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Nucleotides (NT) are reported to affect development of the
immune and gastrointestinal systems, and they are currently
added to most term infant formulas. In the present study, dietary
NT effects on superior mesenteric artery blood flow were inves-
tigated. Formula-fed preterm infants were studied once with a 20
kcal/oz. term infant formula containing 80.6 mg/L of NT (NT�),
and once with the same formula with no added NT (NT�) (n �
20, gestational age 28.0 � 2.2 wk). A reference group of preterm
infants fed human milk was also studied (n � 20, gestational age
29.0 � 1.6 wk). Superior mesenteric artery blood flow velocities
(BFV) were measured by Doppler ultrasound 15 min before and
30, 60, and 90 min after the start of the feed. BFV rose in all
infants from baseline to 30 min after feed initiation, and progres-
sively declined thereafter in infants fed NT� or human milk.
However, NT� feedings were associated with a minimal change

in BFV between 60 and 90 min. As a result, the difference in
blood flow velocities between baseline and 90 min was signifi-
cantly greater with the NT� versus the NT� feedings for the
mean, peak systolic, and end diastolic velocities (p � 0.03, 0.05,
and 0.03, respectively). BFV after the NT� and human milk
feedings were similar. These data suggest that orally adminis-
tered NT are associated with effects on the intestinal vasculature.
(Pediatr Res 52: 425–429, 2002)

Abbreviations
SMA, superior mesenteric artery
BFV, blood flow velocity
NT, nucleotide
NT�, formula with added nucleotide
NT�, formula with no added nucleotides

The splanchnic circulation accounts for 20% of cardiac
output, and at times it may contain one-third of the blood
volume (1, 2). The inferior portion of the duodenum, the whole
of the small bowel, and the right half of the colon are supplied
by the SMA. The dependence of intestinal blood flow on a
single vessel implies that changes in SMA blood flow patterns
may have significant physiologic effects on the bowel (3, 4).

The transcutaneous Doppler flow method has been used to
evaluate intestinal circulation in infants. Factors including
postnatal age, gestational age and birth weight (5–13), intra-
uterine growth restriction (6, 14–16), birth asphyxia (17),
various pharmacologic agents (18–22), and phototherapy (23,
24) are reported to affect splanchnic blood flow patterns in
infants.

SMA BFV increases after enteral feeding. Factors that re-
portedly affect postprandial SMA BFV in infants include feed
volume (5, 13), interval (24), and composition (3, 8, 24–26).
We (27) and others (28) have reported that increases in SMA
BFV were greater in term infants after a feeding of formula
with added NT compared with the same formula with no added
NT. NT are naturally occurring substances in human milk, and
studies in animals and human infants suggest they influence the
development of the immune and gastrointestinal systems (29–
32). We investigated the effects of feeding NT supplemented
formula on SMA BFV in preterm infants.

METHODS

This protocol was approved by the Institutional Review
Board for the Protection of Human Subjects at the University
of South Florida. Informed consent was obtained from the
parents of each enrolled infant.

Subjects. Inclusion criteria were gestational age �31 wk,
birth weight �1800 g, and appropriate for gestational age.
Infants with evidence of a patent ductus arteriosus or other
cardiac abnormality, evidence of a gastrointestinal abnormal-
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ity, ventilatory requirement at the time of study, and photo-
therapy within 6 d of being studied were excluded. Infants for
whom complete measurements could not be made due to the
presence of abdominal gas were excluded. Formula-fed and
human milk-fed infants had received more than 90% of their
total enteral intake as formula or human milk, respectively,
before the studies.

Feedings. Study feedings for formula-fed infants were a 20
kcal/oz. ready-to-feed term infant formula with the same com-
position as Similac with Iron (NT�), or the identical formula
with no added NT (NT�). The NT content of the NT�
formula, 80.6 mg/L, was similar to that reported for human
milk (33) (Table 1). The formulas were identified by a code,
and the investigators were blinded to formula identities until all
studies were completed and data were analyzed. Study feed-
ings for human milk-fed infants were their mothers’ own,
previously frozen, unfortified breast milk.

