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ABSTRACT. Activation of T cells after ligation of the 
antigen-specific T-cell receptor initiates a cascade of met- 
abolic and biochemical alterations that culminate in cell 
proliferation. The major changes include a series of phos- 
phorylation reactions on numerous protein substrates, 
phosphatidylinositol hydrolysis, intracellular CaZ+ accu- 
mulation, gene activation, lymphokine receptor expression, 
and lymphokine secretion. Despite a great deal of work 
unraveling the structure of the T-cell receptor complex and 
the many biochemical events triggered by ligation of the 
T-cell receptor, the exact link between the various re- 
sponses is not entirely defined. Nevertheless, abnormalities 
in any of these initial events may be presumed to have an 
impact on signal transduction, thereby resulting in a T-cell 
immunodeficiency. Such defects may be restricted to cer- 
tain T-cell subsets or functions or represent more global 
defects. (Pediatr Res 33 (Suppl): S16-S19, 1993) 

Abbreviations 

APC, antigen-presenting cell 
NF-AT, nuclear factor of activated T cells 
PLC, phospholipase C 
PTK, protein tyrosine kinase 
TCR, T-cell receptor 
(Ca2+J, free cytosolic Ca2+ 
InsP3, inositol trisphosphate 

For the purposes of this review, several aspects need to be 
considered. First, the activation of T cells is somewhat different 
from the activation of other cells. T-cell activation is de~endent 

transduction can take several forms or be expressed on different 
cell types including the APC, the lymphokine-secreting cell, and 
the lymphokine-responsive cell. The defects may reside in expres- 
sion of critical surface molecules or receptors or pivotal enzymes, 
genes, or their enhancing proteins. The synchrony of all these 
events is required for the initiation and continuance of cell cycle 
progression and the general increases in protein, lipid, and RNA 
synthesis. 

APC 

To effectively present antigen, APC generate immunogenic 
peptides from the more complex parent protein. These peptides 
may then be bound to an MHC class I1 molecule, and it is this 
complex on the surface of the APC that serves as the stimulatory 
ligand for the TCR. The generation of immunogenic peptides 
and intracellular trafficking of peptide-MHC is slowly being 
unraveled. A series of mutant APC has been generated with 
defects in antigen presentation in spite of normal class I1 expres- 
sion ( 1, 2). 

Several patients have been described with defective expression 
of HLA class I and class I1 proteins (3-5). In general, these 
patients have near-normal mitogen-induced proliferative re- 
sponses but absent antigen-specific responses. 

A number of accessory molecules may play a role in efficient 
coupling of APC and antigen-specific T cells. These include 
CD28 on T cells and its ligand on APC, and a variety of adhesion 
molecules, including ICAM- 1 and LFA- 1. Defects in adhesion 
molecule expression have more commonly been associated with 
defective neutrophil function and not primarily with T-cell im- 
munodeficiency (6). 

LYMPHOKINE SYNTHESIS AND SECRETION 

on cell-cell contact between an APC and the T cell. T& ligand Central to the T-cell proliferative response is the synthesis and 
for the TCR is the peptide-MHC complex presented by the APC. secretion of the IL. The majority of the work has focused on the 
Second, ligation of the TCR complex leads to expression of events that regulate induction of IL-2 synthesis. It is likely that 
lymphokine receptors and lymphokine secretion. This autocrine the production of IL-4 is similarly regulated. As with the majority 
pathway results in T-cell proliferation. Third, in consideration of activation genes, transcriptional regulation accounts for most 
of potential T-cell defects as a result of a signaling abnormality, of the levels of IL gene expression (7). Our data indicate that the 
we must also delineate whether only the T cells express a partic- increases in IL-2 gene transcription and synthesis/secretion are 
ular protein required for activation or whether all cells express critically dependent on increases in concentrations of (Ca2+)i (8). 
this protein but only T cells are dependent on it for normal Increases in cytosolic Ca2+ may be achieved by release of Ca2+ 
function. from sequestered stores, primarily the endoplasmic reticulum; 

