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In hyperprostaglandin E syndrome (HPGES) and classic Bar-
tter syndrome (cBS), tubular salt and water losses stimulate renin
secretion, which is dependent on enhanced cyclooxygenase-2
(COX-2) enzymatic activity. In contrast to other renal COX
metabolites, only prostaglandin E2 (PGE2) is selectively up-
regulated in these patients. To determine the intrarenal source of
PGE2 synthesis, we analyzed the expression of microsomal PGE2

synthase (mPGES; EC: 5.3.99.3), whose product PGE2 has been
shown to stimulate renin secretion in vitro. Expression of
mPGES was analyzed by immunohistochemistry in eight patients
with HPGES, in two patients with cBS, and in six control
subjects. Expression of mPGES immunoreactive protein was
observed in cells of the macula densa in five of eight HPGES
patients and in one of two cBS patients. Expression of mPGES
immunoreactive protein was not observed in cells associated

with the macula densa in kidneys from control subjects without
a history consistent with activation of the renin angiotensin
system. Co-induction of COX-2 and mPGES in cells of the
macula densa suggests that PGE2 activates renin secretion in
humans. (Pediatr Res 55: 261–266, 2004)

Abbreviations
cBS, classic Bartter syndrome
COX, cyclooxygenase
HPGES, hyperprostaglandin e syndrome
mPGES, microsomal prostaglandin E2 synthase
PG, prostaglandin
RAS, renin-angiotensin system
SLT, salt-losing tubulopathy
TAL, thick ascending limb of Henle’s loop

Hyperprostaglandin E syndrome (HPGES) or antenatal Bar-
tter syndrome with and without sensorineural hearing loss and
classic Bartter syndrome (cBS) belong to the heterogeneous
group of hypokalemic salt-losing tubulopathies (SLTs) (1).
The term hyperprostaglandin E syndrome was introduced to
emphasize the critical role of prostaglandin E2 (PGE2) in both
pathogenesis and treatment of these congenital tubulopathies
(2). Patients who have HPGES show massive salt and water
losses closely resembling chronic furosemide treatment (3, 4).
At the molecular level, loss of function mutations have been
identified in genes essential for salt reabsorption in the thick
ascending limb of Henle’s loop (TAL): two gene products,
namely NKCC2 (5, 6) and ROMK (7, 8), are expressed in the
luminal membrane of the TAL. NKCC2 is the furosemide-

sensitive sodium-potassium-chloride co-transporter, which is
dependent on the recycling of potassium into the luminal
compartment mediated by ROMK potassium channel. A third
gene product shown to be mutated in cBS, namely ClCKb (9,
10), allows basolateral exit of chloride into the interstitium.
Finally, loss of function mutations in the gene encoding Bar-
ttin, a �-subunit of CLCKa and CLCKb, have recently been
shown to cause HPGES associated with sensorineural deafness
(11–13).

Similar to normal subjects who are treated with furosemide
(3, 4), patients with HPGES show increased urinary excretion
of PGE2 (2). Inhibition of PGE2 synthesis by nonsteroidal
anti-inflammatory drugs such as indomethacin effectively re-
duce salt and water losses in these patients and is therefore
standard treatment (2).

PG synthesis is initiated by the bifunctional enzyme cyclo-
oxygenase (COX) (14). Two COX isoforms are known:
COX-1, which is expressed constitutively in almost all organs,
and COX-2, which can be induced by various stimuli (15). In
contrast to healthy control subjects (16), patients with HPGES
or cBS show enhanced expression of the inducible COX-2 in
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the macula densa (17). The macula densa is a specialized
segment of the TAL and is thought to sense the luminal salt
concentration (18). In salt-depleted animals, COX-2–derived
products have been shown to mediate the compensatory acti-
vation of renin secretion, which ultimately results in salt and
water retention (19). Our finding of enhanced expression of
COX-2 in the macula densa in patients with hypokalemic SLT
and studies in salt-depleted animals provided the rationale for
switching patients with hypokalemic SLT from their standard
medication with the COX-unselective nonsteroidal anti-
inflammatory drug indomethacin to the COX-2 selective in-
hibitor rofecoxib. Rofecoxib turned out be as effective as the
unselective inhibitor indomethacin in ameliorating renal dis-
turbances as well as in suppressing the activated renin-
angiotensin system (RAS), proving that renin secretion is
accompanied by and dependent on enhanced COX-2 enzymatic
activity (20).

