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Mice that lack cardiac muscle �-actin die during the perinatal
period. Approximately 56% of mice that are homozygous null
(�/�) for a functional cardiac �-actin gene do not survive to
term, and the remainder generally die within 2 wk of birth. We
found that there were neither morphologic differences nor dif-
ferences in the extent of apoptosis between the mutant and
normal hearts on embryonic day (E) 12 and E14 of development.
However, apoptosis was greater in the hearts of homozygous null
mice on E17 and postnatal day 1 when compared with wild-type
hearts. The antiapoptotic factor Bcl-x/L was localized in regions
adjacent to where apoptosis was detected. The distribution pat-
terns of the apoptosis triggering protein p53 were similar to those
of apoptotic cells. The growth of the prenatal and postnatal hearts
of the cardiac �-actin–deficient mice was retarded, and the
cytoplasmic filaments were disorganized. Although apoptotic

cells were observed in both the atria and ventricles in the hearts
of the homozygous null animals, the frequency was greater in the
ventricles than in the atria. Our results indicate that the functional
and structural disturbances in the mice with a homozygous lack
of cardiac �-actin seem to be due to disorganized development of
acto-myosin filaments in the affected cardiomyocytes. Other
actin isoforms cannot compensate for the lack of cardiac �-actin,
and this seems to induce apoptosis in defective cardiac myocytes,
which are not able to cope with the increased workload in the
perinatal phase. (Pediatr Res 55: 197–204, 2004)

Abbreviation
TUNEL, terminal deoxynucleotidyl transferase-mediated
dUTP nick-end labeling

The highly conserved actins are the major components of the
thin filaments in the muscle sarcomere. In addition to two
nonmuscle isoforms of actin, there are at least four tissue-
restricted muscle isoforms: cardiac, skeletal, vascular, and
enteric (1). Cardiac �-actin is the striated muscle isoform that
predominates in the adult mouse, pig, bovine, and human heart
(2, 3). During cardiogenesis, vascular, skeletal, and cardiac
actin genes are co-expressed in the chicken (4, 5), mouse (6, 7),
rat (8), and human (9). However, in mature cardiac myocytes,
only cardiac and skeletal actins are expressed, with cardiac
actin representing the major (~80%) actin isoform that is

present (10, 11). Cardiac �-actin gene mutations have been
suggested to affect sarcomere contraction and lead to familial
hypertrophic and idiopathic dilated cardiomyopathy, compen-
satory hypertrophy of the heart, and heart failure (12–15). The
mutations that give rise to such clinical manifestations are
thought to cause defective cytoskeletal functioning and to
provoke apoptosis (16).

Actin has been suggested to play a role in the regulation of
cell growth and apoptosis (17), and evidence to this effect
comes from a number of sources: 1) disruption of actin-
filament integrity correlates to the induction of apoptosis in
airway epithelia and has been suggested to be an early modu-
lator of apoptotic commitment (18), and 2) changes in the
DNA damage–induced apoptosis pathway have been observed
in association with actin disruption (19), as has the activation
of p53, a key regulator of apoptotic commitment (20).

Actin network may undergo disruption during morphologic
modifications associated with apoptotic cell death (21), and
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actin is cleaved during constitutive apoptosis (22). In addition,
down-regulation of actin genes may be involved in p53-
mediated apoptosis (23). It is clear, however, that mechanical
stress that is a major cause of myocardial dysfunction evokes
a variety of molecular and cellular events that can lead to
important alterations in myocardial structure and function (or
phenotype), such as hypertrophy and cardiomyocyte apoptosis
(24). In addition, cardiomyocyte apoptosis has been shown to
occur during myocardial diseases such as myocarditis and in
end-stage cardiomyopathy (25).

Experimental disruption of the cardiac �-actin gene in mice
results in a lethal phenotype around the perinatal period (26).
The present study was designed to determine the developmen-
tal changes in the embryonic, fetal, and postnatal heart of
cardiac �-actin null mice at the cellular level. We show that
lack of a functional cardiac �-actin gene results in defective
myofilaments and increased apoptosis, which may lead to
impaired function in the hearts of these mice and to subsequent
death.