For the most part, the defects considered are likely to be transmembrane uptake of Ca2+; and a decrease in Ca2+ extrusion 
genetic in nature, leading to the early onset of symptoms of T- by the Ca2+ pump. Transmembrane uptake of Ca2+ resulting in 
cell immunodeficiency. Acquired abnormalities of signal trans- sustained increases in (Ca2+)i appears to be the essential compo- 
duction could result from viral infection (e.g. AIDS) or drugs nent: store release alone is insuficient. Calcium uptake across 
(e.g, the immunosuppressants cyclosporin A or FK506). Figure the T-cell plasma membrane is likely through ligand-gated but 
1 illustrates one scheme for T-cell activation focusing on a not voltage-gated Ca2+ channels (9). 
number of presumed critical events. Abnormalities of signal The stimulus for opening the plasma membrane Ca2+ channel 
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CRITICAL EVENTS 

1. Processing 

2. Presentation 

3. TCRlCD3 Complex 

4. CD 45 

5. p59fyn 
5a. Tyrosine Kinase 

-p56 Ick 

6. G protein 

7. Phospholipase C 

8. ca2* channels 

9. 11-2 gene 
9a. 11-2 Promoters 

-NF-AT 

10.11-2 Receptor 

Fig. 1. Critical events in T-cell signaling. 

(10). The former results in the liberation of Ca2+ from internal 
stores and the latter in the activation of protein kinase C. The 
second early response is the increased phosphorylation of several 
proteins on tyrosine residues by PTK. This includes the phos- 
phorylation of the CD-{ chain, a postulated critical early event 
(1 1, 12). The third response is the major increase in (Ca2+)i due 
to transmembrane uptake of Ca2+ through ligand-gated Ca2+ 
channels (1 3). These three responses have been linked: inhibition 
of tyrosine phosphorylation abolishes changes in inositol phos- 
phate metabolism and Ca2+ mobilization. However, the exact 
sequence and regulation of the critical events remains to be 
defined as discussed below. 

Gating or opening of these channels is regulated at several 
different levels including the state of membrane potential at the 
time of TCR engagement (14), the level of (Ca2+), (13), and 
possibly by InsP3 or a phosphorylated derivative, InsP4 (1 5). The 
role of PTK in T-cell activation has been implicated in studies 
using inhibitors such as genistein or herbimycin that block Ca2+ 
responses and InsP3 generation (16). T cells contain at least three 
members of the src family of nonreceptor PTK genes: lck, fin, 
and yes (17, 18). The p56Ick kinase and an isoform of ~ 5 9 ' ~ " ' ~ '  
are found almost exclusively in T lymphocytes (18, 19). Cross- 
linking of CD4 or CD8 activates Ick (20, 21) and is associated 
with phosphorylation of the CD3-< chain (21). p59/Y" interacts 
with the CD3 subunits (22), likely serving as a primary signal 
transduction element of the CD3/TCR complex. Both lck and 
fyn have been implicated in tyrosine phosphorylation of the < 
chain. The relationship between tyrosine phosphorylation of the 
{ chain and TCR function is not clear (22). In the absence of the 
{ chain, there is incomplete assembly of CD3/TCR complex 
(23). Tyrosine phosphorylation of the { chain may be required 
for IL-2 production in response to antigen (24). 

At least part of the control of < chain phosphorylation may 
reside in the phosphatase activity of CD45. This surface glyco- 
protein with tyrosine phosphatase activity appears to be essential 
for CD3/TCR-associated increases in (Ca2+)i (25). 

After TCR stimulation, PLC is phosphorylated and activated 
(1 I, 26-28). Several studies have linked the phosphorylation of 
PLC with PTK causing phosphorylation of other proteins, e.g. 

p5qYn. Attempts to show that PLC activation is regulated by a G 
protein coupled to the CD3/TCR have been inconclusive (29). 

Assimilating all these data into a scheme for T-cell activation 
indicates that induction of IL-2 synthesis requires the activation 
of CD45 phosphatase, the activation of at least one PTK, i.e. 
p5qYn, the phosphorylation of the CD3-{ chain on tyrosine 
residues, and the opening of the plasma membrane, ligand-gated 
Ca2+ channel. The failure to I)  form an intact CD3/TCR com- 
plex, 2) express these phosphatase or kinase activities, or 3) 
trigger Ca2+ influx is associated with a failure to trigger IL-2 gene 
transcription. The role of p56'ck in this cascade is unclear at 
present, although absence of this kinase is associated with a 
marked arrest of T-cell development at an early stage of ontogeny 
and T-cell lymphopenia (30). These conclusions are based on in 
vitro experiments with mutant cell lines or recent investigations 
using transgenic mice. 

