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Mitochondrial fatty acid oxidation disorders (FAOD) are
recessively inherited errors of metabolism. Newborns with
FAOD typically present with hypoketotic hypoglycemia, meta-
bolic acidosis, hepatic failure, and cardiomyopathy. Late presen-
tations include episodic myopathy, neuropathy, retinopathy, and
arrhythmias. Sudden unexpected death can occur at any age and
can be confused with sudden infant death syndrome. Some
FAOD are associated with intrauterine growth restriction, pre-
maturity, and pregnancy complications in the heterozygous
mother, such as severe preeclampsia, acute fatty liver of preg-
nancy (AFLP), or hemolysis, elevated liver enzymes, and low
platelets (HELLP) syndrome. Maternal pregnancy complications
occur primarily in mothers carrying a fetus with long-chain
L-3-hydroxyacyl CoA dehydrogenase deficiency or general tri-
functional protein deficiencies. FAOD as a group represent the
most common inborn errors of metabolism, and presymptomatic
diagnosis of FAOD is the key to reduce morbidity and avoid
mortality. The application of tandem mass spectrometry to new-
born screening provides an effective means to identify most
FAOD patients presymptomatically. At the beginning of 2005,
36 state newborn screening programs have mandated or adopted
this technology resulting in a marked increase in the number of
asymptomatic neonates with FAOD diagnosed. To ensure the

long-term benefits of such screening programs, pediatricians and
other health care providers must be educated about these disor-
ders and their treatment. (Pediatr Res 57: 78R–86R, 2005)
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HMGCL, 3-hydroxy-3-methylglutaryl-CoA lyase
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Fatty acids constitute the largest energy reserve in the
body and play a crucial role in supplying energy-yielding
substrates during periods of fasting and stress through the
�-oxidation pathway (1). FAO provides nearly 80% of
energy to organs like heart, liver, and skeletal muscles,
especially during fasting when tissue glycogen stores be-

come depleted. The �-oxidation pathway also generates
ketone bodies, which are used by peripheral tissues and
brain (2). This metabolic pathway is critical for the neonate
who has limited glycogen reserve and a high metabolic rate
leading to rapid metabolic decompensation if there is any
perturbation of individual enzymes (3). FAOD are poten-
tially fatal autosomal recessive disorders and are now diag-
nosed frequently in the perinatal and infantile periods.
Mothers heterozygous for a FAOD and pregnant with an
affected fetus may develop severe preeclampsia, AFLP, and
the HELLP syndrome, and may deliver a premature, intra-
uterine growth-restricted (IUGR) infant (4).

Received December 15, 2004; accepted January 19, 2005.
Correspondence: Prem Shekhawat, M.D., Department of Pediatrics, Section of Neona-

tology, BIW 6033E, Medical College of Georgia, Augusta, GA 30912; e-mail:
Pshekhawat@mail.mcg.edu
Supported in part by a combined intramural grant of University System of Georgia and

National Institutes of Health grants HL 5R01DK061762-05 and HD 048867-01.

0031-3998/05/5705-0078R
PEDIATRIC RESEARCH Vol. 57, No. 5, Pt 2, 2005
Copyright © 2005 International Pediatric Research Foundation, Inc. Printed in U.S.A.

ABSTRACT

78R



The first genetic defect in fat oxidation was described in
1973, involving a patient with what is now known as carnitine
palmitoyltransferase II (CPT II) deficiency (5,6). Since that
time, there has been a steady increase in discovery of newer
FAOD and an exponential rise in patients diagnosed with these
disorders (6). Advances in this field have recently been facil-
itated by the availability of MS/MS technology with which a
single analysis provides a clue as to the type of FAOD the
patient may have. Here we review this seemingly complex
subject, and discuss its likely impact on health care of newborn
infants and their mothers in the near future.

