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ABSTRACT. Dopamine has an age-dependent natriuretic 
and diuretic effect. W e  have investigated the ontogeny of 
the dopamine response on adenylate cyclase activity and 
Na+,K+-ATPase activity in two different cell populations 
in the infant (10-d-old) and the adult (40-d-old) rat kidney. 
Basal- and forskolin-stimulated adenylate cyclase activity 
in tubular suspensions of renal cortex was 5.4-fold ( p  < 
0.05) higher in the 10-d-old rats than in the 40-d-old rats 
but unchanged between the ages in a suspension of med- 
ullary tubules. The dopamine-1-specific agonist fenoldo- 
pam did not stimulate adenylate cyclase activity in the 
cortical cells from 10-d-old rats but did stimulate activity 
51 f 16% ( p  < 0.05) in the 40-d-old rats. In the medullary 
suspension, fenoldopam stimulated adenylate cyclase activ- 
ity by 43.5 f 5% ( p  < 0.001) in the 10-d-old rats and by 
32.0 f 7% ( p  < 0.01) in the 40-d-old rats. In the isolated 
proximal convoluted tubule, dopamine inhibited Na+,K+- 
ATPase activity in both the 10-d-old (34 f 3 % , p  < 0.001) 
and 40-d-old rats (44 f 7%, p < 0.001). In contrast, in the 
medullary thick ascending limb of Henle, inhibition of 
Na+,K+-ATPase activity by fenoldopam was more pro- 
nounced in the 10-d-old (56 f 6%. p < 0.001) than in the 
40-d-old rat (33 f 670, p < 0.001). In summary, the renal 
tubular effects of dopamine on adenylate cyclase and 
Na+,K+-ATPase activity change during postnatal develop- 
ment in a cell-specific manner. (Pediatr Res 34: 308-31 1, 
1993) 

Abbreviations 

DA,, dopamine-1 
PCT, proximal convoluted tubule 
mTAL, medullary thick ascending limb of Ilenle 
Na+,K+-ATPase, sodium, potassium adenosine triphospha- 

tase 
DMEM, Dulbecco's modified Eagle's medium 

Intrarenally formed dopamine acts on  tubular receptors to  
reduce sodium reabsorption (1-4). In the mTAL, dopamine 
inhibits Na+,K+-ATPase activity via activation of the DAI recep- 
tor, increase in adenylate cyclase activity, activation of CAMP- 
dependent protein kinase, and activation of the dopamine- and 
CAMP-regulated protein phosphatase inhibitor DARPP-32 (5- 
7). In the PCT, Na+,K+-ATPase activity is inhibited by a syner- 
gistic effect of DAl and DA2 receptor agonists (8). 
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The natriuretic effect of dopamine has been demonstrated in 
the neonate (9), but the sensitivity to  the hormone may be 
different in the adult and infant kidneys. In the experimental 
situation, several studies have reported an absent o r  weak renal 
response to  dopamine in young animals (10- 13). In this study 
on infant and adult rats, we show that the renal cffects of 
dopamine on adenylate cyclase and Na+,K+-ATPase activity 
change during postnatal development in a cell-specific manner. 

MATERIALS AND METHODS 

Male Sprague-Dawley rats aged 10-1 1 and 39-45 d were used. 
Body weights were 22-28 and 160-200 g. respectively. The adult 
rats were fed rrrl l ibilut)~ with synthetic rat food and had free 
access to  tap water. The pups were kept with their dams. 

l'riy)uratiut~ qf tlrblrlur slr.spcnsion.s. For each experiment, ma- 
terial from two kidneys from 40-d-old and 12 kidneys from 10- 
d-old rats was used. Rats were anesthetized with lnactin (Byk- 
Gulden, Konstanz, Germany). Kidneys were rapidly removed 
and placed on ice. Medulla and outer cortex wcre dissected and 
minced separately. The tissue was incubated at 37°C for 1 h in 
DMEM (GIBCO Ltd., Paisley, Scotland) with collagenase 0.5%, 
butyrate 1 mM, and bicarbonate 24 mM during bubbling with 
0 2 / C 0 1  95%/5%. After cooling on ice, the cortical suspension 
was filtrated over nylon nets with mesh openings of 38, 53, 75, 
and 180 pm. The outer cortex contains approximately 90% PCT 
(14). and these are readily prepared into a tubular suspension as 
has been shown by previous investigators (15). By microscopic 
examination, we verified that this procedure yielded a suspension 
consisting mainly of single proximal tubules without any glo- 
meruli. The medullary suspension was filtrated over the 180-pm 
nylon net to  remove undigested tissue pieces. In the microscope, 
we estimated the suspension to contain approximately 70-80% 
mTAL tubules in accordance with previous studies (16, 17). 
Trypan blue coloring was used to evaluate the viability of the 
preparations, and only single cells (less than I %) wcre colored in 
both preparations. Suspensions wcre washed twice in DMEM, 
and, after the second centrifugation at 500 rpm for 5 min, the 
pellets were resuspended in 1-2 m L  of DMEM with butyrate 
and bicarbonate. Protein was measured by the method of BioRad 
(BioRad, Richmond, CA). 

