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Fetal growth is determined by the interaction between the
environment and the fetal genome. The fetal environment, in
turn, is determined by the maternal environment and by maternal
and placental physiology. There is evidence that the interaction
between the fetal environment and genome can determine the
risk of postnatal disease, as well as the individual’s capacity to
cope with the postnatal environment. Furthermore, the role of
various forms of maternal constraint of fetal growth in determin-
ing the persistence of these responses is reviewed. A limited
number of biologic processes can contribute to the mechanistic
basis of these phenomena. In addition to immediate homeostatic

responses, the developing organism may make predictive adap-
tive responses of no immediate advantage but with long-term
consequences. An evolutionary perspective is provided, as well
as a review of possible biologic processes. The “developmental
origins of disease” paradigm is a reflection of the persistence of
such mechanisms in humans who now live in very different
environments from those within which they evolved. The devel-
opmental origins paradigm and its underlying mechanistic and
evolutionary basis have major implications for addressing the
increasing burden of metabolic and cardiovascular disease.
(Pediatr Res 56: 311–317, 2004)

The developing embryo and fetus are highly sensitive to
their environments, and in late gestation, many fetal homeo-
static responses can be readily discerned. In general, the fetus
has three types of responses to an adverse environment: it can
accelerate its maturation (e.g. by elevating glucocorticoid lev-
els), conserve nutrients (by reducing growth and activity), or
terminate the pregnancy altogether by spontaneous abortion or
premature delivery. The third option is better understood in
evolutionary terms, because a subsequent fetus can be con-
ceived, but death of the mother results in loss of her genome.
Hence, the fetus is a less than “perfect parasite,” and in the
hierarchy of demand, most circumstances will favor the
mother.

Defining the fetal environment is complex. In the immediate
sense, it is defined by the intrauterine environment, which in
turn is affected by maternal health and the maternal environ-

ment, as well as by the function of the uteroplacental unit. Fetal
nutrition and maternal nutrition are not identical. Fetal nutri-
tion lies at the end of a long supply line extending from the
maternal macroenvironment, through the maternal gastrointes-
tinal and metabolic physiology, and the uteroplacental unit (1).
Thus, the fetal nutritional environment does not simply reflect
the gross external environment, although it is clearly affected
by it.

Nutrition, including both nutrient and oxygen delivery, is
just one set of factors that affect fetal growth and maturation.
Other factors to consider include maternal effects, genetic
influences, and age at pregnancy. One feature, in particular, is
the phenomenon of maternal constraint, whereby the growth of
the fetus is limited so that it cannot outgrow the mother’s
reproductive tract and her capacity for vaginal delivery. The
mechanisms underlying maternal constraint are poorly under-
stood but may include limitations in uterine vasculature and
placental function (2, 3). In addition, parentally imprinted
genes may exert different effects. For example, the maternally
silenced, paternally expressed growth factor IGF-2 drives fetal
growth (4), and, at least in mice, the clearance receptor IGF-2R
is expressed by the maternal allele, particularly in the placenta
(5). There is also evidence for a paternally imprinted transcript
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of IGF-2 in the placenta (6), and in humans, bi-allelic expres-
sion of the IGF-2 gene results in fetal overgrowth (Beckwith-
Weidemann syndrome) (7).

Physiologic limitations of fetal growth, which may or may
not reflect similar mechanisms, are greater in primiparous
pregnancies and lead to smaller birth size; this may relate to a
lesser capacity for vasodilation in the primiparous uterine
vasculature (8, 9). This is important because the percentage of
pregnancies that are primiparous is rising dramatically, partic-
ularly in some developing societies, such as China, where
family size is restricted, and in industrialized nations, where
changes in lifestyle, health, and working patterns result in
smaller families.