METHODS

Animals and surgical procedures for light microscopy.
Hearts or whole embryos used in the analysis were collected on
embryonic days 12 (E12), E14, and E17 and on the first
postnatal day. To establish gestational age, timed matings were
set up from 0900 to 1100 h between male and female mice that
were heterozygous (�/�) for the cardiac �-actin defective
allele. A vaginal plug at 1100 h was used as an indication of
mating and set as day 0 of embryonic age for that litter.
Pregnant female mice were placed in separate cages, and entire
litters were collected at the appropriate time points. The preg-
nant female mice were killed by CO2 inhalation, and the
embryos and/or fetuses were removed from the uterus and
killed by decapitation. Whole embryos or surgically removed
hearts were immediately placed in the freshly prepared 4%
paraformaldehyde in PBS and fixed overnight at 4°C, dehy-
drated, and embedded in paraffin. Serial sections, 5–7 �m in
thickness, were cut and mounted onto silanized Superfrost
slides and stored at 4°C. For histology, sections were stained
with hematoxylin and eosin. The study was approved by the
Committee of the Faculty of Medicine, University of Turku,
Finland.

Isolation and analysis of DNA. Isolation of genomic DNA
from either tail biopsy or embryonic tissues and analysis was as
previously described (26). For genotyping, DNA was digested
with PvuII, electrophoresed on 0.7% agarose gels and alkaline
transferred to GeneScreen Plus (New England Nuclear, Bos-
ton, MA, U.S.A.). A 0.5-kb SphI fragment from the cardiac
�-actin gene was radiolabeled with [�-32P] dATP using a High
Prime DNA Labeling Kit (Roche, Indianapolis, IN, U.S.A.).
Hybridizations and washes were as previously described and
exposed to PhosphorImager screens, which were analyzed on a
Storm 860 or 820 PhosphorImager (Molecular Dynamics,
Sunnyvale, CA, U.S.A.) (26).

Terminal deoxynucleotidyl transferase-mediated dUTP
nick-end labeling analysis of apoptosis. Terminal deoxynu-
cleotidyl transferase-mediated dUTP nick-end labeling

(TUNEL) analysis of apoptosis has been described in detail
elsewhere (27). Briefly, the tissue sections were deparaffinized,
hydrated, and then incubated with proteinase K (20 �g/mL;
Pharmacia, Uppsala, Sweden) for 15 min and assayed for
apoptosis by TUNEL with alkaline phosphatase reaction
(Boehringer, Mannheim, Germany). The color reaction was
terminated by soaking the slides in 10 mM of Tris and 1 mM
of EDTA (pH 8), and the slides were then mounted with
coverslips.

Immunohistochemistry. Immunohistochemistry was per-
formed using the avidin-biotin-peroxidase complex method
(28). Briefly, the sections were dewaxed and endogenous
peroxidase activity was blocked with H2O2. Antigen retrieval
was made by microwave treatment, and sections were incu-
bated with nonimmune serum to block nonspecific binding and
then incubated with the primary antibody: anti–Bcl-x/L (S-18;
Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A.); anti-p53
(FL-393; Santa Cruz Biotechnology), and anti-atrial myosin
light chain (provided by Dr. Steven W. Kubalak, Medical
University of South Carolina, Charleston, SC, U.S.A.) (29–
31). After rinsing, sections were incubated with biotinylated
secondary antibody and reacted with streptavidin-biotin-
peroxidase (Vector Laboratories, Burlingame, CA, U.S.A.).
After rinsing, the reaction was visualized with diaminobenzi-
dine, which labeled the positive nuclei or cells with a brown
color. The reactions were lightly counterstained with hematox-
ylin, dehydrated, cleared, and mounted.

Conventional light and electron microscopy. The tissues
were fixed with 5% glutaraldehyde and prepared according to
standard procedures, as previously described (32). Sections for
light microscopy were cut at 1 �m and stained with toluidine
blue. The thin sections (70 nm) were stained with 5% uranyl
acetate and 5% lead citrate in Ultrostainer (Leica, Vienna,
Austria) and examined in a JEM-100SX (JEOL, Tokyo, Japan)
transmission electron microscope. Paraformaldehyde and glu-
taraldehyde were purchased from Electron Microscopy Sci-
ences (Fort Washington, PA, U.S.A.) and diluted appropriately
on the day of use.

RESULTS

Early formation of the four-chambered embryonic heart
on days E12 and E14. The cardiomyocytes had not yet differ-
entiated to a histologically mature stage, and the endocardial
cushion was dominated by nonmuscular cells. Ultrastructural
examination confirmed the light microscopic observations that
the development of the embryonic null (�/�) hearts on E12
and E14 was normal but occasionally delayed. The endocardial
cushion cells contained less atrial myosin light chain, used here
as a cardiomyocyte marker (Fig. 1). Apoptosis was common in
the cushion of all genotypes, i.e. normal (�/�), heterozygous
(�/�), and null (�/�) mice. In addition, considerable num-
bers of apoptotic cells in the limb during this period served as
positive controls (data not shown). There were no major dif-
ferences in the developing anatomical structures of the heart or
the proportion of apoptotic cells among the different genotypes
(Figs. 1 and 2). Apoptosis in the bulbar tissues was observed
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either in solitary cells or abundantly in regional cell clusters
(Figs. 1 and 2).