A defect localized to an impaired association of the CD3-{ 
chain with other chains of the CD3/TCR complex has been 
described in a Spanish family (31). This resulted in impaired 
surface expression of the CD3/TCR complex. Surprisingly, both 
mild and severe clinical presentations were noted, perhaps cor- 
relating with levels of TCR surface expression. Most T-cell 
immune deficiencies are characterized by normal Ca2+ influx but 
are associated with a failure to initiate IL-2 gene transcription. 
There have been some notable exceptions, but the pathogenesis 
of the abnormalities is unclear (32, unpublished observations). 

These early activation events somehow link surface receptor- 
mediated phenomena to the nuclear induction of several critical 
activation genes. Transcriptional regulation accounts for most of 
the regulation of T-cell activation genes. A variety of nuclear or 
enhancer proteins interacting with specific regulatory sequences 
within these gene segments play a major role as targets for signals 
after antigen-receptor ligation. The important enhancer protein 
for IL-2 (and perhaps IL-4) is located in the 5' flanking sequences 
of the IL-2 gene and has been identified as NF-AT (7). Activation 
of NF-AT appears dependent on Ca2+ mobilization, presumably 
Ca2+ influx. The influx of Ca2+ is perhaps most critical for the 
nuclear shuttling of a constitutively expressed cytoplasmic com- 
ponent of NF-AT (33). Together with an inducible nuclear 
component of NF-AT, the complex positively regulates IL-2 
gene activation (33). The immunosuppressants cyclosponn A 
and FK506 interfere with this shuttling, preventing IL-2 gene 
activation. The mechanism of inhibition is not clear but may be 
related to the effect of these drugs on the important calcium- 
calmodulin-dependent phosphatase, calcineurin (34). Although 
not exclusively expressed in T cells, the relative restriction of 
NF-AT to T cells makes it a possible candidate for T-cell im- 
munodeficiency. Indeed, a patient with severe combined im- 
munodeficiency and phenotypically normal T cells but deficient 
mRNA coding for IL-2, IL-3, IL-4, and IL-5 has been linked to 
an abnormal NF-AT nuclear transcription complex (35, 35a). 

IL-DEPENDENT CELL PROLIFERATION 

Whereas the signaling requirements for IL secretion are rela- 
tively stringent, the expression of functional high-affinity recep- 
tors, including IL-2R, are less so. It is unclear what are the 
essential activation signals required for IL-receptor expression. 
In the case of the IL-2R, Ca2+ mobilization does not appear 
essential (8). Specific defects in IL-receptor expression have not 
yet been described except for the possibility of IL-1R (36). 

Because IL-2 functions as a progression signal, ligation of the 
receptor activates a number of pathways and substrates. Activa- 
tion of the IL-2R does not result in Ca2+ mobilization or phos- 
phatidylinositol hydrolysis (37, 38). IL-2 increases tyrosine phos- 
phorylation of a number of intracellular proteins and the phos- 
phorylation of several kinases including MAP-2 kinase and S6 
kinase (38-41). The role of p56'ck in IL-2-dependent signaling 
may be important as this kinase is activated after IL-2 binding 
to its receptor (42, 43). Because some IL-2-responsive cell lines 
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lack p56lCk, it may not be essential for IL-2-dependent signaling 
(38). None of these pathways appears unique to T cells, so any 
possible defect presumably would affect many different cell types. 
Because the immunosuppressant rapamycin is a potent inhibitor 
of IL-2-mediated cell proliferation (44), definition of its point of 
action may reveal some unique signaling pathway. 

SUMMARY 

The multiplicity of signaling pathways activated by ligation of 
TCR complexes is slowly being unraveled. They provide many 
targets for disruption with the potential for a T-cell immunode- 
ficiency state to emerge. On the other hand, few of these pathways 
are restricted solely to T cells. Moreover, there is a certain 
redundancy in these pathways, which provides little opportunity 
for one component to be absolutely essential. Nevertheless, care- 
ful evaluation of these processes will likely lead to the definition 
of new disorders and, hopefully, innovative therapies. 
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FLOOR DISCUSSION 

Dr. Pahwa: You mentioned that IL-2 receptor expression is 
independent of calcium mobilization. Is that true for mRNA for 
both IL-2 receptor and surface IL-2 receptor expression? As you 
know, there is some evidence that posttranscriptional regulation 
of IL-2-receptor expression might be calcium dependent. 

