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ABSTRACT. Though bilirubin is reported to affect a va- 
riety of cellular functions, the primary target of its toxic 
effect is still not known. A major problem in understanding 
this is the wide variation in results reported by different 
groups. This is probably due to the differences in stability 
of bilirubin solutions arising from large differences in 
bi1irubin:albumin molar ratios used in experiments. Hence 
in studying the toxic effects of bilirubin in tissue culture 
systems, it is important to be certain that the bilirubin is 
maintained in solution throughout the time of the exposure 
to bilirubin. Spectrophotometric measurements have 
shown that bilirubin is stable in Dulbecco's modified Eagle 
medium solution a t  bilirubin:albumin molar ratios up to 3. 
Under these defined conditions, bilirubin was found to 
affect Na+K+ ATPase, [3H]-thymidine uptake, ~-[~ 'S]me- 
thionine incorporation into protein and mitochondrial func- 
tion at  bilirubin concentrations up to 125 p M  and biliru- 
bin:albumin molar ratio of 1.5. Toxic effects on all param- 
eters measured were evident a t  bi1irubin:albumin molar 
ratio of 1.5 after a minimum of 2 h of exposure. No effect 
was evident a t  a bi1irubin:albumin molar ratio below 1. 
Although it is not possible to identify with certainty the 
primary target, the effect on mitochondrial function ap- 
peared earlier and was more profound than that seen with 
the other assessed functions. (Pediatr Res 25364-368, 
1989) 

Abbreviations 

B/A, bi1irubin:albumin molar ratios 
HSA, human serum albumin 
MTT, 3-(4,s dimethylthiazol-y-yli),-2,5-diphenyl tetrazo- 

lium bromide 
DMEM, Dulbecco's modified Eagle medium 

The mechanism of bilirubin encephalopathy has been studied 
extensively over the past decade. Data has been obtained from 
tissue examinations using light and electron microscopy (1, 2), 
in vitro assessment of bilirubin toxicity in different neural and 
nonneural tissues (3) and, more recently, in vivo studies of 
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different brain cell functions in Gunn rats suffering from hered- 
itary bilirubin encephalopathy (4). 

The major biochemical defect underlying bilirubin encepha- 
lopathy has yet to be determined. Studies conducted on neural 
tissue demonstrated that bilirubin can impair a large number of 
cellular functions. Among them are: changes in energy metabo- 
lism (4-6), impairment of various membrane functions and 
intracellular key enzymes-such as Na+K+ ATPase, glutamate 
decarboxylase, lactate dehydrogenase, protein kinase, to name a 
few (7-1 I)-alterations in the physical and functional state of 
the cell membranes (12-16), inhibition of both DNA (17, 18) 
and protein synthesis (19-22), changes in carbohydrate metabo- 
lism (23,24), and modulation of neurotransmitter synthesis (25). 
However, variation in different cellular functions, the use of 
concentrations of bilirubin higher than usually encountered in 
clinical situations, and the use of varying albumin concentra- 
tions, thus altering the B/A, may account for the multiplicity of 
effects and inconclusive results. The use of bilirubin without 
added albumin, or the use of high bilirubin concentrations at 
high B/A causes rapid aggregation of bilirubin (26-29). Once 
aggregates are formed, changes in free bilirubin concentration 
occur, and hence may give rise to variable toxicity as the free 
form of bilirubin seems to be the reactive form. 

As bilirubin can interfere with a number of cellular functions, 
it is clearly important to establish which functions are damaged 
first in particular cell populations. In the present study, using 
stable bilirubin-HSA mixtures at B/A of 0.8 and 1.5, the effect 
of bilirubin on 42K' influx, [3H]thymidine uptake, ~ - [ ~ ~ S ] m e t h i -  
onine uptake, and mitochondrial function in the neuroblastoma 
cell line N- 1 15 in culture is investigated. 

