differ-
ences between pairs of measurements against the mean: twice the SD of the
differences gave the coefficient of repeatability (19).

Other measurements.Mean blood pressure, arterial blood gas and acid base
status were measured midway through an EEG recording using indwelling
arterial catheters. Cranial ultrasound scans were performed every day for the
first three days after birth. Follow-up cranial ultrasound scans were performed
usually weekly for clinical purposes until discharge from the neonatal unit. The
images from these scans were examined for periventricular leukomalacia.

Clinical management. The clinical management of the babies in this study
was according to clinical guidelines and by clinicians who were not members
of the research group. The general aim was to keep the PaCO2 between 35 and
45 mm Hg.

Statistical analysis. Measurements and recordings from each day were
analysed separately. Statistical analysis was by stepwise linear regression using
SPSS. Gestation, PaCO2, pH, PaO2, mean blood pressure and age of recording
were entered as predictor variables. The relative power and absolute power of
each frequency band (delta, theta, alpha and beta), P90 interburst interval and
CFOE were entered individually as outcome variables. Curve estimation was
done to check for the best fit in every statistically significant linear regression
model. A normal probability plot was also examined to ensure that the
assumptions for linear regression were satisfied.

RESULTS

Thirty-two infants with demography as described in Table 1
were studied on the first three days after birth. All had com-

Figure 1. Spectral density display showing calculation of the relative power
(RP) and absolute power (AP). Calculation of the AP and RP of the beta
frequency band has been shown as an example.
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plete EEG recordings. There were CFOE results for 22 babies
on each day. Thirty CFOE measurements were missed due to
equipment failure. All infants had normal blood glucose con-
centrations at the time of recording. The conditions of infants
during recording were as described in Table 2. Follow up
cranial ultrasound scans showed no evidence of cystic periven-
tricular leukomalacia or intraventricular haemorrhage in any of
the infants.
The coefficient of repeatability (19) for CFOE measurements

was 0.05. That is, 95% of repeated measurements of CFOE
would be expected to be within � 0.05 of the first measure-
ment. As the mean (SD) of the repeated measurements (n �
20) was 0.29 (0.07), a difference of � 0.05 (17% of the mean)
suggests good repeatability.
When the qualitative analysis of the unprocessed EEG was

considered, the following changes were noted in relation to
PaCO2. On the first and second day after birth, lower levels of
PaCO2 were associated with attenuation of fast frequency
activities and the presence of slow waves without brushes or
bursts or other rhythmic high frequency activities (Trace 1 of
Fig. 2). At higher levels of PaCO2 there were prolonged
interburst intervals and suppression of EEG (Trace 3 of Fig. 2).
Two-thirds of the recording consisted of discontinuous periods
when PaCO2 levels increased above 55 mm Hg. These changes
were not seen on the third day.
The EEG changes in relation to PaCO2 were also quantified

using spectral analysis and measurement of interburst intervals
and the results were as shown in Table 3. Using stepwise linear
regression, only PaCO2 from amongst the predictor variables
showed a relationship to EEG measurements (Table 3). There
were no significant relationships between mean blood pressure,
pH, PaO2 and PaCO2 and the relative powers of theta and alpha
bands and the absolute powers of all bands. The association
between PaCO2, EEG measurements and CFOE was stronger
on day one than on day two (Tables 3). No statistically
significant models were obtained on day three. The relation-
ships between PaCO2 and the relative power of the delta band
and beta bands, P90 interburst interval and CFOE on day one
were as shown in Figs. 3–5.
We were interested to discover the pattern of the relationship

between blood gases, the EEG and CFOE. Curve estimation
indicated that a cubic regression model (Rsq � 0.59; p �
0.001) was a better fit for the relationship between P90 inter-
burst interval and PaCO2 on day one than a linear model (Rsq
� 0.51; p � 0.001) (Fig. 4). The relative powers of the delta
and beta bands showed a linear relationship to PaCO2 as best
fit (Figs. 3 and 5). Hence, at lower levels of PaCO2 (for the
ranges studied) there was an increase in the relative power of
the delta band without much change in the interburst interval. However, at higher levels of PaCO2, the relative power of the

delta band decreased with dramatic increases in interburst
interval.
The relationships were explored between PaCO2 and the

relative power of the delta band and P90 interburst interval. The
relative power of the delta band decreased below its lower
normal limit of 62% on day one when PaCO2 was more than 55
mm Hg and reached its upper normal limit of 76% when
PaCO2 was 24 mm Hg. The P90 interburst interval remained
within normal limits on the first day of recording at low levels