c/11\lP assuy in rtrblrlur .slr.spcn.siotr. Drugs and cells were 
temperature-equilibrated for 2 min at  37°C before assay. Incu- 
bation was initiated by adding 100 pL of tubule suspension to 
400 pL of incubation solution containing 0.5 m M  isobutyl 
methylxanthine, 1 mM butyrate, and 24 mM bicarbonate in 
DMEM and incubated for 2 min at  37°C. Before the incubation, 
solutions were bubbled with Oz/C02. Pilot studies have shown 
the CAMP increment in our preparation to be linear for 1 to  5 
min. The reaction was terminated by the addition of 500 pL of 
12% trichloroacetic acid (BDH Chemicals Ltd., Poole, England) 
and rapid cooling to 4°C. After sonication, samples were centri- 
fuged at 3600 x g at  4°C for 15 min on a Sorvall HS-4 rotor. 
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The supernatant was decanted into glass tubes and extracted four 
times with 3 m L  of water-saturated ether (Casco Nobel, Malmo, 
Sweden). The water phase was then dried at 70°C under an air 
stream. Samples were frozen at  -80°C until assay. cAMP assay 
(New England Nuclear, Boston, MA) was performed according 
to the manufacturer's instructions, and Iz51-CAMP was counted 
in a gamma counter. The effect of adenylate cyclase activation 
was calculated as pmol cAMP/mg protein/min. Values are ex- 
pressed as means + SEM. Statistical significance was calculated 
with the paired t test. 

Prcparatinn of sit~glc t~rh~rkcs. Rats were anesthetized with 
Mebumal vet (Nord Vacc, Stockholm, Sweden) o r  Inactin (Byk- 
Gulden). The left kidney was exposed and perfused with Ringer's 
solution, followed by a modified Hanks' solution having the 
following composition (in mM): NaCl 137, KC1 5, MgSOj 0.8. 
Na2HP04 0.33, K H 2 P 0 4  0.44, CaC12 2, MgC12 1, Tris-HCI 10. 
Collagenase 0.05% (Sigma Chemical Co., St. Louis, MO) and 
BSA 0.1 % (Behringwerke, Marburg. Germany) were added, and 
the pH was adjusted to 7.4 at 4°C. The kidney was removed and 
cut along the corticopapillary axis into small pyramids that were 
incubated for 20 min (PCT) or  5 min (mTAL) at  37°C in the 
perfusion solution bubbled with 0 2 .  After incubation, the kidney 
pieces were rinsed in microdissection solution with the same 
composition as the perfusion solution, except that the CaCl2 
concentration was 0.25 mM. Microdissection was performed on 
ice. Individual tubule segments were photographed in a n  inverted 
microscope at  x I00 magnification. Permeabilization was per- 
formed to allow ATP free access to  the cell and largely followed 
the procedure described by Doucet ct a/. (18). It was optimized 
for each age group under stereomicroscopic observation, as the 
young tubules were more sensitive to permeabilization than the 
adult tubules. When 10-d-old PCT were permeabilized by the 
same procedure as the 40-d-old PCT, i.c. hypotonic shock and 
freeze-thaw, the Na+,K+-ATPase activity was slightly lower than 
the values with the optimized permeabilization procedure, i.c. 
only hypotonic shock (control value 8 18 f 12 1 [ t ~  = 61 compared 
with 1049 + 46 pmol phosphate/mm tubule/h [n = 61 and after 
dopamine incubation 587 f 17 1 compared with 684 f 23 pmol 
phosphate/mm tubule/h). There was no significant change in 
the inhibition of Na+,K+-ATPase activity by dopamine (28% 
compared with 34%), but the values with the milder permeabil- 
ization were more stable and less tubular disruption was observed 
in the microscope. Therefore, we chose to  permeabilize by only 
hypotonic shock in the 10-d-old tubules. The tubules were prein- 
cubated for 30 min in room temperature in the absence or  
presence of drugs. Also, 1 mM butyrate was added to the prein- 
cubation solution. 