Young maternal age can also affect fetal growth as young
mothers give birth to smaller fetuses (10). Although this is
compounded by maternal size and parity, the most likely
explanation is that the younger mother has priority for utilizing
nutrients for her own anabolism and growth. In evolutionary
terms, there may be a survival advantage in a young mother’s
limiting her resource commitment to reproduction until she is
fully grown herself (an example of supply-driven constraint).
Much less is known about the older mother, but this is clearly
an area that merits priority in research, as later pregnancy is an
increasing aspect of many developed societies. Twinning also
reduces fetal size but does so by competition on the demand
side because the fetuses compete for a constrained supply of
nutrients. This suggests that more than one mechanism may be
involved in maternal constraint.

Fetal origins hypothesis and the developmental origins of
disease paradigm. In 1988, the first reports of relationships
between measures of birth size and long-term disease risk
appeared (11–13). These retrospective studies, conducted ini-
tially on British cohorts, related rates of mortality from coro-
nary heart disease to birth size. An inverse relationship was
found, and similar relationships were subsequently discovered
for other components of the metabolic syndrome (Syndrome
X), including hypertension, stroke, insulin resistance, type 2
diabetes, and dyslipidemia. These studies led to the so-called
“fetal origins” hypothesis, in which it was suggested that
events in utero, which reduced fetal growth, permanently
altered the structure and physiology of the offspring such that
the risk of heart disease and diabetes in later life was increased.
Subsequently, interactions were reported between the pre- and
postnatal environment, such that those who had the most
adverse intrauterine environment (evident by reduced birth
size) and gained weight fastest after birth were shown to be at
greatest risk (14). The initial model was refined and named
“the thrifty phenotype hypothesis” (15): its name contrasted
with the thrifty genotype hypothesis (16). The latter postulated
that modern populations evolved by evolutionary selection for
characteristics that conferred an advantage in a deprived envi-
ronment but that put them at risk for type 2 diabetes and related
disorders in an enriched environment. If this hypothesis is
correct, then the origins of such disease should now be primar-
ily genetic and its incidence determined by heritability and
environment. The thrifty phenotype hypothesis proposed by
Barker and Hales (15) instead argues that the rapidly changing
incidence of disease cannot be explained in terms of a genetic

component. They proposed that the fetus responds to an ad-
verse environment by reducing growth and making develop-
mental adaptations that are appropriate to an anticipated de-
prived (in nutritional terms) postnatal environment. Should the
actual postnatal environment be adequate, these same adapta-
tions would increase disease risk. The word “programming,”
first introduced by Lucas (17) in relationship to the longer term
outcomes of various infant feeds, has been adopted to describe
the unknown linkages between fetal life and long-term
consequences.

Controversy. Over the next decade, a large number of
epidemiologic studies were performed in different populations,
confirming the relationship between birth size and long-term
disease risk (for review, see Ref. 18). The concept was rein-
forced by the observation that genotypic polymorphisms that
influence the strength of the relationship exist (19), making it
clear that these polymorphisms arise as a result of gene–
environment interactions. However, because of the paucity of
information that could be used to characterize individuals in
retrospective studies, few studies focused on disease outcomes,
and most concentrated on surrogate measures, such as blood
pressure or fasting insulin. Others relied on recalled birth
weights, with the obvious limitations (20). When the outcomes
were those of disease, the relationships were unequivocal;
when surrogates were used, the relationships tended to be
weaker. This important point was missed in a recent critical
review of the available epidemiologic data (21), which also
ignored the compelling prospective clinical data. For example,
there are reports of differences in the metabolic biology of
children and adults who were born small compared with infants
who were born of normal size, suggesting early development
of insulin resistance (22, 23). Similarly, the available twin data
had been misinterpreted, as is discussed subsequently, and
there was essentially no consideration of the extensive litera-
ture from experimental animals.