Table 1. Demography of cohort studied (n � 32)

Characteristics Median (range)

Gestation (wks) 27 (24–30)
Male:Female 17:13
Birth weight (g) 935 (528–1490)
5 minute Apgar 8 (5–10)
Cord base excess �1.9 (�1.3 to �9.6)

Table 2. Median (range) of acid base, blood pressure and
ventilatory status for each day of recording

Characteristics Day 1
(n � 32)

Day 2
(n � 32)

Day 3
(n � 32)

Age (hours) 11 (4–16) 31 (24–46) 54 (48–70)
PaO2 (mm Hg) 59 (40–143) 54 (40–156) 53 (40–106)
Arterial pH 7.3 (7.2–7.5) 7.3 (7.2–7.4) 7.3 (7.1–7.5)
PaCO2 (mm Hg) 39 (24–58) 43 (24–58) 40 (24–70)
Mean BP (mm Hg) 34 (23–52) 41 (26–51) 44 (35–53)
MAP (cms of H2O) 7 (4–16) 5 (0–11) 5 (0–13)

MAP, mean airway pressure; BP, blood pressure.

Figure 2. Examples of EEG trace showing changes in relation to PaCO2.
Traces were recorded from three different infants of 26 – 27 wk’ gestation on
the first day after birth

Table 3. Relationship by stepwise linear regression and Pearson’s
correlation on the first day of birth

Outcome Day one Day two

n Slope
(beta)

p value n Slope
(beta)

p value

RP of delta band 32 �0.67 �0.001 32 �0.4 0.023
RP of beta band 32 0.5 0.004 32 0.33† 0.69
P90 IBI 32 0.71 �0.001 32 0.51 0.006
CFOE 22 �0.47 0.004 22 �0.23† 0.29

* There were no significant relationships between PaCO2 and the relative
powers of theta and alpha bands and the absolute powers of all bands).
† Pearsons correlation was used as there were no statistically significant

regression models.
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of PaCO2 and exceeded the upper limits when PaCO2 was
more than 55 mm Hg. The relative power of the delta band and
P90 interburst interval remained within normal limits on day
two despite a significant relationship with PaCO2.

DISCUSSION

Changes in background cerebral electrical activity have been
observed in association with changes in PaCO2 during the first
three days after birth in very low birth weight infants. PaCO2

appears to have an important effect on cerebral electrical

activity and fractional oxygen extraction in very immature
infants during the first days after birth. The effect was greatest
on the first day, diminished progressively and was no longer
apparent on day three.
Lower levels of PaCO2 were associated with increased

CFOE and slowing of the EEG while higher levels of PaCO2

were associated with EEG signal suppression. With hypocarbia
there was an increase in the relative power of the delta band
and a decrease in the relative powers of the beta and alpha
bands, suggested slowing of the EEG. This was confirmed by
visual inspection of the unprocessed EEG which showed slow-
ing that was manifested as smooth slow waves sometimes
called delta waves with attenuated fast frequency activity
(Trace 1 of Fig. 2). Hypercarbia was associated with prolonged

Figure 3. Relationship between PaCO2 and the relative power (RP) of all EEG frequency bands on day one, showing the regression line of best fit with 95%
confidence interval. The dotted lines indicate normal ranges of the relative power of the frequency bands (10th–90th centile). A. PaCO2 and the relative power
(RP) of the EEG delta frequency band B. PaCO2 and the relative power (RP) of the EEG theta frequency band. C. PaCO2 and the relative power (RP) of the
EEG alpha frequency band D. PaCO2 and the relative power (RP) of the EEG beta frequency band.