In contrast to ample evidence showing that COX-2 activity
stimulates renin secretion, little information exists on the na-
ture of prostanoids synthesized in the macula densa by COX-2
and stimulating secretion of renin from the juxtaglomerular
cells. Because the intrarenal synthesis of PGE2 is selectively
up-regulated in this group of congenital SLTs and PGE2 has
been shown to stimulate renin secretion in vitro (21), we
determined the intracellular source of PGE2 synthesis in these
patients. Various pathways result in PGE2 generation: the
immediate product of COX activity PGH2 is rapidly converted
nonenzymatically into PGE2 and PGD2 (14). Alternatively,
selective formation of PGE2 is ensured by two enzymes
namely a cytosolic PGE synthase (22) and a microsomal PGE
synthase (mPGES; EC: 5.3.99.3) (23), which both have re-
cently been cloned. Whereas the cytosolic PGE synthase is
thought to couple preferentially to COX-1, the mPGES and
prostacyclin synthase are functionally dependent on COX-2 in
vitro (22, 24). In adult mouse kidney, mPGES is expressed in
collecting ducts (25). In human kidney, Northern blot analysis
shows moderate expression of mPGES (23); however, a de-
tailed analysis of the intrarenal distribution of human mPGES
has not been performed yet. To analyze further the signaling
pathway from the macula densa COX-2 to renin secretion, we
mapped the intrarenal distribution of mPGES in control and
hypokalemic SLT subjects.

METHODS

Patients. Renal biopsies were performed in 1997 and 1998
during an indomethacin-free interval in children with geneti-
cally and clinically defined HPGES or cBS to evaluate the
renal side effects of long-term indomethacin treatment. Written
informed parental consent and oral assessment of the children
were obtained before enrollment (26). The genetic analysis of
the patients has been described elsewhere (6, 8, 9, 27); the
patient characteristics are shown in Table 1.

Biochemical analysis. For evaluating a possible relationship
between renal PGE2 synthesis and plasma renin levels, long-
term indomethacin treatment was discontinued 3 d before renal
biopsy, as described previously (20). Blood samples and
cooled 24-h urine collections were obtained before and 3 d
after withdrawal of indomethacin. Radioimmunologic standard
assays were used for analysis of plasma renin concentration.
Renal prostanoid levels were determined by gas chromatogra-
phy/tandem-mass spectrometry using a stable isotope dilution
assay, as described elsewhere (28). Reference intervals for the
excretion of PGs were previously described (29).

Histochemical analysis. Renal biopsies from patients with
congenital SLTs were routinely fixed in formalin. In addition,
we analyzed renal tissue (n � 6) from kidneys deemed unsuit-
able for kidney transplantation. Kidney were excluded from
transplantation because of vascular problems. Donor age
ranged between 39 to 58 y. Medical history did not indicate
conditions associated with salt or volume depletion in five
cases. One patient had congestive heart failure and required
multiple drugs, including furosemide, and an aortic balloon
pump for pressure support before death. Approval by the local
ethics committee was obtained (17).

Specificity of the antibodies. The specificity of the poly-
clonal anti–COX-2 antibodies using routinely formalin-fixed
human tissue has been shown in our previous studies (17). To
characterize the polyclonal anti-mPGES antibodies (Cayman
Chemical Company, Ann Arbor, MI, U.S.A.), we performed
various control experiments. Specificity of the anti-mPGES
antibodies was analyzed by Western blotting as described previ-
ously (25). Briefly, human embryonic kidney cells (HEK293)
were transiently transfected with an expression vector encoding
murine microsomal PGES (pCDNA3.1hmPGES) (25). Two mi-

Table 1. Patient characteristics, expression of COX-2, and mPGES protein in the macula densa in HPGES and cBS patients

Patient no.
Age

(years) Sex Affected gene COX-2 mPGES

HPGES1 15.6 F NKCC2 � �
HPGES2 15.1 F NKCC2 � �
HPGES3 12.8 M NKCC2 � �
HPGES4 6.2 F ROMK � �
HPGES5 13.2 M ROMK � �
HPGES6 15.4 M ROMK � �
HPGES7 16.0 M ROMK � �
HPGES8 2.0 M Barttin � �
cBS1 17.9 M ClCKB � �
cBS1 17.3 M ClCKB � �
Median 15.5

Data on COX-2 expression are derived from our previous study 17.