THE MITOCHONDRIAL �-OXIDATION PATHWAY

Figure 1 represents a schematic of the mitochondrial
�-oxidation pathway starting with uptake of fatty acids and
carnitine into the cell, transfer of fatty acid from the cytosol
into mitochondria, and entry into the �-oxidation spiral.
Medium- and short-chain fatty acids are transported directly
into the cytosol and mitochondria, but long-chain fatty acids
and carnitine are transported by specific plasma membrane
transporters like fatty acid transporter (FAT), and fatty
acid-binding protein (FABP) (7–9). Carnitine a key factor in
facilitating entry of long-chain fatty acids into the mito-
chondria is transported into the cell through its transporter
OCTN2 (10). Activated fatty acyl-CoA are converted to
carnitine esters by carnitine palmitoyltransferase I (CPT I),
transferred across the mitochondrial membranes by carni-
tine-acylcarnitine translocase (CACT), and fatty acyl-CoA
reconstituted by CPT II (11).
The initial step in the FAO spiral is the acyl-CoA dehydroge-

nase reaction catalyzed by the homologous flavoprotein-linked
(FAD) enzymes MCAD, LCAD, and VLCAD and leads to
formation of a 2,3-enoyl-acyl-CoA (12). The second step is the
conversion of a 2,3-enoyl-acyl-CoA to a 3-hydroxyacyl-CoA
catalyzed by 2,3-enoyl-CoA hydratase. The third step of the spiral

is the conversion of 3-hydroxyacyl-CoA to 3-ketoacyl-CoA cat-
alyzed by the two homologous enzymes SCHAD and LCHAD,
and, in the final step, one acetyl-CoA molecule is removed from
the 3-ketoacyl-CoA by the two homologous enzymes, short-chain
3-keto-acyl-CoA thiolase (SKAT) and long-chain 3-keto-acyl-
CoA thiolase (LKAT), respectively. For longer chain fatty acids,
the latter three steps of this pathway are catalyzed by the mem-
brane-bound MTP, a hetero-octameric complex in which the
�-subunit contains the LCHAD and hydratase activities and the
�-subunit contains the long-chain 3-ketoacyl-CoA thiolase activ-
ity. The end result of each cycle of �-oxidation is production of a
shortened acyl-CoA that reenters the �-oxidation spiral within the
mitochondrial matrix and one molecule of acetyl-CoA. Acetyl-
CoA may be used for steroidogenesis, enter the TCA cycle, or
become transformed into ketone bodies in the liver by the action
of 3-hydroxy-3-methylglutaryl-CoA synthetase (HMGCS2) and
3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL) (13). The
FAD-linked dehydrogenases (MCAD, LCAD, and VLCAD)
generate electrons which are transferred to ubiquinone via
the electron transfer flavoproteins (ETF) and ETF dehydro-
genase (ETFDH). Electrons from NADH-linked dehydroge-
nation (SCHAD and LCHAD) are shifted to complex 1 in
the respiratory chain eventually leading to production of
energy as ATP.
Unsaturated fatty acids with cis double bonds are also

degraded by mitochondrial �-oxidation and require two auxil-
iary enzymes such as enoyl-CoA isomerase and dienoyl-CoA
reductase (13). Our current knowledge of cellular uptake
mechanisms, intracellular trafficking, degradation, and utiliza-
tion of long-chain fatty acids is incomplete. The fact that there
are many patients with clinical presentations indicative of a
FAOD in whom FAO enzymatic activity analyses and molec-
ular studies of all known enzymes fail to reveal any abnormal-
ities, suggests that additional enzymes remain undiscovered.
The opposite situation of known or newly detected fatty acyl-
CoA dehydrogenases with yet-to-be-defined clinical deficiency
states further underscores the current lack of understanding of
this complex metabolic pathway (14,15).

THE MITOCHONDRIAL FATTY ACID
�-OXIDATION DISORDERS

More than 20 defects in fatty acid transport and mitochon-
drial �-oxidation are known and all are inherited as autosomal
recessive disorders (1). The genes encoding most of the known
enzymes are known and mutations have been discovered in
affected patients. The clinical presentations of FAOD vary
from a neonatal onset with severe metabolic acidosis, hypo-
glycemia associated with absent or inadequate ketone produc-
tion, hyperammonemia, cardiomyopathy, liver failure, and
sudden death, to a late onset with episodic myopathy, neurop-
athy, and retinopathy. FAOD become apparent during periods
of increased energy demands, such as prolonged fasting, febrile
illness, or any other stressful situation during which the inabil-
ity to use fatty acids causes metabolic decompensation. FAOD
have been implicated as the cause of death in 5–8% cases of
sudden unexpected death in infancy based on metabolic studies