Study design. Infants were fed at 3-h intervals, and were
studied once their enteral intakes were �200 mL/kg/d. Each
formula-fed infant served as his or her own control, and was
studied using a cross-over design as follows: infants were
randomized to be studied with a feeding of NT� on study d 1
and with NT� on study d 2 (group 1, n � 10), or with a
feeding of NT� on study d 1 and a feeding of NT� on study
d 2 (group 2, n � 10). Study d 1 and 2 were consecutive days.
Human-fed infants were studied with a single feeding of breast
milk (n � 20).

Study feedings were given at the time of a regularly sched-
uled feeding between 1200 and 1500 h, 2 h and 45 min after the
previous feeding was started. All study feedings were admin-
istered at 30 mL/kg, and were delivered by gravity via a
nasogastric tube.

Ultrasound measurements. An Interspec Apogee CX annu-
lar phased color system with a 7.5-MHz Doppler probe (ATL,

Inc., Bothell, WA, U.S.A.) was used to measure time-averaged
mean, peak systolic, and end diastolic SMA BFV 15 min
before the start of the study feed (baseline), and 30, 60, and 90
min later. For imaging, the transducer was placed on the mid
abdomen above the umbilicus in the sagittal plane. Color flow
mapping was used to identify the SMA where it originated
from the aorta. The sample volume of the pulsed Doppler was
placed a few millimeters distal to the origin of SMA, using an
angle correction of 25°. Blood pressure, heart rate, and respi-
ratory rate were recorded at baseline, and the hematocrit was
noted. All Doppler studies were performed by one of two
ultrasound technicians, however, one technician performed all
measurements on a given day.

Statistical analyses. A cross-over statistical design was used
to compare diet effects on SMA BFV measurements between
group 1 and group 2 infants as follows: the change in velocity
from baseline to 30, 60, and 90 min was calculated for study d
1 and 2. The study d 1 changes in velocity were subtracted
from the study d 2 changes in velocity; these calculated
differences were compared between group 1 and group 2 using
a t test.

Comparisons between the combined formula-fed groups and
the reference human milk-fed group for baseline BFV and
changes in BFV after feedings were analyzed using a three-
way ANOVA.

RESULTS

Birth weight, gestational age, day of life at the time of study,
gestation-corrected age, and weight at the time of the study
were similar between groups 1 and 2 (Table 2). Postnatal age
at the time of the studies was lower for the reference group of
human milk-fed infants, reflecting better feed tolerance and
more liberal advancement of enteral feedings for human milk-
fed infants. Between study groups there were no differences in
blood pressure, heart rate, respiratory rate, hematocrit, or time
required to deliver the study feeding volume via the nasogastric
tube.

There were no significant differences in baseline BFV between
groups 1 and 2 on study d 1 and 2. The cross-over statistical
analysis revealed that the difference in BFV between baseline
and 90 min was significantly greater with the NT� versus the
NT� feedings for the mean, peak systolic, and end diastolic
velocities (p � 0.03, 0.05, 0.03, respectively, Table 3).

Table 1. NT content of the study formulas (mg/L)

NT� NT�

Total Nucleotides 7.5 80.6
CMP 3.1 38.8
UMP 3.5 16.6
AMP 0.4 12.0
GMP 0.5 13.2

NT present in NT� are inherent to milk ingredients, whereas NT� was
supplemented with approximately 72 mg/L NT. CMP, cytidine monophos-
phate; UMP, uridine monophosphate.