Final formation of the heart on fetal day 17 and on the first
postnatal day. Contrary to the normal embryonic hearts, at E17
the ventricular cavity was enlarged in the fetal and prenatal
�/� hearts, which was in accordance with apoptosis in the
ventricles. The �/� hearts were readily distinguishable from
their �/� and �/� counterparts by their enlargement on E17
and postnatal day 1. Histologic examination of the genetically
manipulated hearts showed occasionally underdeveloped mus-
cle tissue with cells detached sideways from each other (data
not shown). The myocytes of �/� hearts contained striated
myofilaments similar to those of the �/� animals. Both light
and electron microscopy demonstrated abnormal structural and
morphologic changes in the �/� cardiomyocytes. These
changes progressed between prenatal day 17 and postnatal day
1 and included nuclear changes accompanied by disorganiza-
tion or loss of the myofibrils as well as other signs of degen-
eration. The plasma membrane, however, was often intact.
Apoptotic cell death in these hearts was observed both by
routine hematoxylin-eosin staining and by the TUNEL assay.

There was also mild, focal, single-myocyte degeneration. The
number of apoptotic cardiomyocytes increased from E17
through the first postnatal day in the �/� hearts in comparison
with the �/� and �/� hearts. Apoptosis in the ventricular
wall of the �/� hearts was distributed in the compact wall and
trabeculae as well as in the interventricular septum (Figs. 3 and
4). Apoptosis occurred in scattered cells throughout the heart at
this stage. Although apoptotic cells were found in the atrial
wall as well, apoptosis was less common than in the ventricular
wall (Fig. 5). The antiapoptotic factor Bcl-x/L was detected in
�/� (data not shown) and �/� hearts. It was localized in the
outer ventricular wall of the �/� hearts (Fig. 4) and seemed to
distribute in a complementary pattern in comparison with
apoptosis. The localization of the apoptosis triggering protein
p53 (Fig. 4) in the ventricular wall of cardiac �-actin �/�
hearts revealed a pattern similar to that of apoptotic cells.

Ultrastructural observations showed the normal structure of
the developing control hearts (Fig. 6). Electron microscopy
revealed prominent nuclear chromatin condensation in the
�/� myocytes, confirming apoptosis. In degenerative muscu-
lar cells, there were occasionally normal organelles in the

Figure 1. Serial sections of an embryonic heart lacking cardiac �-actin (�/�) on E12. (a) Histologic development is normal. Hematoxylin-eosin stain. Scale
bar � 100 �m. (b) Immunohistochemical localization (arrows) of atrial myosin light chain, a cardiomyocyte marker, is seen in the entire heart except in the
developing endocardial cushion tissue (E in a). Scale bar � 100 �m. (c) Apoptotic cells (TUNEL analysis; arrows) are abundant in the endocardial cushion tissue
before maturation of the muscular tissue. Scale bar � 20 �m. (d) High magnification of the reaction for the atrial myosin light chain (arrows) in the endocardial
cushion. Scale bar � 20 �m. E, endocardial cushion; V, ventricle.
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condensed cytoplasm. In the �/� fetal and postnatal hearts,
myofilaments apparently failed to organize into uniform bun-
dles (Fig. 7). Their development was delayed and occasionally
resembled younger, primitive, immature bundles. Myocyte
degeneration was manifested as a loss of myofibrils, cytoplas-
mic condensation, condensed chromatin, and irregular size and
shape of the myofilaments. These changes were accompanied
by fragmentation of cellular material and disorganization of the
myofibrils, increased intercellular space, accumulation of gly-
cogen granules, degraded myofilaments, some fibrosis, and
hypertrophic cardiomyocytes with connective tissue replace-
ment (Figs. 7 and 8). Signs of delayed cardiac muscle devel-
opment were not detected in wild-type littermates.

