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ABSTRACT

Childhood dystonia that does not respond to treatment with
levodopa (dopa-nonresponsive dystonia, DND) has an unclear
pathogenesis and is notoriously difficult to treat. To test the
hypothesis that there may be abnormalities in serotonin turnover
in DND we measured cerebrospinal fluid (CSF) concentrations
of homovanillic (HVA) and 5-hydroxyindoleacetic (HIAA) ac-
ids, metabolites of dopamine and serotonin, respectively, in 18
children with dystonia not responsive to levodopa. These were
combined with a reference population of 85 children with neu-
rologic or metabolic disease known not to affect dopamine or
serotonin metabolism. Because of the known natural age-related
decrement in HVA and HIAA concentrations, the results were
analyzed using multiple regression using age and DND as pre-
dictors of CSF HIAA and HVA concentrations. DND was a
highly significant predictor of CSF HIAA concentration (p <
0.001) but not of CSF HVA concentration (p = 0.59). After
fitting a regression model, the geometric mean ratio of CSF

Childhood dystonias can pragmatically be divided into those
that respond to treatment with levodopa and those that do not.
Those that do respond to levodopa usually have some parkin-
sonian features and have been termed parkinsonism-dystonia.
Parkinsonism-dystonia syndromes are often caused by defi-
ciency of the neurotransmitter dopamine resulting from inborn
errors of the dopamine biosynthesis pathways (1, 2). Dystonia
that does not respond to levodopa has a wide variety of causes,
and its pathogenesis is poorly understood. Although the study
of the acidic metabolites of dopamine and the individual pterin
species in human CSF has been fruitful in understanding the
mechanisms causing parkinsonism-dystonia in children and
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HIAA in DND compared with the reference range was 0.53
whereas that for CSF HVA was 0.95. We also analyzed CSF
HIAA/HVA ratios. After fitting a regression model, we found no
dependence on age, and the mean of CSF HIAA/HVA in DND
was 0.28 whereas that for the reference range was 0.49 (p <
0.001). We conclude that a significant number of children with
DND have reduced CNS serotonin turnover. Treatment with
drugs that increase serotonin concentration in the synaptic cleft
should be considered in this group of patients. (Pediatr Res 52:
91-94, 2002)

Abbreviations
CSF, cerebrospinal fluid
HIAA, 5-hydroxyindoleacetic acid
HVA, homovanillic acid
DND, dopa-nonresponsive dystonia

young adults (1, 3-5), it has been disappointing in other
movement disorders such as DND. This latter group of patients
is also notoriously difficult to treat.

Serotonin and dopamine metabolism in the brain are closely
linked at both a biochemical and at a physiologic level (6, 7).
The basal ganglia of both animals and man have a large
serotoninergic projection from the midbrain raphe nuclei (8—
12). However, the function of this in the control of movement
is not entirely clear. Impaired CNS serotonin metabolism has
been found in adult-onset idiopathic focal dystonias (13). Rats
depleted of serotoninergic neurons show no abnormality of
baseline movement (14). Yet the genetically dystonic rat has
diminished motor responses that involve serotoninergic sys-
tems and increased sensitivity to 5-HT,, serotoninergic ago-
nists (15), and the genetically dystonic hamster is dramatically
worsened by 5-HT, , antagonists (16). In humans, the seroto-
nin syndrome is becoming increasingly recognized in patients
taking drugs that increase synaptic serotonin or stimulate se-
rotonin receptors (17, 18). This syndrome has a major motor
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component arising from basal ganglia dysfunction that includes
dystonia (19). Thus, available evidence suggests a role for
serotoninergic systems in the production of movement disor-
ders of basal ganglia origin. Consequently, we investigated
serotonin turnover in the CNS in children with DND.