Figure 4. Best fit relationship between PaCO2 and P90 interburst interval (IBI)
on day one using cubic regression model with 95% confidence intervals. The
dotted lines indicate the normal range of the P90 interburst interval (10

th–90th

centile)

Figure 5. Best fit relationship between PaCO2 and CFOE on day one with 95%
confidence intervals.
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interburst intervals, suggesting suppression of EEG. This was
shown by both quantitative analysis of the artefact free EEG
trace and visual inspection of the unprocessed trace (Trace 3 of
Fig. 2). The reasons for the EEG changes seen in these very
immature infants are likely to be different for hypo- and hyper-
carbia. In this discussion the possible mechanisms for each
condition and the implications for clinical practice are explored
followed by a critique on the methodology used.
The slowing of EEG and increased CFOE observed at lower

levels of PaCO2 is likely to be the result of decreased cerebral
oxygen delivery induced by hypocarbia. Hypocarbia reduces
cerebral oxygen delivery (a) by cerebral vasoconstriction re-
sulting in decreased cerebral blood flow (5–7,20,21) and (b) by
decreasing oxy-haemoglobin dissociation resulting in de-
creased oxygen availability (22). The EEG changes observed at
lower levels of PaCO2 were similar to those described in
relation to hypoxaemia by Roberton (1969) (23). He observed
that the newborn premature infant’s brain responded to hy-
poxaemia in a manner similar to that of the adult human with
an initial slowing of electrical activity followed by electrical
silence (23). Similar EEG changes, characterised by diffuse
and reversible slowing were observed in response to hyperven-
tilation in children (24,25). Although Gotoh et al. (1965)
considered that the slowing of EEG in this situation was a
direct result of cerebral ischaemic anoxia resulting from hypo-
capnic cerebral vasoconstriction (26), it is more likely, as
others have proposed, that these EEG changes were caused by
decreased cerebral oxygen delivery (27). In a group of preterm
infants below 33 wk’ gestation, visual evoked potentials to
flash stimuli were normal at PaCO2 levels between 17 and 48
mm Hg (28), but such responses may not represent general
cortical activity and can be elicited at the ocular end of the
neural pathway between the eye and the visual cortex (29).
Further evidence that slowing of the EEG is caused by

decreased cerebral oxygen delivery induced by hypocarbia is
given by the associated increase in CFOE observed at lower
levels of PaCO2 in both this and previous studies (8,30).
Studies on newborn lambs have also demonstrated a strong
negative correlation between CFOE and PaCO2 (31). As pre-
viously (8,30), blood pressure was found to have no effect on
CFOE.
The EEG changes and the increase in CFOE would be

appropriate responses to reduced cerebral oxygen delivery
caused by hypocarbia. The slowing of the EEG, which results
in decreased oxygen consumption, is likely to be an adaptive
response to decreased cerebral oxygen delivery. The mecha-
nisms by which this may occur include (a) depolarisation of
neurones by an increased extracellular potassium concentration
due to lactic acidosis resulting from decreased cerebral oxygen
delivery (31,32), and (b) blockage of presynaptic calcium
channels by adenosine which increases as ATP is consumed in
excess of production (32).
The limit of PaCO2 below which cerebral damage may occur

is of interest to clinicians, but the present study gives no
answer. The EEG changes of slowing with attenuated fast
frequency activities noted in relation to hypocarbia are not
invariably associated with an adverse neurologic outcome.
Watanabe et al. described normal neurodevelopment in 89% of

preterm infants when there was attenuated fast frequency
activity (33). Furthermore, only severe hypocarbia (less than
20 mm Hg) has been previously associated with periventricular
leukomalacia (2–4)—in the present study the lowest observed
PaCO2 was 24 mm Hg and none of the infants developed cystic
periventricular leukomalacia. Nevertheless, attenuation of fast
frequency activity in EEGs of premature infants should alert
clinicians and neurophysiologists to the possibility of de-
creased cerebral oxygen delivery and the dangers of hypocar-
bia.
Higher levels of PaCO2 were associated with suppression of