The active engulfment of the apoptotic bodies included
occasional degenerating nuclei that did not reach an advanced
apoptotic body stage (Fig. 9). Most of these phagocytosing
cells contained many apoptotic fragments (Fig. 9). Despite the
apoptotic features that appeared as blebbing of the cell mem-
brane as well as condensed and fragmented nuclei, the apopto-
tic nuclear fragments were often not contained within a sur-
rounding cell membrane, characteristic of the latest stages of
apoptosis. Macrophages were identified by their cytoplasmic
processes. Sometimes, infiltrating leukocytes, predominantly
neutrophils, were visible. These leukocytes showed morpho-
logic changes characteristic of apoptosis, with clumped chro-
matin and cytoplasmic shrinkage. This leukocyte infiltration
was not accompanied by cardiomyocyte necrosis.

DISCUSSION

Apoptosis is a key process during organogenesis (33–35)
that is involved in the genetically programmed structuring of
the architecture of adult organs (36). In the heart, apoptosis is
also a common mechanism of myocyte destruction during
myocardial diseases (25).

Actin has been reported to play a central role in the control
of cell growth, differentiation, and apoptosis (17), and, indeed,
disruption of the actin-filament network has been associated
with apoptosis (18, 19). Cardiac �-actin gene mutations can
lead to familial hypertrophic cardiomyopathy and idiopathic
dilated cardiomyopathy by disturbing cardiac contraction and
cause compensatory hypertrophy of the heart (12, 13, 37). This
indicates that actin loss may cause impaired contractility and
also cell death by apoptosis and thus disturb the kinetics of the

Figure 2. (a, b) TUNEL analysis showing the abundance of apoptosis in the
outflow tract of cardiac �-actin �/� heart mice on E14. Apoptotic cells
(arrows) are seen in muscular (a, upper arrow) and bulbar parts (a, lower
arrows, and b) of the outflow tract. V, ventricle. Scale bar � 20 �m.

Figure 3. TUNEL analysis of apoptosis in cardiac �-actin �/� (a) and �/� (b) hearts on the first postnatal day of mouse development. There are more
apoptotic cells (arrows) in the �/� than in the �/� hearts. Scale bar � 200 �m.
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Figure 4. High magnification of the ventricular wall on postnatal day 1 of mouse heart development. (a) TUNEL reaction shows apoptotic cells (arrows)
distributed in the mature compact wall and in the trabeculae (cardiac �-actin �/� heart). (b) Immunohistochemical reaction for the apoptosis inhibitory protein
Bcl-x/L (arrows) shows in a complementary localization to apoptosis (cardiac �-actin �/� heart). (c) immunohistochemical analysis for the apoptosis promoting
protein p53 (cardiac �-actin �/� heart). (d) Immunohistochemical reaction (arrows) for the apoptosis-promoting protein p53 (cardiac �-actin �/� heart). Scale
bar � 20 �m.
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whole heart (26). Cardiac failure is a major medical problem,
which is characterized by cardiac dilation and pump dysfunc-
tion (38).

To investigate the role of cardiac �-actin in cardiac apopto-
sis, we studied cardiac organogenesis in a cardiac �-actin
knock-out mouse. The experimental disruption of cardiac �-ac-
tin gene in mice results in a lethal phenotype around the
perinatal period (26). It is possible that the death of most of the
�/� mice is due to increased cardiomyocyte death. Because
apoptotic cells are rapidly cleared by phagocytosis, we cannot
ascertain whether apoptosis is extensive enough to be a cause
of death of the animal. However, it is important to clarify the
mechanisms needed to rescue cardiomyocytes from apoptosis.

Although both �/� and cardiac �-actin–deficient hearts in
this study developed the full four chambers, most of the null
mice did not survive, which suggests that apoptosis might be
one mechanism leading to death (26). This is in accordance
with our findings in the developing mouse that showed that the
lack of a functional cardiac �-actin gene leads to increased
cardiomyocyte apoptosis on E17 and postnatal day 1 in null
animals. Normal apoptotic activity was observed in the hearts
of the mice with homozygous lack of cardiac �-actin �/� on

Figure 5. TUNEL analysis of apoptosis on the first postnatal day of mouse
heart development. (a) No apoptotic cells are seen in the atrial wall of cardiac
�-actin �/� heart. (b) Some apoptotic cells are seen in the atrial wall (cardiac
�-actin �/� heart). (c) Apoptotic cells in the outer ventricular wall (cardiac
�-actin �/� heart). There are more apoptotic cells in the outer ventricular
myocardium in comparison with the outer wall of the atrium. A, atrium; V,
ventricle. Scale bar � 20 �m.