The most frequent misunderstanding in this field has been
the role of birth size. It is our view that this has led to much
misinformed criticism of the general paradigm. Birth size is
simply a crude surrogate reflecting the interactions between the
fetal environment and the fetal genome. There are many ad-
verse events that may have an impact on the fetus and have
long-term effects yet have no effect on birth size. For example,
in the Dutch winter famine, women who ate �800 calories a
day in the first trimester gave birth to normal-sized infants who
later became obese (24, 25). Recent studies demonstrate that
patterns of human fetal growth are influenced by variations
within the normal range of maternal dietary intakes (26). A
range of animal experiments in which programming has been
induced in offspring by prenatal nutritional or endocrine ma-
nipulation have also demonstrated that the effects can be
produced in the absence of a change in birth weight (27–31). It
is clear that programming is not a process confined to the
extremes in fetal growth but rather one that accompanies the
adaptations that every fetus makes to its environment, includ-
ing subtle variations in growth. This explains the continuous
relationship between birth size and measures of later disease
outcome. Although the relationship between birth size and
outcome has been fortuitous in the recognition of a develop-
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mental origin to adult disease, it is not part of the causal
pathway. One example may serve to illustrate this. In twin
studies, the lighter twin has been shown to be at greater risk of
developing insulin resistance and diabetes, perhaps reflecting
differing substrate availability between the twin pair (32). More
recently, other studies have shown that compared with single-
tons, both twins, independent of their size, are insulin resistant
because both have developed within a supply-limited environ-
ment (33).

Multiple Pathways to Induction

Animal models have provided the most direct proof of the
principle, but in doing so they have generated another impor-
tant concept; namely, that the consequences of programming
have been so critical to survival of a wide range of species that
evolution has ensured that multiple mechanisms exist to induce
it. Programming has been demonstrated in pigs, sheep, mice,
and rats (for review, see Ref. 29). Typically, programming has
been induced by prenatal undernutrition (in total caloric or
protein content of the diet), by unbalanced nutrition (e.g.
feeding a high-lard diet to the mother), by impairing uteropla-
cental perfusion, or by maternal exposure to synthetic glu-
cocorticoids. However, the fetus need not be manipulated for
the same relationships between birth size and cardiovascular
and metabolic outcome to be observed (34). The environmental
cue can occur early or late in pregnancy and still program the
fetus. Indeed, in the rodent, there are data extending to the
preimplantation phase (35). For this reason, the term “fetal
origins” has now been replaced by “developmental origins.”
Although each experimental approach has its limitations, all
induce offspring with tendencies toward insulin resistance,
high blood pressure/vascular dysfunction, more rapid weight
gain, and, where measured, an increased adiposity. Clearly,
multiple mechanisms must be involved if diverse cues at
different stages of development give rise to similar phenotypes.

Mechanistic explanations. Fundamentally, the mechanisms
underlying programming must operate at three levels, and there
are experimental data to support each; they are epigenetic
change, changes in cell-cycle regulation, and changes in cel-
lular or tissue differentiation. One caveat on the interpretation
of experimental studies is to distinguish between experimental
manipulations that may induce developmental disruption (i.e.
are teratogenic) from those that represent environmental influ-
ences of adaptive significance. Epigenetic change involves a
permanent, environmentally induced change in gene expres-
sion; this may be via a change in DNA methylation or histone
modification. The former utilizes one-carbon groups derived in
part from dietary glycine. Folate and vitamin B12 are essential
co-factors for this metabolic pathway. These epigenetic
changes are the basis for imprinting processes that determine
the expression of maternal or paternal alleles in early devel-
opment. However, the extent of such processes extends beyond
imprinting, and this is an actively researched area. In the agouti
mouse, providing the dam with dietary supplementation that
contains folate at conception changes the degree of imprinting
on the agouti gene in her offspring (36). Both folate and glycine
supplementation reverse the effect of a low-protein diet in

pregnancy on the blood pressure and vascular function of the
offspring (37, 38). In sheep embryo culture, altered in vitro
conditions lead to changes in gene expression of imprinted
genes through fetal life (39), but epigenetic processes need not
be restricted to imprinted genes–changes in the use of alterna-
tive promoter regions in the glucocorticoid receptor gene have
been induced in the rat pup by manipulating mother–offspring
behavioral interactions, and such effects have long-term con-
sequences (40).