262 KÖMHOFF ET AL.



crograms of each cell lysate (mock and pCDNA3.1hmPGES
transfected cells) and 10 �g of a human lung cancer cell line A549
known to abundantly express mPGES (23) were separated on a
10% SDS-PAGE minigel. After transfer to a nitrocellulose mem-
brane, the membrane was washed three times with TBST [50 mM
of Tris (pH 7.5), 150 mm of NaCl, and 0.05% Tween 20] and then
incubated in blocking buffer (TBST and 5% Carnation nonfat dry
milk) for 1 h at room temperature. The membrane was then
incubated with the polyclonal anti-murine mPGES antibodies
diluted 1:2000 in blocking buffer overnight at 4°C. After three
washings in TBST, the membrane was incubated with a horse-
radish peroxidase–conjugated anti-rabbit secondary antibody (di-
luted 1:20,000 in TBST with 0.5% BSA; Jackson Immuno-
Research Laboratories, West Grove, PA, U.S.A.) for 1 h at room
temperature, followed by three 30-min washings. Antibody label-
ing was visualized by addition of chemiluminescence reagent
(Renaissance; DuPont NEN, Boston, MA, U.S.A.), and the mem-
brane was exposed to Kodak XAR-5 film.

Immunohistochemistry. Sections obtained from routinely
formalin-fixed tissue specimen were cut at 2- to 5-�m thick-
ness, deparaffinized in xylene, and incubated for 30 min in
methanol containing 0.3% H2O2 to block endogenous peroxi-
dase activity. Processing of paraformaldehyde-fixed adult
mouse kidney sections with the mPGES antibodies resulted in
specific labeling of collecting ducts, as shown in our previous
study (25) (data not shown). Preincubation of the mPGE
antibodies with the peptide used as immunogen at a concen-
tration of 2 �g/mL for 1 h at room temperature completely
blocked staining on mouse and human renal tissue (data not
shown). Anti–COX-2 antibodies were obtained from Santa
Cruz (Santa Cruz, CA, U.S.A.; goat polyclonal anti-human
cox-2: c-20, sc#1745, lot #J151). Antibodies required antigen
retrieval by microwaving slides for 3 min in PBS containing
0.1 M of sodium citrate (pH 6.0). Polyclonal anti-mPGES and
anti–COX-2 were diluted 1:200 and 1:1000, respectively, in
TBST [50 mM of Tris (pH 7.5), 300 mM of NaCl, and 0.05%
Tween 20] containing 1% BSA, 5% normal horse serum, and
1% nonfat dry milk. Sections were incubated at room temper-
ature overnight. Immunolabeling was detected using biotinyl-
ated rabbit anti-goat or donkey anti-rabbit antibodies followed
by visualization with an avidin-biotin horseradish peroxidase
labeling kit (Vectastain ABC Elite kit) and diaminobenzidine
staining. To co-localize both COX-2 and mPGES, we at-
tempted to visualize primary antibodies with immunofluores-
cent secondary antibodies. However, they failed because of the
low sensitivity of this approach compared with the enzymatic
procedure described above. Pictures were captured with a
digital camera (RT-Spot-Cam; Diagnostic Instruments, Vis-
itron-System, Munich, Germany), and color composites were
generated by using Adobe Photoshop v6.0 on a Power
Macintosh.

Statistical analysis. To analyze the correlation between the
percentage of indomethacin-induced inhibition of renal PGE2

synthesis with the degree of inhibition of plasma renin activity
by indomethacin as shown in Figure 1, we used the Spearman
correlation coefficient for nonparametric variables (SSPS for
Windows, v. 11.0).

