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A B S T R A a .  Studies were undertaken to delineate the 
actions of stem cell factor (SCF) on human fetal hemato- 
poietic progenitors in vitro. Mononuclear cells from um- 
bilical cord blood of term fetuses were "panned" immuno- 
logically, and the resulting hematopoietic progenitors were 
grown in methylcellulose culture containing various con- 
centrations of S C F  alone or in combination with other 
recombinant hematopoietic growth factors. Neutralizing 
antibodies to IL-3 and granulocyte-macrophage colony- 
stimulating factor were added to all plates to which recom- 
binant IL-3 or granulocyte-macrophage colony-stimulating 
factor were not included to decrease any confounding effect 
resulting from production of small quantities of these fac- 
tors within the culture plates. SCF, a s  a single agent, 
supported clonogenic maturation of fetal granulocyte-mac- 
rophage progenitors (granulocyte-macrophage colony- 
forming unit, p < 0.05), multipotent progenitors (CFU- 
MIX,p < 0.05), and erythroid progenitors (erythroid burst- 
forming unit, p < 0.05). When combined with subplateau 
concentrations (0.1 pg/L) of IL-3 or granulocyte-macro- 
phage colony-stimulating factor, S C F  had an additive or 
synergistic effect on clonogenic maturation of granulocyte- 
macrophage colony-forming unit and CFU-MIX. When 
combined with higher concentrations (5.0 pg/L) of IL-3 or 
granulocyte-macrophage colony-stimulating factor, S C F  
generally did not enhance colony formation but did increase 
the number of cells per colony. Like other pleiotropic 
cytokines such a s  I M ,  IL-9, and IL-11, S C F  had a broad 
spectrum of action of fetal hematopoietic progenitors. (Pe- 
diatr Res 35: 303-306, 1994) 
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SCF, a glycoprotein growth factor, is the ligand for the tyrosine 
kinase receptor encoded by c-kit (1). In the presence of other 
hematopoietic growth factors, but not when used singly, SCF 
supports clonogenic maturation of hematopoietic progenitors 
obtained from the marrow of adult subjects (1-4). Murine studies 
indicate that SCF is expressed during the embryonic period and 
that, unlike GM-CSF and IL-3, SCF might play a role in early 
fetal hematopoietic differentiation and development (5, 6). The 
effect of SCF on human fetal hematopoietic progenitors, how- 
ever, has not been reported. We hypothesized that SCF, in a 
manner similar to the cytokines IL-6 (7), IL-9 (8), and IL- I 1 (9), 
might have a broader spectrum of action on fetal than on adult 
hematopoietic progenitors. Specifically, we sought to determine 
whether SCF as a single agent might induce clonogenic matura- 
tion of fetal progenitors and whether it would act synergistically 
with other factors, such as IL-3 and GM-CSF. 

MATERIALS AND METHODS 

Sltbjects. Fetal blood was obtained by puncture of the umbil- 
ical vein at the placental end of the umbilical cord immediately 
after elective term cesarean section deliveries without labor. The 
studies were performed in accordance with protocols approved 
by the University of Utah Institutional Review Board. 

Recombinant hematopoietic g r o ~ h  factors. Purified recombi- 
nant IL-3, G-CSF, and GM-CSF (R&D Systems, Minneapolis, 
MN) were produced in Escherichia coli and purified to homo- 
geneity, 95% or greater purity as determined by SDS-PAGE. 
Purified recombinant human erythropoietin (provided by Chu- 
gai-Upjohn Inc., Rosemont, IL) had a specific activity of more 
than 3 x lo5 IU/mg with a purity of more than 99.7% by SDS- 
PAGE. SCF (provided by Krisztina Zsebo, Amgen Inc., Thou- 
sand Oaks, CA) was produced by COS-I cells transfected with 
SCF cDNA as previously described (3). 

