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ABSTRACT. In vitro, IL-6 can induce hematopoietic pro- progenitors, are not completely known. Studies by Ikebuchi et 
genitors to progress from Go into cycle, but a role for IL-6 al. (12, 13) and Leary et a/. (14) demonstrated that, in vitro, IL- 
in regulating cycling status of progenitors in vivo has not 6 is capable of inducing cycling of hematopoietic progenitors 
been established. In our studies, groups of five to six adult from adult mice and adult humans. Similarly, studies by our 
and newborn rats received i.v. injections of either IL-6 (1 group (1 5) demonstrated that IL-6 can accelerate cycling of fetal 
ng/g body wt) or the vehicle (control), after which cycling hematopoietic progenitors in vitro. However, the action of IL-6 
of hematopoietic progenitors was evaluated by tritiated upon cycling status in vivo has not been evaluated. Thus, we 
thymidine suicide. Progenitors from adult rats injected with injected groups of adult and newborn rats with recombinant IL- 
the control had thymidine suicide rates of 7 2 1% (mean 6 or a vehicle control and assessed the cycling status of their 
f SEM), compared with 23 f 7% in the IL-6 recipients hematopoietic progenitors. 
(p  < 0.02). Progenitors from newborn rats injected with 
the control had thymidine suicide rates of 19 2 2%, com- MATERIALS AND METHODS 
pared with 29 + 1% in the IL-6 recipients (p  < 0.003). In 
addition, IL-6 administration resulted in release of cells Animals. Sprague-Dawley rats, weighing approximately 100 g, 
from the neutrophil storage pool into the circulation, as were obtained from Charles River Laboratories (Stone Ridge, 
evidenced by fewer polymorphonuclear cells flushed from NY). Groups of six animals received single i.v. injections (tail 
the long bones (neonates, p < 0.001; adults, p < 0.003), a vein) of either IL-6 (1 ng/g body wt, in a volume of 4 pL/g body 
rise in blood neutrophil concentration (neonates,~ < 0.001; wt), or the same volume of the vehicle used to suspend the IL-6 
adults, p < 0.05), and a leukocyte "left shift" (neonates, p (PBS containing 0.1 % BSA). Before the injections, the tails were 
< 0.001; adults,p < 0.01). Thus, the effects of IL-6 in vivo prepared by washing with a 10% povidine-iodine solution, fol- 
in newborn and adult rats include cycle induction of he- lowed by a wash with 70% isopropyl alcohol. Four h after the 
matopoietic progenitors and release of neutrophils from injections, the animals were killed by CO2 inhalation, after which 
the storage pool into the circulation. (Pediatr Res 28: 323- blood was drawn from the inferior vena cava and both tibias 
326,1990) were removed. 

Timed-pregnant Sprague-Dawley rats were allowed to deliver 
Abbreviations at the University of Utah Vivarium. Twenty-four to 48 h after 

delivery, groups of five to six pups, each weighing 5-8 g, received 
"tdr, tritiated thymidine i.v. injections (tail vein) of either IL-6 (1 ng/g body wt, in 4 pL/ 
PMN, polymorphonuclear cell g body wt), or the same volume of the vehicle used to suspend 
MEM, minimum essential medium the IL-6 (16). Four h after the injections, pups were killed by 

C 0 2  inhalation, after which blood was drawn from the internal 
jugular vein and the spleen and both femurs were removed. 

QuantiJication of circulating and myeloid pools. Concentra- 
tions of nucleated cells in blood and bone marrow were deter- 

Multipotent hematopoietic progenitors, obtained from the mined electronically (Coulter Electronics, Hialeah, FL), after 
marrow of healthy adults, generally reside in either a slowly which differential counts (300-500 cells) were performed on 
cycling or nonproliferating (Go) state (1-8). Evidence supporting Wright stained smears. Marrow cells were flushed from the two 
this interpretation includes the relative insensitivity of these tibias in adult animals, and from the two femurs in neonatal 
progenitors to cycle-active cytotoxic agents (1-3), their relative animals, into a-MEM (HyClone, Logan, UT), using the method 
lack of thymidine incorporation (1, 4, 5) ,  and their prolonged of Chervenick et al. (17). Cells that had a fine, filamentous strand 
survival in the absence of hematopoietic regulatory factors (8). separating the lobes of the nucleus were defined as PMN. Band 
In contrast, active cycling is observed in a substantial fraction of neutrophils were defined as cells in which beginning segmenta- 
the multipotent progenitors obtained from the blood, liver, mar- tion was evident but a fine filament was not observed. Metamye- 
row, or spleen of fetal subjects (5, 9-1 1). The mechanisms that locytes were defined as cells in which nuclear segmentation was 
result in the induction of cycling in otherwise nonproliferating not evident and the diameter of the nuclear opening was 2 %  the 
adult progenitors, and in maintenance of active cycling of fetal diameter of the nucleus. Myelocytes were defined as cells with 