RESULTS

The urinary excretion of PGE2 (patients: median, 29 ng ·
h�1 · 1.73m�2, range, 22–169 ng· h�1 · 1.73m�2; normal:
range, 4–27 ng· h�1 · 1.73m�2) and its major metabolite
PGE-M (patients: median, 963 ng· h�1 · 1.73m�2, range,
536–4610 ng· h�1 · 1.73m�2; normal: range, 62–482 ng· h�1

· 1.73m�2) was elevated during the indomethacin-free interval
immediately before the biopsy. This elevation of PGE excre-
tion was paralleled by a rise in plasma renin levels (patients:
median, 338 SU/mL, range, 148–1424 SU/mL; normal: range,
5–50 SU/mL). Statistical analysis indicates that the extent of
indomethacin-induced inhibition of both intrarenal PGE2 levels
and plasma renin levels are significantly correlated (r � 0.8;
Fig. 1).

The prostacyclin metabolites 6-keto-PGF1� (median, 10 ng·
h�1 · 1.73m�2, range, 3–25 ng· h�1 · 1.73m�2; normal: range,
2–12 ng· h�1 · 1.73m�2) and 2,3-dinor-6-keto-PGF1� (median,
6 ng· h�1 · 1.73m�2, range, 1–14 ng· h�1 · 1.73m�2) remained
within the normal range. Similarly, no changes were observed
in the renal synthesis of thromboxane and PGF2� between
control subjects (29) and patients affected by either HPES or
cBS, respectively.

The specificity of the polyclonal anti-mPGES antibodies was
initially analyzed by immunoblotting. No signal was seen in
mock-transfected HEK293 cells. Specific labeling of a product
migrating at 16 kD consistent with the calculated molecular
weight for microsomal PGES was seen in lysates from
HEK293 cells transiently transfected with a murine mPGES
expression vector. This band co-migrated with a product syn-
thesized constitutively in a human lung cancer cell line A549
consistent with the original identification of mPGES by Jakob-
sson et al. (23). These result demonstrate that the mPGES
antibodies used in this study selectively react with both the
murine and the human mPGES protein (data not shown).

Immunohistochemistry using mPGES selective antibodies
was performed on renal tissue deemed unsuitable for transplan-
tation. In one patient with congestive heart failure, mPGES
ir-protein was observed in cells of the macula densa (Fig. 2A).

Figure 1. Renal PGE2 synthesis and plasma renin levels were obtained during
indomethacin treatment (% inhibition) and the washout period (100%), respec-
tively. Percentage of indomethacin-induced inhibition of renal PGE2 synthesis
correlates with degree of inhibition of plasma renin activity by indomethacin.
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Five to 15% of maculae densa in one section showed labeling.
Typically, mPGES ir-protein was restricted to 5–10 cells.
Serial sections processed with anti-PGES (Fig. 2A) and COX-2
antibodies (Fig. 2B) showed co-localization of the proteins
within distinct cells of the macula densa.

In patients with HPGES or cBS, mPGES immunoreactivity
in the macula densa was observed in five of eight or one of two
biopsies, respectively. In contrast to the control tissue, cells of
the macula densa seemed to contain less cytoplasm. The
underlying mutations in these patients are given in Table 1.
Figure 3A shows expression of mPGES in a patient with a
genetic defect in the gene encoding RomK; Figure 3B and C,
demonstrate mPGES in a patient with a genetic defect in the
gene encoding the furosemide-sensitive NaK2Cl transporter
NKCC2 and the kidney chloride channel ClCkB, respectively.
Typically, mPGES expression was not very abundant. Hyper-

plasia of the juxtaglomerular apparatus was also seen (Fig. 3A
and C, arrows). MPGES immunoreactivity was absent in renal
tissue from patients without evidence of an activation of the
RAS (data not shown). In contrast to adult mouse kidney,
mPGES expression was not observed in collecting ducts.

DISCUSSION

Recent studies in humans and rodents have established a key
role of macula densa COX-2 in stimulating renin secretion
(19). The prostanoids acting downstream of COX-2 have not
been identified yet. Enhanced renal PGE2 synthesis in congen-
ital hypokalemic SLTs and in furosemide-treated subjects as
shown by us and others indicates that this prostanoid may
result from macula densa COX-2 activity (3, 4, 30). In this
study, we confirm that renal PGE2 synthesis is selectively
up-regulated in patients with HPGES and cBS. Furthermore,
the extent of indomethacin-induced inhibition of both intrare-
nal PGE2 levels and plasma renin levels is significantly, albeit
weakly, correlated (R � 0.80, p � 0.01). The correlation may
be flawed by the relatively low number of patients in this study.
In addition, whereas plasma renin levels reflect a given time
point, PGE2 levels result from a collection period of 24 h in this
study. Collectively, the correlation is compatible with the
notion that PGE2 may stimulate renin secretion in humans.