Antihuman IL-3 and antihuman GM-CSF antibodies were 
raised in goats immunized with purified recombinant human IL- 
3 and GM-CSF (R&D Systems). At a concentration of 10 mg/ 
L, anti-IL-3 neutralized approximately 80% of the biologic 
activity of 1.25 pg/L of recombinant human IL-3, but did not 
cross-react with IL-I, IL-2, IL-4, IL-6, tumor necrosis factor, 
GM-CSF, or G-CSF as determined by Western blot or ELISA. 
Anti-GM-CSF neutralized more than 90% of the biologic activ- 
ity of 0.5 pg/L of recombinant human GM-CSF. No cross- 
reactivity with IL-I, IL-2, IL-3, IL-4, IL-6, tumor necrosis factor, 
or G-CSF was detected by Western blot or ELISA. 

Clonogenic cultzires. Light-density cells (sp gr < 1.077) ob- 
tained from umbilical cord blood by density gradient centrifu- 
gation over Ficoll-Hypaque were incubated for 90 min in plastic 
flasks at 37"C, after which nonadherent cells were incubated for 
20 min at room temperature with murine antihuman monocyte 
(Leu-MS, Becton Dickinson, Mountain View, CA), anti-T lym- 
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phocyte (Leu-l and Leu-5b, Becton Dickinson), and antiglyco- 
phorin antibody (provided by Dr. Richard Langlois, Lawrence 
Livermore Laboratories, Livermore, CA). Cells to which IgG had 
attached were removed by incubation in plates coated with goat 
antimouse IgG (Zymed, San Francisco, CA) for 70 min at 4°C. 
Cells remaining in solution were plated in quadruplicate at a 
density of 2 x lo6 cells/L, in I-mL culture plates containing a- 
MEM (Hyclone, Logan, UT), 5 x mol/L P-mercaptoethanol 
(Eastman Chemical Co., Rochester, NY), 30% FCS (Hyclone), 
1 % BSA (Sigma Chemical Co., St. Louis, MO), and 1.1 % meth- 
ylcellulose (Sigma). Cultures were maintained at 37°C and 5% 
coz. 

Cells were cultured in the presence of various concentrations 
of SCF (0, 0.5, 5, or 50 pg/L), either alone or in combination 
with IL-3 (0.1 or 5.0 pg/L), or GM-CSF (0. l or 5.0 pg/L), or the 
combination of IL-3 plus GM-CSF (each at 0.1 pg/L or at 5.0 
pg/L). Plates to which IL-3 was not added received 30 mg/L 
anti-IL-3 neutralizing antibody. Similarly, plates to which no 
GM-CSF was added received anti-GM-CSF neutralizing anti- 
body (30 mg/L). (Neutralizing antibodies at these concentrations 
decrease colony formation of fetal progenitors cultured in the 
absence of growth factors by greater than 90%.) Erythropoietin 
(2000 IU/L) was added to all plates after 72 h. After 14 d, 
colonies were categorized in sir11 as CFU-GM colonies if no red 
cell elements were present and the colonies were composed of 
more than 50 cells, as CFU-MIX colonies if they contained red 
tightly clustered elements plus loosely arranged cells, and as 
BFU-E colonies if they were composed of red tightly clustered, 
multicentered aggregates. 

Immztnopl~enotjpe analysis. The proportion of purified cord 
blood light-density cells expressing the CD34 antigen was deter- 
mined by fluorescence-activated cell sorter analysis (FACStar 
flow cytometer, Becton Dickinson). Cells were stained by incu- 
bation in the dark for 45 min at 4°C with phycoerythrin-conju- 
gated anti-CD34 antibody (Becton Dickinson). Expression of 
surface CD34 antigen was detected on 4.3% in the purified cell 
population. Expression of the monocyte marker, Leu-M3-FITC 
(Becton Dickinson), was observed on 0.6% of cells expressing 
the CD34 antigen. 

Tritiated fhytnidine szticide stlrdies. Fetal light-density cells 
were incubated at 37°C and 5% COz, under serum-free condi- 
tions, for 3.5 h in either a-MEM alone or in n-MEM with SCF 
(0.5, 5, or 50 jig/L). Tritiated thymidine suicide studies were 
then performed according to the methods of Lu et a/. (10). 
Briefly, after the incubations, each aliquot was split into three 
tubes. Tritiated thymidine of high specific activity (86 Ci/mmol, 
Amersham, Arlington Heights, IL) was added to one tube, non- 
tritiated cold thymidine (500 pg, Sigma) was added to a second 
tube, and tritiated thymidine plus cold thymidine was added to 
a third tube for an additional 20-min incubation, with agitation 
every 5 min. Cells were then washed twice with cold thymidine 
wash buffer (100 mg/L) and plated in clonogenic cultures in the 
presence of IL-3 ( 1 pg/L), GM-CSF ( I pg/L), and G-CSF ( 1 pg/ 
L). Erythropoietin (2000 IU/L) was added to all cultures after 
72 h. 