Figure 1. The mitochondrial fatty acid �-oxidation pathway. This schematic
shows the various enzymes involved in cellular uptake of fatty acids and
carnitine, followed by their transport into the mitochondria and subsequent
�-oxidation. Reproduced with permission from Am J Physiol Endocrinol
Metab 284:E1098–E1105. Copyright © 2003 the American Physiological
Society.
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of surviving siblings, “near-miss” SIDS cases, and postmortem
studies (16).
The genetic defects and clinical and biochemical features of

major FAOD are summarized in Table 1. Incidences of individual
FAOD may vary from 1:8000 to 1:100,000; but, as a group,
FAOD represent the most common metabolic disorder with se-
vere consequences for affected individuals. More detailed descrip-
tions of individual FAOD are available in recently published
reviews and book chapters (1–3,17,18).

PREECLAMPSIA, AFLP, AND HELLP SYNDROME

Preeclampsia is characterized by pregnancy-induced hyper-
tension, edema, and proteinuria and occurs in up to 5–8% of all
pregnancies (19). In a small percentage of cases, preeclampsia
progresses to severe eclampsia with marked hypertension,
encephalopathy, and seizures. Severe preeclampsia in some
cases is associated with HELLP syndrome, with an incidence
of 1–6 cases per 1000 deliveries (20,21). AFLP is another
severe condition of pregnancy with a prevalence ranging from
1 in 10,000 to 1 in 15,000 pregnancies and carries a high
mortality (21). Preeclampsia, HELLP syndrome, and AFLP
have been suggested to represent a spectrum of the same
pathologic process (21–24).
HELLP syndrome is characterized by microangiopathic he-

molytic anemia, elevated liver enzymes, and thrombocytope-
nia. Typically, patients with HELLP syndrome present in their
third trimester (28–34 wk gestation) with nausea, vomiting,
headache, hypertension, proteinuria, and right upper quadrant
pain, and disseminated intravascular coagulation in advanced
cases (22). Women with HELLP syndrome have a higher
incidence of fetal distress and cesarean section and often give
birth to a preterm, IUGR infant with lower Apgar scores in
about a third of cases (25). AFLP is the rarest of the three
maternal pregnancy complications. The potentially fatal clini-
cal presentation of AFLP is similar to HELLP syndrome but
jaundice is frequently seen in these patients. Fatty liver has
been demonstrated in some cases where a biopsy was per-
formed. In one recent analysis of multiple studies, AFLP was
associated with maternal hypoglycemia in nearly 50% of pa-
tients, disseminated intravascular coagulopathy (DIC) in 88%,
encephalopathy in 38%, and death in 6% (21). AFLP led to a
high perinatal mortality (15%) and 70% of infants were born
preterm (26,27). AFLP and HELLP have a similar clinical
presentation with elevated liver enzymes and ultrasound find-
ings of increased echogenicity, and only histologic investiga-
tion of a liver biopsy allows an unequivocal diagnosis.

ASSOCIATION OF FETAL FAOD AND MATERNAL
PREECLAMPSIA, AFLP AND HELLP SYNDROME

During pregnancy, increased activity of hormone-sensitive
lipase in combination with gestational insulin resistance causes
an increase in the levels of FFA in maternal blood. The
maternal liver responds to these metabolic changes by synthe-
sizing triglycerides, which are secreted as VLDL and LDL that
are taken up by placenta. In the last trimester, greater metabolic
demands of the fetus shift maternal metabolism toward keto-
genesis and the fetus uses maternal ketone bodies for lipogen-

esis as well as for energy production. Therefore, defects in
FAO in the fetoplacental unit become clinically evident at this
stage of gestation (28). These associations of placental com-
plications and poor fetal and neonatal outcomes have been
described with defects in fatty acid transport across mitochon-
drial membranes and in enzymes involved in mitochondrial
FAO (Fig. 2).
Genetic defects in FAO within the mitochondria have been