METHODS

Of 149 consecutive CSF samples referred to a single labo-
ratory for amine neurotransmitter analysis during a 2-y period,
27 referred to dystonia as part of the symptom complex. The
case notes of these 27 children were examined between 1 and
3 y later to determine whether the dystonia was dopa-
responsive or not and also to obtain the final diagnosis. Dopa-
nonresponsiveness was defined as no alleviation of dystonia
despite treatment with full replacement doses of cocareldopa
(levodopa/carbidopa; approximately 10 mg/kg body weight per
day of levodopa) for at least 4 to 6 wk. Of the 27 children with
dystonia, 21 were dopa-nonresponsive. Two children with
glutaric aciduria type I and one with tyrosinemia type I who
had DND were excluded because these are neurometabolic
disorders that directly affect tryptophan and tyrosine metabo-
lism, the precursors of serotonin and dopamine, respectively.

Eighteen patients with DND, aged 0.6 to 14.3 y at the time
of CSF sampling, were identified. Brief patient details are
given in Table 1. Approval for the study was obtained from the
Research Ethics Committee of the Institute of Child Health and
Great Ormond Street Hospital for Children, and informed
consent was obtained from the patients and their parents.

Concentrations of HVA and HIAA, stable acidic metabolites
of dopamine and serotonin, respectively, were measured in
each CSF sample by HPLC with coulometric electrochemical
detection (7). All measurements were made on the first milli-
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liter of CSF collected. These were combined with a reference
population of 85 children previously described (7).

The results, except for the CSF HIAA/HVA ratio, were
logarithmically transformed to normalize the distributions. The
effect of age, dystonia, and treatment as predictors of CSF
HVA and HIAA concentrations and CSF HIAA/HVA ratios
were examined by analysis of covariance. The magnitude of
the effects was calculated by fitting multiple regression models
and examining the individual partial regression coefficients.
Statistical analyses were performed using SPSS for Windows
software (SPSSUK Ltd, Woking).

RESULTS

Both age (F} 1o, = 43, p < 0.001) and DND (F ;, = 16,
p < 0.001) were highly significant predictors of CSF HIAA
concentration, explaining almost 50% of its variability. The
geometric mean ratio of DND to the reference range for CSF
HIAA was 0.53 (95% confidence interval, 0.41 to 0.69; Fig.
14). By contrast, age (F 1o, = 39, p < 0.001) but not DND
(Fy.102 = 0.29, p = 0.59) was a highly significant predictor of
CSF HVA concentration, explaining almost 40% of its vari-
ability. The geometric mean ratio of DND to the reference
population for CSF HVA was 0.95 (95% confidence interval,
0.82to 1.21). DND (F, jo, = 17, p < 0.001) but not age (£ ;02
= 1.0, p = 0.31) was a highly significant predictor of CSF
HIAA/HVA ratio, explaining almost 15% of its variability. The
mean difference between DND and the reference population
for CSF HIAA/HVA ratio was 0.22 (95% confidence interval,
0.11 to 0.33; Fig. 1B).

Because of the small numbers, drug treatment was divided
into two groups: antidystonic therapy (baclofen, acetazol-
amide, and trihexyphenidyl) and antiepileptic therapy (diaze-

Table 1. Brief clinical details and the results of biogenic amine metabolite analysis*

Age at LP CSF HIAA CSF HVA
(y) Final diagnosis Treatment at LP (SND) (SND)
13.7 Post-HIE Baclofen -0.9 -0.6

Acetazolamide
4.5 PMD-like Diazepam —1.7 —1.2
8.1 HSS None —-1.5 —0.1
4.2 Post-HIE Phenobarbitone -1.0 —0.1
Phenytoin
1.9 PCH type 2 None —-1.3 —0.6
0.8 CP None —1.6 —0.5
1.5 HSS None —1.1 —-0.9
4.7 CP None -0.9 +0.2
10.4 Unresolved None +0.6 +0.6
1.6 Angelmann None —0.8 +0.3
9.1 HSS Carbamazepine +0.7 +0.4
1.9 Unresolved None —0.6 +0.2
13.8 PMD-like None +0.2 +0.1
8.1 Unresolved None —-0.2 —0.5
14.3 HSS Trihexyphenidyl —1.2 —1.1
0.6 Post-HIE None —14 -0.3
13.5 PKD None —1.6 0
5.1 Unresolved Trihexyphenidyl —0.8 -0.3