Received March 5, 1990; accepted May 1 1, 1990. neutrophilic granulation in which the nuclear hole had a diam- 
Correspondence and reprint requests: Robert D. Christensen, M.D., Division of eter <% the diameter of the nucleus. P rom~e loc~ tes  were defined 

Human Development and Aging, University of Utah School of Medicine, 50 North as cells with azurophilic granulation in which a small nuclear 
Medical Drive, Salt Lake City, UT 84 132 opening might or might not be evident. Myeloblasts were defined 
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Anaheim, CA, May, 1990. shift" was quantified by the ratio of immature neutrophils (band 
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Flg. 1 Adult rats, Injected wlth IL-6 or the vehlcle (control), were killed 4 h after the injections. Displayed on the upper panel are the blood 
leukocyte concentrations, blood neutrophll concentrations, and degree of leukocyte left shift (quantified by the ratlo of immature to total c~rculating 
neutroph~ls). Marrow cells are displayed on the mrddle panel, and expressed as cells flushed from 2 tibias/g body wt Total nucleated marrow cells, 
PMN, band neutrophlls, metamyelocytes, myelocytes, promyelocytes plus myeloblasts, and normoblasts are displayed. Displayed on the lower panel 
are the quant~ty of hematopoletic progenitor cell-denved colonies (expressed as colonies/2 tiblas/g body wt), and the 'Htdr suiclde rate. The bracket 
indicates the SEM for groups of SIX rats 

neutrophils plus metamyelocytes) to total neutrophils (PMN plus spec act of 3.5 x lo5 U/mg, with a purity by SDS-PAGE of 
band neutrophils plus metamyelocytes) on blood films (1 8). >99.3%. Pokeweed-mitogen-stimulated spleen cell-conditioned 

3Htdr studles. Cell-cycle status was evaluated on marrow cells media was prepared by incubating 2 x lo7 spleen cells, obtained 
from adult rats, but on spleen cells from newborn rats due to the from a normal adult Sprague-Dawley rat, in a-MEM containing 
small number of marrow cells obtained from the newborn ani- 10% FCS (HyClone), M 0-mercaptoethanol (Eastman 
mals. Suspensions of spleen cells in a-MEM were prepared by Chemical Co., Rochester, NY), and 0.3 mL pokeweed mitogen 
passing spleens through serially smaller needles (from 18- to 25- (Gibco Labs, Grand Island, NY). After 7 d, the supernatant was 
gauge). The marrow or spleen cells from rats injected with IL-6, removed, passed through 0.45 pm filters (Millipore Products, 
anti-IL-6 antibody, or the control, were incubated with either Bedford, MA), and stored at -70°C until used. 
0.1 mCi of 3Htdr (sp act, 80 Ci/mmol, New England Nuclear, Clonogenic cultures Cells were cultured at a density of lo4/ 
North Billercia, MA) or the same amount of nonradioactive mL in quadruplicate 1-mL culture dishes containing a-MEM, 5 
thymidine. After a 20-min incubation, thymidine (3-4 mg) in x M 0-mercaptoethanol, 30% FCS (HyClone), 1% BSA 
cold a-MEM was added (10, 19,20). The cells were then washed (Sigma Chemicals, St. Louis, MO), 10% pokeweed-mitogen- 
twice, resuspended, counted, and plated in clonogenic assays, as stimulated spleen cell-conditioned media, 3 U erythro~oietin, 
described below. The 3Htdr suicide rate was calculated by sub- and 1.1 % methylcellulose (Sigma). After 10 d of culture, colonies 
tracting the number of colonies/105 plated cells subjected to were counted with the aid of an inverted microscope. All groups 
3Htdr from the number of colonies/105 plated cells subjected to containing '50 cells were scored as a colony. 