Table 2. Characteristics of study infants

Formula fed
Human
milk fed

Group 1:
NT� f NT�

(n � 10)

Group 2:
NT� f NT�

(n � 10)
Reference
(n � 20)

Birth weight (kg) 1.2 � 0.4 1.0 � 0.4 1.3 � 0.26
Gestational age (wk) 28.6 � 2.2 27.4 � 2.1 29.0 � 1.6
Postnatal age (d) at time of study 41.0 � 25.3 43.5 � 20.8 26.7 � 17.1
Gestation-corrected age (wk) at time of study 34.4 � 2.6 33.6 � 1.9 33.1 � 2.0
Weight (kg) at time of study 1.6 � 0.2 1.5 � 0.3 1.5 � 0.3

There were no significant differences between group 1 and 2 infants. Data are expressed as the mean � SD.
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Figure 1 represents mean values after feedings with NT�,
NT�, and human milk. The highest postprandial BFV for all
infants was at 30 min. BFV declined from 30 to 90 min after
feedings of NT� or human milk. However, after feedings of
NT� there was minimal change in BFV from 60 to 90 min.
The three-way ANOVA revealed no significant differences
among the human milk, NT�, or NT� groups in baseline BFV
or changes in BFV to 30 and 60 min. However, the change in
BFV to 90 min was significantly greater after a feeding of
NT� compared with NT� and human milk for the mean (p �
0.015) and peak systolic (p � 0.033) velocities (data not
shown).

Postprandial vascular resistance did not decrease among the
three diet groups, which may be due to a lower than optimum
sampling volume, and/or a high degree of variability in end
diastolic velocities relative to peak systolic velocities.

DISCUSSION

Intestinal blood flow is regulated by intrinsic and extrinsic
mechanisms as well as circulating vasoactive substances (1, 2,
34). The gastrointestinal tract is the source of a number of
neurotransmitters, peptides, and autacoids, and its vascular
supply is richly innervated by sympathetic and parasympa-
thetic nerves (2). The mechanisms that regulate postprandial
splanchnic vascular responses in infants, particularly those
born prematurely, are unclear. Larger feed volumes (5) and
longer intervals between feeds (25) are reported to result in
higher relative postprandial SMA BFV, whereas smaller am-
plitude and longer latency in SMA BFV responses are reported
after a feed with human milk versus formula (8, 25). In the
present study, SMA BFV rose in all infants from baseline to 30
min after feed initiation, and began to decline thereafter.
However, NT� feedings were associated with a sustained
increase in postprandial BFV to 90 min after feed initiation.
These results are in agreement with studies in term infants (27,
28) demonstrating higher postprandial SMA BFV 90 min after
a feeding with formula containing added NT compared with
formula with no added NT or human milk.

The clinical significance of a sustained increase in postpran-
dial SMA BFV is unknown. Fang et al. (35) reported a positive
correlation between feed tolerance in preterm infants and
postprandial SMA BFV 60 min after a feed, suggesting that
higher postprandial BFV may be associated with a beneficial
physiologic response. In the present study, postprandial BFV
were higher after NT� feedings. However, responses after
NT� feedings were similar to those after human milk feedings,
which are associated with better feed tolerance and clinical
outcomes. The divergent SMA BFV response between infants
fed human milk and those fed NT� may relate to differences
in NT composition; about 50% of the NT in human milk are
present as RNA, NT� formula was supplemented with the
monophosphate form only (33). However, this is speculative
given the numerous compositional differences between formu-
las and human milk.

The higher SMA BFV measured after NT� feedings may
reflect dilation of the intestinal vascular bed. AMP, one of the
NT added to the NT� formula, is hydrolyzed to adenosine
within the intestinal lumen (36). Adenosine, a potent vasodi-
lator, plays a role in the regulation of postprandial and reactive
hyperemia (37–40). Studies in animals have demonstrated that
infusion of adenosine into the arterial supply of the small
intestine increases blood flow to the intestinal wall (37, 38,
41–43) and mucosal layer (44), particularly in younger animals
(45, 46). In addition, luminal infusion of a NT mixture con-
taining AMP was associated with intestinal hyperemia in new-
born swine (46). The results of the present study further
suggest that exogenous nucleotides can affect intestinal blood
flow. However, in the present study and that of Özkan et al.
(28), the most significant difference in BFV between formula
feedings with and without NT was seen 90 min after initiation
of the feed. Although the metabolic fate of formula NT is
unknown, they are probably rapidly degraded within the intes-
tinal lumen. Investigations in animals suggest that nucleosides
are the primary form absorbed (47–49), and that over 90% of
nucleosides, and purine and pyrimidine bases are absorbed into
the enterocyte (50, 51). Once absorbed, most of the nucleosides