Data analysis. Statistical comparisons were performed using 
the two-tailed t test. 

RESULTS 

The effect of SCF on clonogenic maturation of fetal CFU-GM 
is shown in Table 1. As a single agent, SCF (25  pg/L) supported 
development of fetal CFU-GM colonies (5 k 1 CFU-GM colo- 
nies/104 plated cells in control plates versus 17 + 2 colonies in 
plates to which SCF was added; p < 0.05). The effect of SCF on 
CFU-GM formation was additive to that of a subplateau concen- 
tration (0.1 jig/L) of IL-3. SCF (5 pg/L) was also additive to a 
subplateau (0.1 pg/L) as well as a higher concentration (5.0 pg/ 
L) of GM-CSF and to the combination of IL-3 plus GM-CSF 

Table 1. Efecrs of SCF alone or it1 cotnbitratiot1 with IL-3 and 
GAf-CSF o t ~  colonyfort?lation by CFU-GIZl of fcrtal origin* 

SCF ( P ~ / L )  

0 0.5 5 50 

Control 5 +  1 8 + 1  1 7 + 2 t  1 9 + 3 t  
IL-3 (0. I P ~ / L )  2 0 + 2  1 8 2 2  3 8 2 3 t  2 3 5 2  
IL-3 (5 P ~ / L )  2 6 2 4  2 6 5 3  3 4 5 4  3 3 + 2  
GM-CSF (0. l pg/L) 3 0 + 3  3 1 5 2  5 9 +  10t 3 0 5 2  
GM-CSF (5 / .I~/L) 3 0 5 3  3 2 + 3  5 6 + 7 t  3 6 + 3  
IL-3+GM-CSF(0.l /ig/L) 3 0 5 2  3 3 + 4  51 + 7 t  31 + 2  
IL-3 + GM-CSF (5 / .I~/L) 34 + 3 32 + 2 72 + 8 t  35 + 3 

* CFU-GM-derived colonies that developed in quadruplicate culture 
plates from three subjects. Two thousand light-density, nonadherent, T- 
lymphocyte, B-lymphocyte, and rnonocyte-depleted cells/mL were cul- 
tured in the presence of various concentrations of SCF plus various 
concentrations of IL-3 and GM-CSF. Colonies were expressed as mean 
+ SEM per I0 000 plated cells. 

t p < 0.05 vs no SCF. 

Table 2. Effects of SCF alone or in cot?~hit~atiot~ nirh IL-3 atzd 
Ghf-CSF on colot~v fort?lation bv CFU-AfIX o f  feral ori~in* 

Control 2 + 0  4 + 1  5 5 l t  3 + 1  
IL-3 (0.1 P ~ / L )  2 0 + 3  1 9 + 3  3 0 + 3 t  1 0 2  1 
IL-3 (5 P ~ / L )  1 2 + 3  1 5 2 4  2 2 5 5  1 0 f 1  
GM-CSF (0.1 P ~ / L )  1 4 2 3  1 3 + 2  2 3 + 2 t  9 + 2  
GM-CSF (5 P ~ / L )  1 2 + 2  1 1 + 3  1 3 + 1  8 + 2  
1L-3+GM-CSF(O.ljtg/L) 1 7 + 3  2 1 + 4  3 3 + 3 t  1 2 + I  
I L - ~ + G M - C S F ( ~ P ~ / L )  1 7 + 3  13-1-4 2 0 + 3  1 2 + 2  

* CFU-MIX-derived colonies that developed in quadruplicate culture 
plates from three subjects. Two thousand light-density, nonadhcrcnt, T- 
lymphocyte, B-lymphocyte, and monocyte-depleted cells/mL were cul- 
tured in the presence of various concentrations of SCF plus various 
concentrations of IL-3 and GM-CSF. Colonies were expressed as mean 
+ SEM per 10 000 plated cells. 

t p < 0.05 r!s no SCF. 