thymidine, divided by the number of colonies/ 105 plated Statistleal analysis Differences between circulating concentra- 
cells subjected to cold thymidine. tions of leukocytes, marrow cell populations, hematopoietic pro- 

~~~~~~~~i~~~~ growth factors, ~ ~ ~ ~ ~ b i ~ ~ ~ t  human IL-6 (R genitor cells, and 3Htdr suicide rates were assessed using t test. 
& D Systems, Minneapolis, MN), produced in E. colz, was 
purified to homogeneity (295% by SDS-PAGE) by sequential RESULTS 
chromatography and then sterile filtered. The endotoxin level 
was 50.1 ng/pg IL-6. Effect of ZL-6 on czrculatlng leukocyte concentratlon Four h 

Purified recombinant human erythropoietin (kindly provided after injection, total blood leukocyte concentrations in the adult 
by Dr. Steven Clark, Genetics, Institute, Cambridge, MA) had a IL-6 recipients did not differ from controls (Fig. 1, upper panel). 
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Fig. 2. Newborn rats, injected with IL-6 or the vehicle (control), were killed 4 h after the injections. On the upper panel are displayed the blood 
leukocyte concentrations, blood neutrophil concentrations, and degree of leukocyte left shift (quantified by the ratio of immature to total circulating 
neutrophils). Marrow cells are displayed on the middle panel, and expressed as cells flushed from 2 femurs/g body wt. Total nucleated marrow cells, 
PMN, band neutrophils, metamyelocytes, myelocytes, promyelocytes plus myeloblasts, and normoblasts are displayed. Displayed on the lower panel 
are the quantity of hematopoietic progenitor cell-derived colonies (expressed as colonies/2 femurs/g body wt) and the 'Htdr suicide rate. The bracket 
indicates the SEM for groups of five to six rats. 

Blood neutrophil concentrations, however, were greater in the 
IL-6 recipients (1460 + 317/mm3, mean + SEM) than controls 
(1 050 + 1 80/mm3, p < 0.05). A greater leukocyte left shift was 
observed in IL-6 recipients, as evaluated by the increase in 
proportion of immature/total neutrophils on blood films (0.48 
+ 0.05 versus 0.28 a 0.3 in controls, p < 0.01). No differences 
were observed between IL-6 recipients and controls in circulating 
concentrations of lymphocytes, monocytes, or eosinophils. 

Changes in blood leukocytes after IL-6 injections were more 
pronounced in newborn animals than in adults (Fig. 2, upper 
panel). Newborns had a marked increase in total blood leukocyte 
concentration relative to control animals, a 3-fold increase in 
blood neutrophil concentration (1560 f 460/mm3 in controls 
versus 5 130 + 1 390/mm3 in IL-6 recipients, p < 0.00 l), and a 
marked left shift (0.28 f 0.16 in controls versus 0.60 + 0.04 in 
IL-6 recipients, p < 0.001). As in the adult rats, no differences 
were observed in concentrations of lymphocytes, monocytes, or 
eosinophils. 

Effect of ZL-6 on neutrophil storage and proliferative pools. No 
difference in number of nucleated cells flushed from the tibias 
was observed between the IL-6 recipients (2 140 + 90 x lo3 cells/ 
g body wt) and the control recipients (2090 + 300 x lo3 cells/g 
body wt) 4 h after injecting the adult animals (Fig. 1, middle 
panel). The number of PMN flushed from the tibias, however, 
was less in IL-6 recipients (19 + 4 X 103/g body wt) than in 
controls (39 k 4 x 103/g body wt, p < 0.003). Correspondingly, 
the numbers of metamyelocytes, myelocytes, promyelocytes, and 

myeloblasts flushed from the tibias were greater in IL-6 recipients 
than in controls. The number of normoblasts was not different. 

In contrast to adult animals, fewer total nucleated cells were 
flushed from the marrow of neonatal IL-6 recipients (185 + 42 
x lo3 cells/g body wt) than from the controls [261 k 46 x lo3 
cells/g body wt, p < 0.03 (Fig. 2, middle panel)]. Similar to the 
adults, the number of PMN flushed from the femurs of IL-6 
recipients (23 k 7 x 103/g) was less than controls (58 + 14 x 
103/g, p < 0.001). No differences in quantities of metamyelo- 
cytes, myelocytes, promyelocytes, and myeloblasts were ob- 
served. 

Effect of ZL-6 on concentration and cell cycle characteristics of 
hematopoietic progenitors. The quantity of hematopoietic col- 
ony-forming cells flushed from the tibias of adult rats is shown 
in Figure 1, lower panel. No difference in the number of colonies 
generated12 tibias/g body wt was observed between adult animals 
injected with IL-6 and controls. However, hematopoietic progen- 