We suspect that epigenetic change will turn out to be a major
mechanism underlying programming, with implications for
subsequent generations. For instance, it is now clear that not all
epigenetic change is lost at meiosis. In the agouti mouse,
transgenerational effects are reported (36). In the Dutch winter
famine, women who were exposed to famine while in the
womb later had grandchildren who were born with reduced
birth size (41). There are also preliminary reports that such
transgenerational effects can occur in the F2 generation of rats
that are exposed to a low-protein diet in pregnancy (42, 43).
Whether these effects occur as a result of germline transmis-
sion or via perturbed maternal vascular adaptations to preg-
nancy is not known (44). Another explanation concerns the
size of the reproductive tract. The uterus develops largely in
the first trimester, and it is reported that uterine size is reduced
in girls who are born small; hence, they may exert greater
maternal constraint when they in turn become pregnant (45).
Transgenerational effects are well described in the comparative
literature, where they are generally termed “maternal effects.”
Thus, there remains a possibility that transgenerational epige-
netic change may play a role in clustering or family linkage
effects for diseases such as type 2 diabetes.

There are reports suggesting altered cell proliferation or
apoptosis in programmed animals. For example, there is in-
creased �-cell apoptosis in the pancreatic islets of offspring of
protein-restricted mothers (46). Perhaps similar mechanisms
might explain the reduced neuronal count found in some
regions of the brain after experimental intrauterine growth
retardation induced by reduced uteroplacental perfusion (47).
A shortened telomere length is reported in the kidney of rat
pups whose dams were fed a low-protein diet in pregnancy,
suggesting accelerated cell cycling or aging-related processes
(48).

Altered tissue differentiation is also well described in devel-
opmental programming. Reduced capillary density is reported
in several organs after maternal malnutrition, and this might be
linked to the increased evidence of endothelial dysfunction in
programmed animals (for review, see Ref. 49) and indeed in
the pathologic consequences in humans (50). Reduced num-
bers of nephrons are formed if there is an adverse intrauterine
environment during a critical developmental window (51), and
this is clinically relevant as it has been reported that individuals
with essential hypertension have fewer nephron numbers (52–
54). Skeletal muscle fiber development also seems to be re-
stricted (55), and there is increasing evidence for altered
adipose tissue development (see below). Permanent functional
abnormalities as a result of altered enzyme expression patterns
are seen in the livers of the offspring of low-protein-fed rat
dams, and these lead to a relative increase in glucose produc-
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tion at the expense of glucose storage (56). All of these
tissue-specific effects can be viewed as adaptations that restrict
energy consumption, whether in terms of nutrient delivery to
tissues (reduced capillarity), reduced size of the most metabol-
ically active tissues (e.g. nephrons), or alteration in the balance
between energy-consuming and energy-storing tissues (skele-
tal muscle versus fat).

Multiple effector mechanisms have been described for the
induction of these processes, and they have been reviewed
recently (57–59). They include altered sensitivity in the hypo-
thalamic-pituitary adrenal axis and a multitude of defects in
insulin sensitivity and cardiovascular control (18). Recently,
behavioral changes that include hyperphagia and lethargy in
the offspring of rats undernourished in pregnancy have been
shown experimentally (59)—perhaps these observations are
relevant to origins of the human metabolic syndrome. All of
these effects are magnified by rapid dietary-induced growth
(14, 60), particularly in the postinfancy period.

Developmental programming as an example of a predictive
adaptive response. The ease with which such effects can be
induced experimentally suggests that there have been powerful
underlying evolutionary pressures to retain them. It has been
convention in clinical medicine to think of responses to the
environment as being only of immediate advantage—that is,
either homeostatic if the challenge is short lasting or homeo-
rhetic if it is more prolonged (61). The programming paradigm
raises the possibility of an additional kind of environmental
response—one in which the benefit need not be immediate but
in which the response is made in expectation of a future
environment. We have termed such responses predictive adap-
tive responses (62).

A good example of a predictive adaptive response is seen in
the meadow vole, which gives birth to pups with different coat
thicknesses depending on the photoperiod to which the mother
is exposed, i.e. whether the pups are born in the autumn or the
spring and, thus, whether cold or warm temperatures are
expected in coming months (63). At the time this trajectory is
chosen, the pups are in utero at a constant temperature; the
response is driven by the maternal melatonin rhythm (length-
ening or shortening with the changing photoperiod) before
birth (64). Even though the short-term postnatal environment
of the nest is similar in both situations, coat thickness is set
before birth for the environment predicted weeks later, when
the pups leave the nest. Therefore, the vole has evolved with a
strategy to predict its future environment and to make perma-
nent adaptive responses in anticipation of that future.