Table 3. Eficts of SCF alone or in cotnbit~ation witl~ IL-3 and 
GAf-CSF ot1 colony formatiot~ by BFU-E of fetal origin* 

SCF (pg/L) 

Control 4 + 1  5 + 1  8 + I t  9 2 2 t  
IL-3 (0. I / . I~/L) 2 0 + 2  1 8 5 3  1 9 + 3  1 9 + 4  
IL-3 ( 5  P ~ / L )  2 3 + 2  2 4 + 6  2 4 + 4  2 9 + 2  
GM-CSF (0. I P ~ / L )  1 5 + 2  1 5 + 3  2 2 + 3  1 5 ? 3  
GM-CSF (5 ~ g l L )  1 1 + 2  1 0 + 2  1 4 + 2  1 6 + 3  
IL-3 + GM-CSF (0. l P ~ / L )  26 5 4 24 + 3 30 + 4 22 + 3 
IL-3 + GM-CSF (5 P ~ / L )  24 + 4 9 + 2 23 + 4 23 5 2 

* BFU-E-derived colonies that developed in quadruplicate culture 
plates from three subjects. Two thousand light-density, nonadhcrcnt. T- 
lymphocyte, B-lymphocyte, and monocyte-depleted cclls/mL were cul- 
tured in the presence of various concentrations of SCF plus various 
concentrations of IL-3 and GM-CSF. Colonies were expressed as mean 
+ SEM per 10 000 plated cells. 

t p < 0.05 vs no SCF. 

(whether at 0.1 pg/L each or at 5.0 pg/L each). This effect was 
not observed at higher concentrations of SCF (50 pg/L). 

The effect of SCF on clonogenic maturation of fetal CFU- 
MIX is shown in Table 2. As a single agent, SCF (5 pg/L) 
supported development of a small number of fetal CFU-MIX 
colonies (2 + 0 colonies/104 plated cells in control plates ~~ersrrs 
5 + I colonies in plates to which SCF was added, p < 0.05). The 
effect of SCF on the development of fetal CFU-MIX was additive 



EFFECT OF SCF ON FETAL PROGENITORS 
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Fig. 1. Effect of SCF alone or in combination with IL-3 and/or GM. 
individuals (four B N - E  per experiment) were plucked, and normoblastc 

to  that of a subplateau concentration (0.1 pg/L) of IL-3. The 
effect of SCF was not additive, however, to  that of a higher 
concentration of IL-3 (5 pg/L). Similarly, the effect of SCF was 
additive to  a submaximal concentration of GM-CSF (0.1 pg/L), 
and submaximal concentrations of IL-3 plus GM-CSF (each at  
0.1 pg/L). The effect of SCF was not additive to  a higher 
concentration of GM-CSF (5 pg/L), o r  to  the combination of 
IL-3 and GM-CSF (each at  5pg/L). 

The effect of SCF on  clonogenic maturation of fetal BFU-E is 
shown in Table 3. As a single agent, SCF ( 2 5  pg/L) supported 
development of fetal BFU-E; however, no additive effect on the 
number of BFU-E colonies formed was observed when SCF was 
added to IL-3, GM-CSF, o r  to  combinations of IL-3 plus GM- 
CSF. Despite the lack of increase in BFU-E colony number, the 
size of the individual BFU-E colonies increased when grown in 
the presence of SCF (Fig. 1). 

Incubation of fetal progenitors for 4 h with SCF in concentra- 
tions of 0.5 to  50 pg/L did not result in a n  increase in the 
proportion of progenitors killed by tritiated thymidine of high 
specific activity. Thus, the proliferative action of SCF on fetal 
progenitors does not appear to  be the result of the direct action 
of SCF on cell cycle status of hematopoietic progenitors. 