itors from animals injected with IL-6 had a higher 'Htdr suicide 
rate (23 + 5 % )  than controls (7 + 1 %, p < 0.02). 

Similar to the adults, IL-6 injections did not alter the quantity 
of hematopoietic progenitors flushed from the femurs of newborn 
rats (Fig. 2, lower panel). The 3Htdr suicide rate of hematopoietic 
progenitors obtained from control neonatal rats (19 + 2%) was 
higher than that of control adult rats (7 + 1 %, p < 0.00 1). Similar 
to the adults, IL-6 injections increased 3Htdr suicide of progeni- 
tors from neonatal rats (29 + 1 %, p < 0.003 versus control). 
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DISCUSSION 

IL-6 is a multifunctional cytokine that appears to be centrally 
involved in regulation of the immune system (21-23). Its recog- 
nized actions include induction of antigen-specific IgG produc- 
tion from B lymphocytes (24), induction of T lymphocyte growth 
and differentiation (25 ) ,  and induction of acute phase proteins 
by liver cells (26). In addition, studies in vitro by Ikebuchi et al. 
(12, 13), Leary et al. (14), and our group (15) suggest that IL-6 
is involved in the process of inducing hematopoietic progenitors 
from Go into active cycling. Whether IL-6 is a physiologic 
regulator of cycling status of hematopoietic progenitors in vivo 
has not been established. Indeed, whether administration of IL- 
6 results in enhancement of progenitor cell cycling in vivo has 
not been reported. 

To assess its effect on circulating and marrow neutrophil 
populations, Ulich et al. (27) injected adult rats with IL-6. They 
observed neutrophilia between I1/z and 12 h after a single dose 
of 1 ng IL-6/g body wt. They also observed that, 12 h after 
injection, a greater quantity of myeloblasts, promyelocytes, and 
myelocytes were flushed from humeri of IL-6 recipients than 
from rats receiving control injections. In our study, we sought to 
extend those observations by examining the cycle status of he- 
matopoietic progenitors after injection of IL-6. In addition, we 
sought to determine whether administration of IL-6 to neonatal 
rats would further increase the proportion of cycling progenitors. 
This was of interest because we previously reported that, com- 
pared with adult rats, neonatal rats have a large proportion of 
hematopoietic progenitors that are actively cycling (1 1, 19). 

Indeed, we observed that 4 h after IL-6 injection (1 ng/g body 
wt), the proportion of progenitors killed by exposure to 3Htdr of 
high spec act was significantly greater than that from animals 
receiving control injections. Progenitors from newborn rats had 
a much higher baseline rate of cycling than did those from 
normal adult rats; nevertheless, IL-6 injections into newborns 
further increased this cycling. 

In addition to its action on progenitors, IL-6 administration 
resulted in release of neutrophils from the storage pool into the 
blood. Evidence for this includes the observations that fewer 
PMN/g body wt were flushed from the marrow and that the 
circulating neutrophil concentrations and degree of leukocyte 
left shift were increased in the IL-6 recipients. Whether this was 
a direct effect of IL-6 as a neutrophil releasing factor (28) is not 
clear. 

Like Ulich et al. (27), we observed that IL-6 injections into 
adult rats resulted in increased marrow quantities of morpholog- 
ically recognizable neutrophil precursors. The observation that 
this increase occurred after only 4 h suggests that, in addition to 
its action on hematopoietic progenitors, IL-6 enhanced prolifer- 
ation of the neutrophil precursor population. It is not clear why 
IL-6 administration to newborn rats did not result in increased 
quantities of morphologically recognizable neutrophil precur- 
sors. Perhaps the cycling rates of these populations were already 
near-maximal in the control newborn rats (I I). 

In summary, injection of IL-6 into adult and newborn rats 
resulted in accelerated cycling of hematopoietic progenitors and 
release of neutrophils from the storage pool into the circulation. 
Because these kinetic events are also observed during experimen- 
tal bacterial infection (1 1, 18, 29), we speculate that IL-6 might 
be involved in mediation of these events during infection in vivo. 
The data presented here demonstrate that alterations in IL-6 
concentration could affect such changes. 
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