shown to be associated with maternal, placental and fetal
complications. The first report of this association was pub-
lished by Wilcken et al. (29) in 1993, in which 11 pregnancies
in five mothers resulted in six babies with LCHAD deficiency.
Each of these pregnancies was complicated by maternal fatty
liver, HELLP syndrome, and preterm delivery. Wilcken and
colleagues based their diagnosis of LCHAD deficiency on
3-hydroxydicarboxylic aciduria. In 1995, Sims et al. (30) first
defined a molecular basis of this association in three families
using DNA analysis. In another large case series, Strauss and
co-workers (31) found that 62% of mothers carrying an af-
fected fetus with LCHAD deficiency developed AFLP or the
HELLP syndrome during their pregnancies. Since that time,
similar associations have been described for defects in other
enzymes in the FAO pathway. In isolated LCHAD (24,30–34)
or general trifunctional protein (TFP) (24,31,32,35) deficiency,
maternal liver disease is common, occurring in approximately
20–70% of affected pregnancies. MCAD (36), short-chain acyl
CoA dehydrogenase (SCAD) (37,38), and CPT-1 (39) defi-
ciencies have been associated with maternal liver disease in
single case reports.

ROLE OF FAO IN THE PLACENTA AND FETUS
DURING GESTATION

Although studies in humans with genetic defects in FAO
have steadily generated evidence for an essential role of fatty
acid oxidation in the fetoplacental unit, recent basic science
work has demonstrated that human placenta indeed, expresses
six key enzymes of the �-oxidation pathway. Crude human
placental extracts showed high activity of these enzymes,
comparable to skeletal muscle; and isolated placental tropho-
blast cells are able to use labeled long-chain fatty acids,
palmitate, and myristate in substantial quantities (40–42). As
shown in Figure 2, when a heterozygous mother is pregnant
with an affected fetus, the placenta and the fetus are unable to
optimally oxidize fatty acids, potentially leading to transfer of
metabolic intermediates to the maternal circulation. These
compounds have been postulated to cause maternal preeclamp-
sia, HELLP syndrome, and AFLP. In a recent study of 33
preeclamptic mothers, maternal plasma had significantly
higher long and very-long chain acylcarnitines compared with
controls (43). Although the etiology of preeclampsia remains
unknown, this indirect evidence suggests that perturbation of
mitochondrial FAO may be partially responsible for this
condition.
Several other elegant animal studies have produced unequiv-

ocal data demonstrating that fatty acid metabolism is critical
for placental function and fetal development. Ablation of genes
encoding enzymes involved in FAO such LCAD, VLCAD, and
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TFP is associated with increased in utero fetal demise, reduced
fertility, and fetal growth restriction (44–46). Similarly, abla-
tion of the genes coding for the transcription factors peroxi-
some proliferator-activated receptors �/� and � (PPAR�/� and
PPAR�) and the co-activator of PPAR� (PGC-1) that are the
master regulators of fatty acid metabolism, results in embry-
onic lethality. More importantly, inactivation of these tran-
scription factors leads to specific placental phenotypes in
which the syncytiotrophoblast, the functional unit of the pla-
centa, fails to develop and sustain pregnancy (47–49). Abla-
tion of the gene encoding fatty acid synthase also leads to fetal
demise (50). Thus, fatty acids play a critical role in placental
development and function and in fetal well being.

LABORATORY INVESTIGATION OF FAOD

The biochemical features of FAOD commonly seen in clin-
ical situations include hypoglycemia without evidence of ap-
propriate ketone body production, lactic acidosis, and elevated
liver enzymes like AST and ALT. Along with clinical features
listed earlier, these laboratory abnormalities should prompt
immediate work up for a FAOD, including at the least urine
organic acids, and plasma or blood acylcarnitine analysis.
Additional biochemical investigations, such as urine acyl-
glycine and plasma FFA profiling, as well as determination of
total fatty acids, and free and total carnitine in plasma should
also be considered (1–3). Measurement of free and total car-

nitine in urine is only recommended in a patient at risk of
primary carnitine uptake defect and only before L-carnitine
supplementation. Samples for analysis should preferably be
procured early during the acute manifestation because success-
ful reversal of catabolism may normalize the biochemical
phenotype of several FAOD. If the patient is doing well,
samples should be collected before a meal. Fasting tests, which
are potentially life threatening, can be avoided in most patients
and should only be conducted in controlled settings and with
i.v. access. Biochemical investigations during a metabolic
crisis are usually suggestive, if not diagnostic, of a particular
FAOD, and allow for initiation of appropriate treatment.
Definitive diagnosis of individual FAOD is accomplished by