Na+,K+-ATPasc assa): Na+,K+-ATPase activity was assayed 
as previously described (18), with minor alterations. Tubules 
were incubated at  37°C for 15 min in a medium containing (in 
mM): NaCl 70, KC1 5, MgClz 10, EGTA 1, Tris-HCI 100, 
Na2ATP 10, and [r-32P]-ATP (New England Nuclear; 2-5 Ci/ 
mmol) in tracer amounts (5 nCi/pL). For the determination of 
ouabain-insensitive ATPase activity, Tris-HCI concentration was 
150 mM; NaCl and KC1 were omitted; and ouabain 2 m M  (USB 
Corp., Cleveland, OH) was added. The phosphate liberated by 
[j2P]-ATP hydrolysis was separated by filtration after absorption 
of the unhydrolyzed nucleotide on  activated charcoal. The radio- 
activity was measured in a liquid scintillation spectrophotometer. 
For each animal, we determined the total ATPase and the 
ouabain-insensitive ATPase activity in five to  eight tubular seg- 
ments each. In each assay, we also determined "P release from 
['2P]-ATP in samples of incubation solution without any tubular 
segment as a blank. Na+,K+-ATPase activity was calculated 
according to the following formula: 
Na+,K+-ATPase activity = (sample - blank) 

x 4/specific radioactivity x tubule length 

Values are given as means with SEM. Statistical analysis was 
performed with the unpaired t test. 

Drlrg.~. Fenoldopam (SKF 82526) is a selective agonist for the 
DAI receptor (19). It was used in a concentration of 10 pM 
because this gave a substantially larger increase in cAMP pro- 
duction than 0. I pM in pilot studies (43% stimulation compared 
with 21% in cortical tubules and 32% compared with 14% in 
medullary tubules). In the Na+,K+-ATPase assay, fenoldopam 
was used in a concentration of 0.1 pM (5) and dopamine at 10 
pM (20). Forskolin is an activator of adenylate cyclase, inde- 
pendent ofG-protein and receptor activation (2 1). lsobutyl meth- 
ylxanthine is an inhibitor of phosphodiesterase action (22) and 
was used in a concentration of 0.5 mM. Butyrate 1 m M  was 
added to the preincubation solution in the Na+,K+-ATPase assay 
and to the DMEM in the cAMP assay to ensure ATP availability 
in the cells (23). 

If not othenvise indicated, chemicals were purchased from 
Sigma Chemical Co. and E Merck (Darmstadt, Germany). 

RESULTS 

Basal and forskolin-stimulated cAMP levels in cortical and 
medullary cell suspensions in 10-d-old and 40-d-old rats are 
shown in Table 1.  In the cortical cells, basal cAMP production 
was 5.4-fold higher ( p  < 0.05) in the 10-d-old than in the 40-d- 
old rats. The cAMP production was increased 24.6-fold ( p  < 
0.001) by forskolin stimulation in the 10-d-old and 11.6-fold ( p  
< 0.001) in the 40-d-old cortical suspension. The difference 
between the ages was statistically significant ( p  < 0.001). In the 
medullary cells, there was no difference in basal cAMP produc- 
tion between the ages. Forskolin incubation resulted in a large 
cAMP increase in both the 10-d-old (1 1.4-fold increase, p < 
0.001) and the 40-d-old rats (8-fold, p < 0.001). but there was 
n o  difference between the ages. 

In the cortical tubular suspension, cAMP production was not 
increased by fenoldopam in the young rats (1.8 f lo%, t1 = 3, 
NS) but substantially increased in the adult rats (5 1 f 16%. n = 
4. p < 0.05) (Table 1). The difference between the ages was 
significant ( p  c 0.05). The percent values given are calculated as 
mean of percent of control within each experiment. Fenoldopam 
caused a significant increase in cAMP production in the mcdul- 
lary cells in both 10-d-old (43.5 a 5%, n = 4, p < 0.001) and 40- 
d-old rats (32 + 7%, n = 6, p < 0.01). 

The basal Na+,K+-ATPase activity values (pmol phosphate/ 
m m  tubule/h) shown in Table 2 are similar in isolated PCT and 
mTAL in the 10-d-old rat. In the 40-d-old rat, mTAL values 
exceeded the 40-d-old PCT 1.5-fold ( p  < 0.001). In the PCT 
there was a 2.9-fold increase ( p  < 0.00 I), and in the mTAL there 
was a 4. I-fold increase ( p  < 0.001) in Na+,K+-ATPase activity 
from 10-d-old to  40-d-old rats. Ouabain-insensitive ATPase ac- 
tivity increased 1.7-fold in the PCT from 10-d-old to  40-d-old 
rats (1363 f 47 pmol phosphate/mm tubule/h, t l =  6, and 2340 
f 200 pmol phosphate/mm tubule/h, n = 9, p < 0.01), and in 
the mTAL there was a 1.5-fold increase (1297 f 243 pmol 
phosphate/mm tubule/h, n = 5, and 2 168 5 47 pmol phosphate/ 
m m  tubule/h, ,I = 6, p < 0.05). 