The key new finding of this study is that mPGES is ex-
pressed in the macula densa in subjects with HPGES or cBS.
Expression of mPGES immunoreactivity was not detected in
subjects without evidence of activation of the RAS. This
pattern of gene expression parallels the expression of COX-2 in
the macula densa. Indeed, using serial sections, we could show
that mPGES and COX-2 co-localize in specific cells of the
macula densa. Two recent studies have also demonstrated
co-expression of mPGES and COX-2 in the macula densa in
mice, rabbits, and rats (31, 32). This may suggest that both
genes are regulated in a similar way in the macula densa. In
contrast to COX-2, however, little information exists regarding
the regulation of mPGES gene expression. Both genes can be
induced by inflammatory cytokines, and both are suppressed
by glucocorticoids (15, 33). Whether mPGES gene expression
in TAL cells is also induced by the protein kinase p38 upon
depletion of extracellular chloride as shown for COX-2 in
rabbit TAL cells in vitro remains to be shown (34).

Similar to the expression of COX-2 in renal biopsies from
patients with HPES or cBS (17), nPGES expression was not
observed in all biopsies examined. Harris et al. (35) showed
that in salt-depleted rats, only 20% of all maculae densa
showed expression of COX-2 in this nephron segment. We
speculate that absence of mPGES expression in four of nine
biopsies may reflect the paucity of glomeruli in renal biopsies
rather than complete absence of mPGES expression in these
patients.

Co-expression of COX-2 and mPGES in the macula densa
may suggest that PGE2 is the major metabolite synthesized in
the macula densa and, more important, that this prostanoid may
stimulate renin secretion. Co-expression of the two enzymes
also ensures preferential formation of PGE2 from PGH2, which
is observed in patients with HPGES and cBS (2). Because

Figure 2. Expression of mPGES immunoreactive protein. Serial sections of
renal cortex from a patient with congestive heart failure were processed with
anti–COX-2 (top) and anti-mPGES antibodies (bottom). COX-2 immunoreac-
tive protein is expressed in the cells of the macula densa but not in the
surrounding cells of the TAL. Serial sections reveal that expression of COX-2
immunoreactive protein co-localizes with expression of mPGES immunoreac-
tive protein. G, glomerulus; A, arteriole; MD, macula densa.
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renin secretion is stimulated by agents that increase the intra-
cellular cAMP levels, including PGE2 (21), candidate PGE2

receptors are EP2 and EP4, which both activate adenylate
cyclase (36). The latter has been shown to be expressed
intraglomerularly by in situ hybridization (36). To directly
address involvement of these EP receptors, studies in knockout
mice and/or studies with specific inhibitors of EP receptors
(37) will be necessary.

In adult mouse kidney, mPGES mRNA and immunoreactive
protein are expressed in collecting ducts as shown previously
by Guan et al. (25). This finding was confirmed in mouse tissue
in the present study (data not shown) and has recently also been
demonstrated for adult rat kidney (38). No labeling was de-
tected in the present study in human collecting ducts in the
kidneys deemed unsuitable for transplantation.

The specificity of our mPGES labeling procedure is strongly
suggested by the following observations: in addition to the
complete overlap of mPGES and COX-2 immunoreactive pro-
tein in cells of the human macula densa (Fig. 2A and B), two
other experiments demonstrate the specificity of the mPGES
antibodies. First, the mPGES antibodies specifically recognize
both murine and human mPGES in Western blot experiments
(data not shown). Second, preincubation of the mPGES anti-
bodies with the peptide used as the immunogen completely
blocked immunohistochemical staining (data not shown).

CONCLUSION

In summary, we have shown that mPGES is expressed in the
macula densa in patients with HPGES or cBS and in a patient
with congestive heart failure. This finding is compatible with
the notion that PGE2 generated by the concerted action of
COX-2 and mPGES activity stimulates renin secretion in these
subjects. As specific inhibitors of prostanoid receptors are
currently successfully tested in animals and may be available
for patients in the future, our speculation may be confirmed.
Further studies are needed to dissect the signaling pathway

leading to the induction of mPGES expression as well as the
events downstream from PGE2 generation.
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