measurement of individual enzyme activities and FAO sub-
strate utilization rates in fibroblasts derived from a small skin
biopsy. Molecular genetic analysis of genomic DNA can often
define the exact defect and is particularly helpful when an
FAOD is caused by an enzyme not expressed in fibroblasts.
Once a FAOD has been diagnosed, the above mentioned
analyses can aid in determination of treatment efficacy. For
example, fatty acid profiling can be used to avoid nutritional
deficiencies of essential fatty acids by overt dietary fat restric-
tion (51,52).
The metabolic work-up of patients who suffered a sudden

unexpected death (“metabolic autopsy”) should include the
investigation for a FAOD because they have been identified as
the underlying cause of death in 5–8% of cases (53). This is
facilitated by acylcarnitine analysis that can be performed most
efficiently on small samples of blood and bile collected post-
mortem and dried on filter paper (Table 2) (54).
To identify and initiate treatment of patients with an FAOD

before the development of symptoms, acylcarnitine analysis by
MS/MS can also be performed on newborn screening blood
spots. The ongoing introduction of MS/MS into newborn
screening laboratories since the early 1990s has markedly
increased the number of diagnosed and successfully treated
patients with a FAOD (55).
Once a diagnosis has been made, family investigations and

genetic counseling should be pursued. Prenatal diagnosis of
most FAOD is possible by molecular genetic, enzyme, or
metabolite analyses using chorionic villi, amniotic fluid, or
amniocyte cultures (56). Although FAOD are associated with
high morbidity and mortality, it must be remembered that some
FAOD, like MCAD deficiency, which have an excellent prog-

Figure 2. Schematic depicting the transfer of long-chain fatty acids and
acylcarnitines from the affected fetus and placenta to the haplo-insufficient
mother. This mechanism has been postulated to cause liver disease during
pregnancy, which includes HELLP syndrome and AFLP.

Table 2. Summary of studies of the occurrence of FAOD in cases of sudden unexpected death

Study (reference) No. Sample Comments

Boles et al. (16) Maryland
and Connecticut

418 SIDS Retrospective study of SIDS (313),
accident or abuse (34), 45 cases with
infections

All cases of accident or abuse tested negative, 14 profiles
were diagnostic for FAOD or OA (4.5%). FAOD
diagnosed were MCAD, VLCAD, LCHAD, and
carnitine uptake defect

Chace et al. (77) US and
Canada

7058 Retrospective study on filer paper blood
spots from infants who died due to
unknown cause

66 specimens (0.93%) tested positive, 34.8% cases had
MCAD deficiency, 13.6% had VLCAD, 9% had
CPT-II and CACT and 6% LCHAD deficiency

Wilcox et al. (78) Oregon 247 SUDI Retrospective postmortem study on
newborn screening Guthrie card of
SUDI cases over 5 y

MS/MS analysis found that 1.2% cases of SUDI were
due to FAOD

SUDI, sudden unexpected death in infancy.
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nosis when treatment consisting of avoidance of fasting is
initiated at birth, are questionable candidates for invasive
prenatal diagnostic procedures or pregnancy termination.

MS/MS

Mass spectrometry was first introduced in clinical medicine
in the 1960s (57) to diagnose organic acidemia by gas chro-
matography-mass spectrometry (GC-MS). In the 1980s,
MS/MS was applied to the diagnosis of inborn errors of
metabolism by acylcarnitine analysis (58). Due to the devel-
opment of affordable, computer-driven, and relatively user-
friendly instruments, MS/MS as a highly sensitive and versatile
analytical technology is becoming an integral part of biochem-
ical genetics, clinical chemistry, and newborn screening labo-
ratories, as attested by several excellent reviews published in
recent years (59–62). This analytical technique measures the
weight of ions derived from a neutral compound after ioniza-
tion. Most instruments currently used in clinical laboratories
consist of two triple-quadrupole mass spectrometers in series

separated by a collision cell. The liquid samples are introduced
into the first MS after ionization that occurs in the ion source.
The quadrupoles consist of four rods that separate the ions by
their mass-to-charge ratio (m/z). When passing through the
collision cell, the ions are fragmented by collision with an inert
gas (i.e. nitrogen) and the resulting ion fragments’ weights are
determined by the second MS. Analysis, data acquisition, and
generation of a mass spectrum are completed in minutes. Due
to the unique fragmentation pattern of molecules, only limited
sample clean-up and preparations are typically necessary (61).