Dr. Gelfand: The big change is in p55 message and protein 
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expression since p75 is constitutively on, so you do not need a 
change in the levels of free cytosolic calcium. Remember, this 
does not mean that it is not calcium dependent in terms of what 
is already within the cytosol. I am just talking about the need for 
calcium mobilization to detect a change from baseline levels. 

Dr. Sorenson: What kind of stimuli activate the IL-4-driven 
proliferation? Have you identified some kind of antigen that 
would interact with the a//3 chains and trigger this kind of 
proliferation? 

Dr. Gelfand: In terms of IL-4 itself driving the IL-4 receptor 
and causing the cells to proliferate, there is no evidence now for 
tyrosine phosphorylation, calcium influx, or IP (inositol phos- 
phate) metabolism. Whether other phosphoglycans are involved 
is unclear at the present time. In terms of driving it specifically, 
even in a calcium-independent fashion, the best recognized form 
is using a combination of anti-CD28 antibody with a phorbol 
ester. That will certainly drive the IL-4 system, in fact even more 
than IL-2 in our hands, and that again is in the absence of 
calcium. 

Dr. Levinson: Dr. Gelfand, let me throw out a naive possibility 
to explain the dissociation that you saw in the patient whose 
double-positive thymocytes proliferated, and you saw only CD4 
cells out in the periphery. Is it possible that you are getting a 
calcium boost in a double-positive population of cells that oth- 
erwise would be differentiating toward CD8? You get that signal, 
and those cells are induced to undergo apoptosis; whereas the 
cells that are going to differentiate along the CD4 pathway do 
not get that initial calcium signal so that they don't undergo 
programmed cell death. The latter cells may get out into the 
periphery, but because they are lacking some pathway that is 
involved in that calcium signal they cannot proliferate once they 
get out there. 

Dr. Gelfand: In fact, that is one of the hypotheses that we have 
developed, that it is a leak-through, that it bypasses the apoptotic 
mechanism. That is why I asked Dr. Perlmutter about the role 
of p59, because one could also speculate that the cells may be 
overexpressing p59 at a double-positive stage and escaping the 
apoptotic mechanism only in one lineage, not in CD8 but in the 
CD4 population. On seeing Dr. Perlmutter's data, one wonders 
about the overexpression of p59 in these patients. The knockout 
experiments that he talked about, which Tak Mak has done, and 
also the types of experiments that Dr. Perlmutter has done have 
led to a deficiency of both CD4 and CD8 in the periphery, at 
least in the mouse. That is where there is a bit of a discrepancy. 

Dr. Strober: Is it possible that in some of these situations the 
mechanism of cell activation and calcium influx is, in a sense, 
decoupled from the mechanisms that are necessary for activating 
lymphokine genes and lymphokine receptor genes? Could it be 
that we would find normal calcium influx and normal phospho- 
lipid turnover and so on, but we are not looking in the right 
place in terms of what is really necessary for generation of the 
nuclear binding factors required for the gene activation events? 

Dr. Gelfand: Yes, it is possible. I think this is an important 
question because the overwhelming majority of the patients who 
have had abnormal proliferative responses or abnormal IL syn- 
thesis, even the SCIDs (patients with severe combined immu- 
nodeficiency disease) who have very few T cells, flux calcium 
perfectly normally. So the inability to flux calcium in T cells of 
these immunodeficient patients is actually rare. That leads to the 
question: Is calcium absolutely necessary or is that a bit of a red 
herring? Perhaps the cells that are present, despite their ability to 
flux calcium, do not have the subsequent mechanisms that are 
required for the transcriptional regulation of these important 
lymphokines. 


	Transmembrane Signaling and T-cell Immunodeficiency
	APC
	LYMPHOKINE SYNTHESIS AND SECRETION
	IL-DEPENDENT CELL PROLIFERATION
	SUMMARY
	REFERENCES
	FLOOR DISCUSSION