Dopamine inhibited Na+,K+-ATPase activity in both the 10- 
d-old (34 f 3%, n = 6, p c 0.001) and the 40-d-old PCT (44 k 
7%, t~ = 9, p < 0.001) (Table 2). Ouabain-insensitive ATPase 
activity was not affected, and the data are therefore not included. 
Fenoldopam 0.1 pM inhibited Na+,K+-ATPase activity in both 
the 10-d-old (56 f 6%, n = 6, p < 0.001) and the 40-d-old (33 
f 6%, n = 6, p < 0.001) mTAL. In the 10-d-old mTAL, 
inhibition was significantly higher ( p  < 0.05). 

DISCUSSION 

The rat nephron is still developingat the time ofbirth. Na+,K+- 
ATPase activity increases most rapidly around the weanling 
period (16- to  20-d-old rat) (24). This increase in enzyme activity 
coincides with an increase in the reabsorbtive capacity of the 
tubules and also by a n  increase in the urinary concentrating 
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Table 1. ~AhifPprodlrction (pmol cAhfP/mgprotein/tnir~) mcaslrrc~d in cortical or nlc~dirllarj~ tlibiilc~ siispalsion aficr incirbation 
~ i t h  vcdicle, finoldopam, or forskolin* 

Forskolin Fenoldopam 

Tissue Age Control  (10  P M )  (10  P M )  

Medul la  

Cortex 10-d-old 99.9 + 3 5  2458.7 + 9 0 0  94.2 k 26  
(tl = 3)  (11 = 3)  (11 = 3)  

p < 0.001 NS  
40-d-old 18.4 + 4 212.8 k 15 26.6 + 5 

(11 = 4)  (11 = 4 )  (11 = 5)  
p < 0.001 p < 0.05 

10-d-old 118.3 + 9 1349.3 + 75  173.1 + 10 
(I1 = 4)  (11 = 3)  (11 = 4 )  

p < 0.001 p < 0.001 

40-d-old 124.8 + 17 1007.7 + 105 166.4 + 22  
(11 = 6 )  (11 = 5)  (11 = 8) 

p < 0.001 p <  0.01 

*Va lues  a re  means  o f  n exper iments  + S E M .  Statistical analysis was  performed with paired 1 test. T h e  p values depict differences f rom control 
value. 

Table 
/I) in 

2. Na+,K+-ATPase activity (pmol phosphate/mtn tlrbirlel 
single PCT or nzTAL titbitles nreasured a j e r  incirbation 

with ve/lic/e, do~amine,  or fenoldopam* 

Dopamine  
Tissue Age Control  (10  P M )  

PCT 10-d-old 1049 + 4 6  6 8 4  + 23 
(11 = 6) (11 = 6 )  

p < 0.001 
40-d-old 3052 + 164 1724 + 258  

(11 = 9 )  ( n  = 9 )  
p < 0.00 1 

cAMP production by fenoldopam in the infant, some other 
mechanism must be responsible for this response. Possibly, the 
DA2 receptor is ofgreater importance in the young. In the mTAL, 
fenoldopam inhibited Na+,K+-ATPase activity to a higher degree 
in the young. This possibly could be explained by the slightly 
larger cAMP production observed in the medullary cells. 

The different patterns of response between cortical and med- 
ullary cells show that they mature in function in different ways. 
Imbert-Teboul ct a/. (30), who studied the effects of various 
hormones on adenylate cyclase in isolated mTAL and collecting 
tubules from 2- to 60-d-old rats, amved at a similar conclusion. 
The difference in hormonal response may reflect ongoing devel- 

Fenoldopam opmental processes. 

(0.1 r M )  
A natriuretic response to dopamine, measured as fractional 

sodium excretion, has been observed in infants of many species 
m T A L  10-d-old 1 148 + 109 508 + 7 1 (9, 11, 31). This study shows that cellular mechanisms for 

(11 = 6 )  ( n  = 7)  hormonal control of natriuresis appear early in development and 
p < 0.001 that they develop differently in different cell types. 

40-d-old 4704 + 6 9  3388  + 5 8  
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