MS/MS IN NEWBORN SCREENING FOR FAOD

Due to the high sensitivity of MS/MS instruments and the
availability of isotopically labeled internal standards, research-
ers at Duke University Medical Center (Durham, NC) in the
early 1990s began to study the possibility to use MS/MS for the
analysis of acylcarnitines and amino acids in dried blood spots
collected for newborn screening. After a short sample prepa-
ration, which consists of the extraction of analytes (acylcar-

Table 3. Summary of reports of prospective newborn screening using MS/MS

Study (reference) N Sample Comments

Millington and Koeberl 69
North Carolina

237,774 Summary of 2-year experience of
prospective newborn screening
between 04/1999–04/2001

Overall incidence of inborn errors of metabolism
detected by MS/MS was 1 in 4,400 newborns
with MCAD deficiency being the most common
(1:13,600)

Wilcken et al 55
NSW, Australia

362,000 Prospective newborn screening
study between 04/1998 and
03/2002

Rates of 31 disorders compared to 16 previous
years. Rate of diagnosis of MCAD and other
FAOD increased significantly. Cost of each
screen was $0.70, cost of confirmatory test was
$217 & cost of detecting one case $2519.

Hoffman et al 70
Southern Germany

382,247 Prospective newborn screening
1999–2000, compared to
high-risk screening of
symptomatic patients

Overall frequency of FAOD & OA was 1:8000
using MS/MS, 10 FAOD & OA more common
than PKU. MS/MS technique three times more
sensitive in diagnosis. MCAD accounted for
63% cases, other FAOD for 8.7% cases.

Insinga et al 74
Wisconsin

— Estimates study using historical
data

Wisconsin state screens for 14 diseases by MS/MS.
Adding MCAD diagnosis alone makes this
screen cost effective. Cost per assay was $3.99
per sample with a cost-effectiveness ratio of
$41,862/quality of life year gained.

Shigematsu et al 79
Japan

102,200 Prospective newborn screening
between 04/1997 and 07/2001,
compared to high-risk screening
of symptomatic patients

Pilot newborn screening study of MS/MS
comparing it to a selective screening study.
Positive screen found in 1:8527 patients, overall
recall rate was 0.58% and a false positive case
rate of 0.39%.

Andresen et al 80
Pennsylvania, Ohio, Florida,
North Carolina

930,078 Prospective study determining
incidence and genotype of
MCAD deficient patients detected
by a private newborn screening
laboratory (NeoGen Screening,
Inc., Bridgeville, PA)

MCAD deficiency found in 1/15,001 samples
screened, positive samples confirmed by
mutation analysis.

Carpenter et al 81
Australia

275,653 Prospective newborn screening for
MCAD and analysis of clinically
diagnosed patients

Most patients with symptomatic MCAD deficiency
could be detected by newborn screening. 90%
patients with MCAD deficiency were
homozygous for the common AG985 mutation
with a carrier frequency of 1:86.

Zytkovicz et al 82
New England

164,000 Summary of 2-year experience of
prospective newborn screening
between 1999 and 2001 by a
regional laboratory.

22 infants with AA disorders, 20 infants with
FAOD were detected. 3% of samples were
flagged as abnormal. Half of abnormal flagged
infants required neonatal intensive care or had
low birth weight.

NB � newborn.
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nitines and amino acids) from small (typically 1⁄8–3⁄16 in) dried
blood spot discs punched from the screening card, the addition
of isotopically labeled internal standards, and esterification
with butanol-HCl, Chace and colleagues (63) first demon-
strated the feasibility of MS/MS-based screening for phenylk-
etonuria. The first FAOD that was demonstrated to be detect-
able by MS/MS in newborn screening blood spots was MCAD
deficiency (64). Newborn screening for MCAD deficiency by
MS/MS is now included in 34 states in the United States
(http://genes-r-us.uthscsa.edu/) and many other parts of the
developed world (65). Twenty-eight of these 34 states also
mandate the inclusion of a variable number of additional
FAOD, organic acidemias, and amino acidemias into their panels
because MS/MS analysis allows the simultaneous detection of at
least 30 different inborn errors fatty acid and amino acid metab-
olism in the same sample (http://genes-r-us.uthscsa.edu/). Table 3
summarizes recent reports about individual programs’ experi-
ences with MS/MS. MCAD deficiency is the most frequently
detected FAOD by these programs that screen primarily white
populations. Surprisingly, LCHAD deficiency appears unexpect-
edly rare among the detected FAOD. The reason for this is not
entirely clear as several publications were able to demonstrate
pathologic acyl-carnitine profiles when retrospectively analyzing
the original newborn screening samples of patients who were
diagnosed either during an acute episode or postmortem (66–68).
Part of the problem may be the analytical platform represented by
MS/MS, which currently does not provide “plug-and-play” char-
acteristics and is fundamentally different to the traditional single-
analyte screening assays, in particular the original Guthrie test, a
bacterial inhibition assay. MS/MS not only requires experience
with this technology but also with the interpretation of metabolite
profiles generated for acylcarnitines and amino acids.
The first pilot studies using MS/MS for newborn screening