Table 3. Results of cross-over statistical analysis

Human milk
(n � 10)

Group 1: NT� f NT� (n � 10) Group 2: NT� f NT� (n � 10)

p
X vs Y

Day 1
NT�

Day 2
NT�

Day 1–Day 2
(X)

Day 1
NT�

Day 2
NT�

Day 1–Day 2
(Y)

Mean
�15 to 30 min 18.2 � 2.9 21.3 � 3.5 21.2 � 3.4 0.1 � 4.3 17.4 � 6.7 27.3 � 7.1 �9.9 � 4.5 0.12
�15 to 60 min 12.1 � 2.3 14.4 � 3.0 10.8 � 5.3 3.6 � 5.9 17.2 � 6.6 14.9 � 3.4 2.3 � 6.2 0.89
�15 to 90 min 4.8 � 1.8 15.1 � 6.0 1.2 � 3.9 13.9 � 8.6 8.4 � 4.6 16.1 � 4.5 �7.7 � 2.7 0.03

Peak systolic
�15 to 30 min 39.4 � 6.6 45.9 � 7.6 44.7 � 5.7 1.2 � 7.7 34.9 � 13.2 54.5 � 12.5 �19.6 � 8.4 0.09
�15 to 60 min 26.1 � 5.2 33.7 � 6.4 25.9 � 10.4 7.8 � 11.7 30.4 � 13.0 42.5 � 7.2 �12.1 � 10.8 0.23
�15 to 90 min 16.5 � 5.0 40.1 � 10.0 14.2 � 8.6 25.9 � 20.6 13.3 � 7.2 33.1 � 7.2 �19.8 � 9.1 0.05

End diastolic
�15 to 30 min 5.8 � 1.4 6.8 � 2.1 3.8 � 1.6 3.0 � 2.8 7.5 � 2.4 6.2 � 1.8 1.3 � 3.0 0.69
�15 to 60 min 3.6 � 1.3 1.9 � 1.6 0.9 � 2.0 1.9 � 2.7 3.9 � 1.7 2.9 � 1.7 1.0 � 2.3 0.80
�15 to 90 min 1.0 � 0.9 2.3 � 1.9 �2.1 � 1.5 4.4 � 2.4 0.6 � 1.6 3.7 � 2.0 �3.1 � 2.2 0.03

Group 1 infants received NT� on d 1, and NT� on d 2. Group 2 infants received NT� on d 1 and NT� on d 2. The change in velocity (cm/s) for mean,
peak systolic, and end diastolic velocities were measured from baseline (�15 min) to 30, 60, and 90 min after the start of a feed. The d 1 change in velocity
was subtracted from the d 2 change in velocity for both groups (x and y for groups 1 and 2, respectively). A t test was used to measure the difference between
x and y. Values for the reference group of infants fed human milk are also provided. Data are expressed as the mean � SEM.
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and bases are rapidly degraded, and catabolic products are
excreted in the urine and intestines (48, 50, 52). Thus, although
the mechanism by which dietary NT affect splanchnic blood
flow is not clarified, this study confirms previous findings of

higher postprandial BFV in infants fed NT-supplemented for-
mula (27, 28).

NT are presently added to most formulas for term infants.
Studies in human infants and in animals suggest that dietary
NT enhance development of the gastrointestinal and immune
systems (29–32), however, the mechanism of action remains
unknown. Our data and those of Özkan et al. (28) suggest that
orally administered NT are associated with effects on the
intestinal vasculature.
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