EEG. Suppression of EEG with hypercarbia and normal blood
oxygen levels has been demonstrated in animals and adult
humans (34–36). In rats with isolated increases in PaCO2 and
normoxemia, the amplitude of EEG also decreased progres-
sively as PaCO2 increased (36). In these studies, low frequency
waves were initially reduced in amplitude followed by those of
high frequency.
The observed effect of hypercarbia on the EEG in this

present study might be due to changes in membrane perme-
ability of cortical cells induced by hydrogen ions. In rats, there
was hyperpolarisation of the membrane potential of cortical
nerve cells when the PaCO2 level was increased (36), demon-
strating that such a hyperpolarisation was caused primarily by
a reduction of excitatory postsynaptic potential. The disappear-
ance of EEG activity may be caused mainly by reduced
excitatory postsynaptic activity.
Hypercarbia increases oxyhaemoglobin dissociation result-

ing in increased oxygen availability at the cellular level with
the reverse occurring during hypocarbia (22). Hypercarbia also
causes cerebral vasodilatation (37) resulting in increased cere-
bral blood flow and oxygen delivery (38,39). CFOE is there-
fore expected to fall with increasing PaCO2—an association
observed in both the present study and a previous study on
newborn lambs (40).
Although prolonged interburst intervals have been associ-

ated with adverse neurologic outcome (11,12) it is more likely
that the prolonged interburst interval associated with high
PaCO2 is reversible. Such reversibility has been demonstrated
in the preterm human and animal studies (35,41). Nevertheless,
levels of PaCO2 above 55 mm Hg on the first day after birth
appear to be associated with carbon dioxide induced narcosis
(42) and PaCO2 to be taken into account when interpreting the
EEG of premature newborn infants and assessing their neuro-
logic status.
In this study, the effect of PaCO2 on the EEG and CFOE was

detected only on the first two days after birth, and not on the
third. Furthermore, the effect of PaCO2 was stronger on day
one than on day two. These observations have to be explained
in the light of what is known about cerebral haemodynamics in
the very low birthweight infants during the immediate postna-
tal period. There is evidence that cerebral oxygen delivery
increases during the days after birth: CFOE decreases (30) and
there are increases in cardiac output (43), systemic blood
pressure (44) and cerebral blood flow (45). These observations
suggest that the infant is particularly vulnerable to decreased
cerebral oxygen delivery on the first day after birth.
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Several studies have shown that cerebral vasoreactivity to
changing PaCO2 increases with postnatal age (46–48). At first
sight, this observation would appear to be out of line with the
results of the present study. However, this study did not
investigate cerebral vasoreactivity directly. On day one, when
cerebral perfusion was the lowest, the effects of PaCO2 on the
EEG and on CFOE were most marked. However, on subse-
quent days, it is likely that cerebral perfusion improved and,
despite increased cerebral vasoreactivity, cerebral electrical
activity was maintained.
The effect of PaCO2 on the cerebral vasculature is likely to

be mediated through the alteration of intracerebral pH (49,50).
However, no relationship between blood pH and the EEG was
detected in this study. As PaCO2 diffuses more rapidly through
the blood brain barrier than hydrogen ions, PaCO2 may have
more of an effect on cerebral function than pH (51). Prolonged
periods of EEG discontinuity have been associated with
changes in pH, in a group of preterm infants between 24 and 32
wk’ gestation with metabolic and respiratory acidosis (41).
However, even in that study, in infants with respiratory acido-
sis and continuous transcutaneous carbon dioxide monitoring,
the onset of increase in EEG discontinuity closely mirrored the
increase in carbon dioxide (41). There was no demonstrable
effect on the EEG due to PaO2. However, the lowest level of
PaO2 studied was 40 mm Hg and a study on premature babies
showed that EEG changes occurred only at levels below 40
mm Hg (23).
In conclusion, lower levels of PaCO2 were associated with

slowing of EEG and increased CFOE. These observations
make it likely that the observed change was because of de-
creased cerebral oxygen delivery caused by vasoconstriction
due to hypocarbia. At higher levels of PaCO2 there was
suppression of EEG.
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