were conducted in North Carolina, and the first report of North
Carolina’s state newborn screening program’s experience in-
cluded 237,774 infants screened over a 2-y period. The incidence
of MCAD was found to be 1 in 13,600 live births, with an overall
incidence of inborn errors of fatty acid and amino acid metabo-
lism detected by MS/MS of 1 in 4,400 (69). The newborn
screening program of New South Wales, Australia, reported their
findings in 362,000 newborns over a 4-y period. Analysis of data
showed that rate of detection of MCAD and other FAOD in-
creased significantly compared with the time before expanded
newborn screening (55). MS/MS screening of 382,247 subjects
from Bavaria, Germany, compared with 844,575 subjects among
whom diagnosis or ascertainment was done after symptomatic
presentation of FAO showed a much higher yield of diagnosis
when MS/MS technology was used (70).

LOGISTICAL, FINANCIAL, AND ETHICAL
CONSIDERATIONS FOR THE INCLUSION OF FAOD

IN NEWBORN SCREENING PROGRAMS

Screening of newborn infants for genetic diseases has been
in existence for 40 y with the objective of identifying effec-
tively treatable disorders in the presymptomatic stage to avoid
long-term morbidity and mortality by early initiation of treat-
ment (71). Selection of the disorders to be screened has been at

the discretion of each state. However, with the advent of
MS/MS technology and its ability to identify more than 30
different inborn errors of metabolism simultaneously in a small
blood spot sample, the discrepancies between states become
more pronounced. The US Department of Health and Human
Services has therefore established the Secretary’s Advisory
Committee on Heritable Disorders and Genetic Diseases in
Newborns and Children. This committee has recently submit-
ted their recommendations for a universal newborn screening
panel listing 30 disorders (http://www.modimes.org/
professionals/681_1200.asp).
Newborn screening by MS/MS by individual state screening

programs involves the purchase and maintenance of the nec-
essary equipment, training of personnel, and establishment of a
system of follow-up by experts for diagnosed or suspected
patients. Although this suggests increased costs to states’
health-care systems, a recent study showed that the incremental
cost of MS/MS screening over and above traditional newborn
screening assays used in state laboratories is only about $0.70
per sample (55). Moreover, thorough cost-benefit analysis
studies demonstrate definite benefits of early diagnosis by
avoidance of long-term care costs (55,72–74) for FAOD pa-
tients who suffer from neurologic sequelae of their disease
manifestation. Newborn screening clearly prevents death and
disability in most patients. A recent study from Boston has
reviewed this aspect of screening and found that proactive
newborn screening identified significantly more disorders and
reduced the rate of mental retardation and parental anxiety
among screened population (75).
Expanded MS/MS-based newborn screening, despite the

modest extra costs involved and some limitations, has revolu-
tionized our ability to diagnose FAOD disorders early in life.
The benefits to society of expanded newborn screening are
evident, and this screening should be adopted as a standard of
care. The often-voiced concern about a lack of specialists
available for follow-up of patients identified by newborn
screening seems unwarranted. However, the benefits of new-
born screening for the individuals, their families, and society
can only be achieved in a newborn screening system charac-
terized by effective communication between the public health
department that must provide the framework, the screening
laboratories that must provide reliable results, the primary care
providers, and the metabolic specialists (76). At the same time,
there is an urgent need to impart extensive education to health-
care professionals about these disorders hitherto considered
rare, their outcomes, and the appropriate follow-up and pre-
ventive management. Expanded newborn screening with
MS/MS will bring new challenges to our health-care systems,
and there is need for open communication between all involved
in the screening process to formulate a rational approach to
FAOD diagnosis and management.
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