Thus, a predictive adaptive response may be appropriate or
inappropriate. If the prediction is correct (i.e. if the postnatal
environment is as predicted during prenatal development), then
it is appropriate; if the prediction turns out to be incorrect, then
the predictive adaptive response is inappropriate. Such a dis-
tinction, of course, can be made only retrospectively.

We propose that there are many physiologic systems in
which predictive adaptive responses operate and that the de-
velopmental origins paradigm is but one example of such a
response, albeit one that can lead to disease when the predic-
tion is inappropriate. In essence, any aspect of developmental
plasticity that can be irreversibly affected by the environment

can be considered to be a predictive adaptive response if it
confers a long-term survival advantage when the predicted and
actual future environments match. This is demonstrated in the
development of human sweat glands: the number of active
sweat glands is set in the first year of life by the ambient
temperature in humans (reviewed in Ref. 18). If a person who
is born in a cold climate lives in hot climate, then he or she is
more at risk of heat stress—the early prediction about future
environment was incorrect, and the predictive adaptive re-
sponse becomes inappropriate.

Evolutionary significance of predictive adaptive responses.
Elsewhere we have pointed out that evolutionary processes
(including speciation) must operate in the context of a perma-
nent or very prolonged change in the environment. However,
all species must also cope with transient changes in environ-
ment if they are to survive (62). In generalist species such as
Homo sapiens, genetic variation induced by drift and mutation
needs to be maintained for optimal success in a wide range of
environments. If the range of phenotypes expressed by a given
genotype is such that in the face of a given transient environ-
mental change, a number of genotypes will be unable to
survive, then it is easy to envisage that alternating environ-
mental shifts acting over several generations could lead to
species extinction. Predictive adaptive responses, however,
provide a process by which individuals adapt to their future
postnatal environment by restricting their range of possible
phenotypes to a narrower spectrum, without changing the
genotype. If the adaptive change is matched to the predicted
environment, then a broader range of genotypes will survive
the transient change. Maximal genotypic variation in the spe-
cies will be preserved, upon which evolutionary selection can
act over a much longer time scale.

So predictive adaptive responses allow a species to survive
to reproduce in a compromised environment. This concept was
heralded in the thrifty phenotype hypothesis, by which the
fetus makes adjustments in the expectation of a future-deprived
environment, on the basis of nutritional and hormonal cues
from the mother. It sacrifices muscle mass and energy utiliza-
tion for growth by reducing vascularization and developing
relative insulin resistance and may alter its maturational tempo
so as to reproduce. In evolutionary terms, survival to reproduce
is the key driver because selection is stronger up to peak
reproduction and then declines (65, 66). Thus, selection will
not act to select against deleterious effects that occur in or after
middle age. The concept of predictive adaptive responses
extends the thrifty phenotype idea because, by including pro-
cesses such as those of maternal constraint, it shows how such
developmental adaptive responses operate in all pregnancies.

Origins of human disease. Let us now put this into the
human perspective. For reasons discussed further below, we
have evolved to be particularly sensitive to the nutritional and
perhaps stress-inducing components of the environment. The
maternal environment is transmitted to the fetus by means of
nutritional and endocrine signals, and it makes a set of adaptive
responses in expectation of the postnatal environment that it
perceives to be extant on the basis of these maternal signals,
but the perception may be wrong. At one extreme, the mother
may be in poor health or the placenta dysfunctional, either of
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which limits nutrient transfer to the fetus, making nutrition
unbalanced or altering fetal hormonal levels. Such effects
clearly occur in the case of preeclampsia or gestational
diabetes.