Figure 6. Electron micrograph of the cardiac �-actin �/� heart on the first
day after birth. The specimen shows many, organized, well-aligned sarcomeres
with normal myofibrillar organization. The cytoplasm of the myocytes contains
normal organelles. Scale bar � 2 �m.

Figure 7. Electron micrograph of cardiac �-actin �/� heart on postnatal day
1. Disorganization of the myofilaments (arrows) indicates the abnormal struc-
ture of the myocardium. Scale bar � 2 �m.
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days 12 and 14 and was localized to developing cardiac cells as
identified with a cardiomyocyte marker atrial myosin light
chain (31). This indicates that the immature muscle cells have
not, at this early stage, been considerably affected by cardiac
�-actin loss (39, 40). The trabeculae represent the most differ-
entiated developing cardiac tissue and contain more muscle
fibers than the compact ventricular wall (41). Increased apo-
ptosis in the perinatal trabeculae of cardiac �-actin mutations
may also be due either to disruption of the muscular component
or to direct contact and exposure to the pressure overload
caused by the mechanical stress of the blood accumulation in
the hypodynamic hearts (24). An alternative explanation could
be the lack of sufficient pump activity in these hearts, which

causes physiologic cardiac dysfunction and may be cardiomy-
opathy. Such physiologic effect maybe a factor that triggers
apoptosis. Thus, occurrence of apoptosis seems to be related to
the perinatal maturation of cardiac muscle fibers. There were
more apoptotic cells in the ventricles than in the atria, which
suggests that apoptosis is more critical for the structural stabi-
lization of the ventricular myocardium.

Cardiac �-actin gene may be required for cardiomyocyte
survival by maintenance of the normal cardiac structure and
functional dynamics during development as it is required for
vital biologic events (12, 17). The present findings of delayed
and disrupted cardiac differentiation and enlargement of hearts
with extensive apoptosis suggest that actin is essential for the
proper differentiation of the developing cardiomyocytes (11,
36). The lack of the cardiac �-actin gene in the present animals
may also evoke a signal to induce apoptosis and thus may
cause the observed developmental defects.

The localization of apoptosis and the regulatory factors
Bcl-x/L and p53 in the ventricular wall was consistent with the
occurrence of apoptosis in these hearts. The disorganization of
actin microfilaments may lead to the activation of p53 and thus
promote apoptosis (20). This supports our finding of strong
reaction for p53 in cardiac �-actin gene �/� hearts, which
may be related to findings of down-regulation of actin genes in
microfilament rearrangements during p53-mediated apoptosis
(23). The role of actin in providing structural support and cell
motility, as well as being a key component of cell membrane
dynamics, might explain our observation of the absence of a
cell membrane surrounds condensed and fragmented nuclear
debris. This suggests that actin deficiency affects the formation
of apoptotic bodies.

Mice that lack cardiac muscle �-actin can be rescued to
adulthood by expressing enteric actin under the control of the
�-myosin heavy chain gene promoter in the heart (26). Anal-
ysis of the “rescued” hearts may facilitate our understanding of
the mechanisms that compensate for or exacerbate cardiac
dysfunction. One possible explanation arises from our obser-
vation that apoptosis and Bcl-x/L, the antiapoptotic protein, are
expressed in a complementary pattern. Thus, stimulating ex-
pression of Bcl-x/L might reduce programmed myocyte loss,
and this may ultimately rescue these animals.

CONLUSION

In conclusion, cardiac �-actin–defective mice have enlarged
hearts. We have shown that there is a defect in development
and organization of the actomyosin complex, and apparently
subsequent induction of apoptosis via impaired contractions
and cell loss may cause morphologic and functional changes in
these hearts. The development of the affected mutant cells is
delayed, and apoptosis increases as development proceeds.
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Figure 8. Electron micrograph of cardiac �-actin �/� heart on the first day
after birth. There is advanced disorganization of myofilament (arrows). Note
narrow fiber width, lack of integrity, and deviation from the normal parallel
nature of thick and thin filaments (arrows). Severe degeneration of myofibrils
is seen near the hypertrophied region. L, leukocyte; M, myofilament; R, red
blood cell. Scale bar � 2 �m.

Figure 9. Electron micrograph of cardiac �-actin �/� heart on postnatal day
1 shows a macrophage (M) containing degenerating apoptotic bodies of
phagocytosed cells (arrows). The apoptotic bodies contain remnants of py-
knotic nuclei with highly condensed chromatin as well as disintegrated cyto-
plasmic organelles. Scale bar � 2 �m.
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