DISCUSSION 

SCF appears to have a critical role in embryonic and fctal 
hematopoietic development. Schmitt et al. (5) observed that SCF 
and c-kit were among the factors expressed in undifferentiated 
embryonic murine stem cells, whereas GM-CSF and IL-3 were 
not. The importance of SCF and its interaction with the c-kit 
receptor during early development are illustrated by murine 
strains with mutations at the W locus encoding the c-kit product 
and mice with the mutation of the S 1 locus encoding SCF protein 
(1, 1 1-13). Both strains exhibit pleotropic developmental defects 
not only in hematopoiesis but also in gametogenesis and melan- 
ogenesis (6, 1 1 - 13). 

The precise role of SCF in human fetal hematopoietic devel- 
opment is not clear. The present studies indicate that progenitors 
of human fetal origin can be influenced by recombinant SCF 
and that, in a manner similar to  IL-6, IL-9, and IL-I I,  SCF has 
a somewhat broader spectrum of action on fetal progenitors than 
that reported by other investigators on  adult hematopoietic pro- 
genitors because adult progenitors d o  not develop clones when 
stimulated by SCF alone (7-9). Specifically, we observed that 
when used as a single agent, SCF supported clonogenic matura- 
tion of about 70% of the CFU-GM colonies that developed when 
stimulated with IL-3 and about 60% of the CFU-GM colonies 
that developed when stimulated with GM-CSF. This effect ap- 
pears to  be independent of in vitro expression of IL-3 and GM- 
CSF by fetal progenitors in culture because neutralizing antibod- 
ies to IL-3 and GM-CSF were included in the culture media (14). 

.CSF on the number of normoblasts per B N - E  colony. B N - E  from three 
i were counted on a hemocytometer. The numbers represent mean + SEM. 

SCF exhibited synergistic effects with IL-3 and GM-CSF, result- 
ing in not only an increase in the number of colonies but also in 
the quantity of cells per colony. 

At the highest dose of SCF (50 pg/L) evaluated, a loss of 
synergism was observed with either IL-3 or GM-CSF with respect 
to  maturation of CFU-GM and CFU-MIX colonies. One possible 
explanation for this phenomenon is that high SCF concentrations 
down-regulate its receptor, c-kit. This effect of high concentra- 
tions of SCF has been documented by two groups of investigators 
(6, 15). A second explanation is that with high ligand (SCF) 
concentration the efficiency of dimerization of c-kit receptor is 
diminished (6). Yet another possibility is that large quantities of 
soluble SCF might inhibit cell-cell interactions mediated through 
the membrane-bound form of SCF on one cell interacting with 
the receptor on  an adjacent cell in culture (16, 17). This inter- 
action, which appears to  be important in maintenance of he- 
matopoietic stem cells in long-term culture, might be inhibited 
by binding of excess soluble SCF to receptors or by down- 
regulation of SCF receptors on adjacent cells. 

Although the regulation of hematopoiesis during fetal devel- 
opment is poorly understood, this area of study is becoming 
relevant to clinicians as well as to  scientists. An understanding 
of fetal hematopoietic control provides insight into the patho- 
physiologic mechanisms operative in prematurely delivered neo- 
nates. For instance, a n  important problem in neonatology prac- 
tice involves the very high incidence of nosocomial infections in 
extremely preterm infants (18). The basis for this defective anti- 
bacterial defense appears to  involve a relatively small neutrophil 
reserve per kilogram of body weight (19, 20), a significant limi- 
tation in up-regulating neutrophil production during bacterial 
infection (2 I), and relatively poor neutrophil adherence, chemo- 
taxis, and superoxide generation (22-27). Effective and safe 
methods of improving neutrophil production and function in 
preterm neonates would be of interest as potential means of 
decreasing the incidence or severity of infections. With this in 
mind, Cairo ct a/. (28, 29) tested the administration of various 
hematopoietic growth factors and cytokines, alone and in com- 
bination, to newborn rats. Promising results from the combina- 
tion of G-CSF and SCF included a significant increase in blood 
and marrow neutrophil populations, improved neutrophil func- 
tion, and improved survival after bacterial challenge (29). On 
the basis of the animal studies and the present experiments with 
human cells, we suspect that SCF is an important hematopoietic 
regulator in the human fetus. Issues regarding its regulation and 
actions, and any potential as a therapeutic agent in perinatal 
medicine, remain to  be determined. 
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