However, we have emphasized that the fetal environment is
normally controlled by such maternal and placental factors,
that this is the basis for the maternal constraint that limits the
role played by the offspring’s genome on growth before birth
(3). Thus, both maternal constraint and pathophysiologic pro-
cesses will initiate adaptive responses by the fetus (62). Post-
natally, there will be minimal consequences if the environment
matches the prediction, but if there is severe disease or con-
straint or if the postnatal environment changes rapidly, by, for
example, migration to a nutritionally rich habitat, then the
predictive response will turn out to be inappropriate.

As hominids evolved in a pre-agricultural era where the
postnatal nutritional environment was limiting and unpredict-
able, the risk of an inappropriate prediction producing disease
as a result of maternal constraint would have been minimal.
Moreover, life expectancy was shorter during this era, dimin-
ishing the likelihood for disease in middle age. Indeed, we
propose that maternal constraint evolved, or was selected by
evolution, because it conferred an additional advantage to that
of matching fetal and maternal size. By always limiting nutri-
ent supply to the fetus, constraint ensured that the evolving
hominid set the offspring’s phenotype toward the default po-
sition of predicting an uncertain postnatal nutritional environ-
ment. Even now, the role of maternal constraint is evident by
the relationship between maternal and infant birth weights,
whereas the relationship with paternal birth weight is weak
(67). Recently, Stettler et al. (68) and Morton (69) showed that
first-born children have an increased risk of developing obesity
than their subsequent siblings, demonstrating the influence of
parity as an aspect of the constraint that induces predictive
adaptive responses. Thus, humans have evolved with a ten-
dency toward omental fat deposition and with characteristics
that were of no consequence to the hunter-gatherer with uneven
food supply but are now of great consequence to modern man.
With today’s high, constant nutrition, the hidden effects of this
survival phenotype are frequently manifest as a risk of disease.
It will be obvious from this model that the greater the adversity
of the fetal environment or the degree of constraint, the greater
the risk of a mismatch between the modern prenatal, con-
strained environment and the modern postnatal, energy-rich
environment.

This can be exemplified further by reference to a Southern
Indian population versus a European population (70, 71). In
rural India, women are small because of generations of relative
nutritional deprivation and give birth to small infants because
of maternal constraint. Although small at birth, these infants,
nevertheless, have relative truncal obesity, an adaptation that
gives them energy reserves for early independent life, and
relatively less skeletal muscle, which limits glucose consump-
tion by this tissue. Complicating this issue is that although
maternal size constraint still operates, the postnatal energy
environment has improved rapidly in parts of India, especially
for those who have migrated to the cities. The predictive
adaptive responses for those who are born small (as a result of

inadequate nutrition and/or constraint) are now inappropriate,
explaining the rapidly rising incidence of diabetes. Similar
observations are reported with respect to the prevalence of
diabetes in migrant populations as migration is usually a rapid
shift to a richer, nutritional environment (72).

Predictive adaptive responses operate at all levels of prenatal
nutrition. We summarize this model in Fig. 1. If the fetus
predicts a good postnatal environment, then it will evolve a
physiology that is appropriate to a given range of postnatal
environments where disease is of lower risk. If the fetus
predicts a deprived postnatal environment, then it will develop
a physiology that is more appropriate for a lower range of
nutrition. What this means is that there is a limit of nutritional
range above which “life style” disease is likely to become
manifest. This upper limit differs depending on the fetal pre-
diction of its postnatal environment. The prenatally constrained
fetus—as a result of physiologic maternal effects including
constraint or by maternal-placental disease—will make predic-
tive adaptive responses appropriate for a lower postnatal nu-
tritional range and have a lower nutritional threshold for
disease risk.