Abbreviations: LP, lumbar puncture; HIE, postnatal hypoxic-ischemic encephalopathy; PMD, Pelizacus-Merzbacher disease; HSS, Hallervorden-Spatz
syndrome; PCH, pontocerebellar hypoplasia; CP, cerebral palsy; PKD, paroxysmal kinesogenic dystonic choreoathetosis.

* Because of the natural age-related decrement in CSF HIAA and HVA, the results are given as the standard normal deviates (SND) for the age of the child
by comparison with a published reference population from the same laboratory (7).
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Figure 1. The fitted multiple regression model showing CSF concentrations
of HIAA (4) and CSF HIAA/HVA ratio (B) in the reference population and
children with DND plotted against age. The upper continuous line is the
modeled mean value of CSF HIAA (4) or HIAA/HVA ratio (B) for the
reference population; the lower discontinuous line is the modeled mean value
for children with DND. Individual results from the children with DND are
shown as the filled squares.

pam, phenobarbitone, phenytoin, and carbamazepine). There
was no significant effect of drug therapy on either CSF HIAA
(Fy.100 = 0.26, p = 0.77), CSF HVA (F, 1o, = 2.72,p = 0.25),
or CSF HIAA/HVA ratio (F, ;(,=2.34, p = 0.20).

DISCUSSION

This study demonstrated a selective reduction in CSF HIAA
concentrations to approximately 50% those of our reference
population in children with DND. The results are of the same
magnitude as those found in adults with idiopathic focal dys-
tonia (13), conditions also generally dopa-nonresponsive. The
concentration of HIAA in CSF has been shown to reflect
serotonin turnover in the CNS (20, 21), and the marked ros-
trocaudal gradient suggests that most is generated in the brain

(7, 22-24). Our findings in DND therefore suggest reduced
turnover of brain serotonin.

It is not too surprising that DND did not predict CSF HVA
concentrations and that the ratio of the concentrations predicted
in DND compared with the reference population was close to
unity. The concentration of CSF HVA has been shown to
reflect dopamine turnover in the brain (7, 20-22, 24). The
children studied here were selected for the lack of response to
levodopa, which is the immediate precursor of dopamine that
readily crosses the blood—brain barrier and enhances dopamine
synthesis in neurons. Dopa-nonresponsiveness implies that
presynaptic synthesis of dopamine is intact.

The natural decrement of CSF HIAA and HVA concentrations
with age is well recognized (7, 25). This appears to be related to
a combination of the rostrocaudal gradient and maturational
changes in enzyme activity and cofactor availability (7).

The mechanisms underlying the selective decrease in sero-
tonin turnover in DND are unclear. Because of the mix of final
diagnoses, it is unlikely that specific defects in the synthesis,
storage, and release of serotonin are involved. Approximately
one third of the children studied had neurodegenerative disor-
ders, and it is possible that there is serotoninergic tract degen-
eration. For instance, in Hallervorden-Spatz disease, the key
pathology is present in the globus pallidus and substantia nigra
pars reticularis (26), both of which receive serotoninergic
projections (27).

Whatever the mechanisms, the reduced turnover of CNS
serotonin may be important in the pathogenesis of dystonia and
provide a rational basis for its treatment. There are now several
ways of increasing serotonin concentration within the CNS.
Giving the precursor 5-hydroxytryptophan or stimulating en-
dogenous production with pyridoxine can enhance serotonin
secretion, and selective serotonin reuptake inhibitors can block
serotonin reuptake out of the synaptic cleft.
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