Figure 1. A model that demonstrates the effect of predictive adaptive
responses acting to program the limits of physiologic adaptations. The abscissa
represents the environment that the fetus anticipates postnatally, judged from
the nutritional and related signals that it receives from the mother through the
placenta. The ordinate represents the actual postnatal nutritional environment
in adulthood. The band created between the two curves represents the range of
postnatal environments for which the fetus has set its postnatal physiology by
the processes of predictive adaptive responses. Provided the postnatal envi-
ronment matches that range, disease risk is low, but if the postnatal environ-
ment lies outside this band, then disease risk is increased. The dashed vertical
line represents the setting of an optimally growing fetus, which establishes an
upper limit (horizontal dashed line) of postnatal nutrition associated with
health. The dotted line represents the same fetus exposed while in utero to
increased maternal constraint or significant maternal/placental disease. The
fetus perceives the more restricted environment and predicts a poorer postnatal
environment. The result is a downward adjustment in the postnatal physiologic
settings. This shifts the upper limit of the postnatal nutritional range associated
with health downward, so the risk of diseases is correspondingly increased.
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Antenatal origins of obesity. There is increasing evidence
that truncal obesity is itself prenatally programmed as part of
the survival phenotype (71). Both prenatally nutritionally de-
prived sheep (73) and rats (58) develop postnatal truncal
obesity. In the rodent studies, effects on appetite (58), food
preference, and exercise willingness (59) are described. Clin-
ical studies have shown inverse relationships between birth
size or maternal weight gain or nutritional status and truncal
obesity in adolescence (74). Children who are born small have
disproportionately high leptin levels, suggesting leptin resis-
tance (75). Thus, the compounding factor of postnatal fat
deposition may be an inherent part of prenatal programming
processes.

The model also explains another paradox exemplified in
India: the rising incidence of juvenile-onset type 2 diabetes in
children of higher birth weight (76). These children were born
to mothers who themselves had been significantly constrained
in the course of their own intrauterine development. While in
the womb, these female fetuses induced predictive adaptive
responses favoring insulin resistance. Years later, when they
become pregnant, this programming will be exacerbated by
placental lactogen-induced insulin resistance. Although such
insulin resistance is a normal adaptation in all pregnancies, in
the presence of a degree of significant basal insulin resistance
induced in utero by these predictive mechanisms, the placental
effect will be amplified and lead to greater glucose transfer to
the fetus and, through fetal insulin release, to increased adipo-
genesis (see Ref. 77 and references therein). Thus, the combi-
nation of maternal constraint and high glucose transfer creates
a fetus who is born at relatively low absolute weight (although
perhaps relatively high for the population) but with an in-
creased fat mass. This combination of factors creates a greater
risk of diabetes. A parallel scenario may explain the rising
incidence of gestational diabetes in recent decades.

Implications of the developmental paradigm. This model
changes perspectives on how to intervene in the “life-style”
disease epidemic. It shows that lifestyle interventions alone
may be only partially effective in that those who are most
affected by inappropriate predictive adaptive responses may be
difficult to manage with life-style interventions in adulthood.
The model suggests that improving maternal and fetal health
will allow humans to cope better with current postnatal nutri-
tional conditions—conditions that we did not evolve to inhabit.

If epigenetic change is the core process underlying such
programming, then priority should be given to understanding
what epigenetic changes occur, when they occur, the key
nutrients involved, and whether there are windows of oppor-
tunity during which the effects can be reversed. For some
changes, such as reduced nephron number, only a preventative
approach can at present be considered. As alluded to above,
there is increasing focus on the periconceptual period being the
critical period when programming cues are most effective. If
that is the case, then the focus will have to be on the health of
women before pregnancy and their nutritional status at con-
ception and early pregnancy. There are data pointing to the role
of both micronutrient and macronutrient balance (78–80), but
the sad reality is that in 2004, we still do not know the optimal

nutritional regimen for women in different stages of their lives
and during pregnancy.

Although we have focused on the metabolic axis in this
review, similar arguments can be advanced with respect to
cardiovascular and skeletal changes appropriate for repro-
duction and survival. The predictive adaptive response
model is also generally applicable to other physiologic
systems that may be programmed, for example, thermal and
electrolyte homeostasis.

The developmental origins of disease paradigm is clearly
important in the evolution of patterns of human disease. Un-
fortunately, data sets do not yet exist to allow a true assessment
of how important, there being only one retrospective calcula-
tion on a Finnish population (14). The paradigm does, how-
ever, focus our attention on maternal health and is important to
our understanding of both human development and evolution.
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