MATERIALS AND METHODS 

Chemicals. All reagents are analytic grade chemicals and in- 
clude bilirubin (Lot # 13F0846), HSA (fraction v, essentially FFA 
free), MTT obtained from Sigma Chemical Co. (St. Louis, MO), 
DMEM PBS, and FCS obtained from Grand Island Biological 
Co. [3H]thymidine (sp act, 15.1 Ci/mmol) and L-[35S]methionine 
(sp act 1129 Ci/mmol) were purchased from Dupont, Missis- 
sauga, Ontario, Canada. 42K' was produced by irradiation of 
K2C03 at the Slow Poke reactor, University of Alberta. The sp 
act was 0.36 mCi/mmol at the end of the radiation, and the 
experiment was carried out within 4 h. 

Preparation and stability of bilirubin-HSA mixtures. A stock 
solution of HSA (mol wt, 68 000) was prepared as a 50+M 
solution in 50-mM Tris buffer (pH 7.4) and sterilized by filtra- 
tion. Immediately before the experiments, a stock solution of 10- 
mM bilirubin in 0.1-N NaOH was prepared. The composition 
was verified by high pressure liquid chromatography to contain 
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92% of the IXa moiety, the rest being XIIIa and IIIa. No other 
bile pigments were detected. Thus the bilirubin preparation was 
used without further purification. Then 5.85 mg bilirubin was 
dissolved in 0.5 mL 0.1-N NaOH. Once in solution, 0.5 mL of 
diluent at pH 7.8 containing 0.45% NaCl and 0.45% Na2C03 
was added. The bilirubin and albumin solutions were mixed in 
various vol to achieve the desired B/A. 

MTT was made up as a 5 mg/mL solution in PBS (pH 7.4) 
and was filtered to sterilize. This yellow solution was stable for 
several wk when stored in the dark at 4°C. Just before use, one 
part MTT was mixed with nine parts of protein-free medium. 

To determine the stability of bilirubin-HSA mixtures in 50- 
mM Tris buffer (pH 7.4), the freshly prepared stock bilirubin 
solution was centrifuged for 5 min at 10 000 x g to remove the 
undissolved material. The stability of bilirubin-HSA mixtures, 
using 5-pM HSA and bilirubin concentrations ranging from 4.5- 
36 pM, giving B/A from 0.9-7.2, was measured by spectropho- 
tometry (28). The mixtures of different B/A were made up in 6- 
cm tissue Petri culture dishes and diluted to a final vol of 10 mL 
with Tris buffer, and incubated at 37°C in the dark. At different 
time intervals (0, 1, 2, and 24 h), 1 mL of solution was removed 
into an Eppendorf centrifuge tube, centrifuged at 10 000 x g for 
5 min, and absorbance at 460 nm measured. All the experiments 
were carried out in a dimly lit room to avoid bilirubin photodeg- 
radation. As DMEM contains amino acids, minerals, and vita- 
mins, bilirubin stability may differ in the medium than in Tris 
buffer. Hence these experiments were repeated with DMEM. 
(DMEM also contains a dye, methyl red, which has an absorption 
maximum of 550 nm at pH 7.4. Interference of bilirubin absorp- 
tion in culture medium was compensated for by using DMEM 
as the blank when measurements were made.) 

N-115 cells. N-115 cells were seeded on 35-mm culture dishes 
and allowed to grow in standard DMEM and 10% FCS at 37°C 
in a 5% COz humidified atmosphere for 12 h. Then the medium 
was removed by suction and replaced with 1 mL protein-free 
media (30) plus HSA for another 12 h, before the experiment 
with bilirubin was set up. Bilirubin was prepared as described 
before and added to the experimental medium to make final 
bilirubin concentrations of 75, 100, or 125 pM and B/A of 0.8 
and 1.5. The addition of bilirubin was immediately followed by 
an amount of 0.1-N HCI equivalent to the amount of NaOH to 
restore the pH to 7.4. Control cells were seeded and grown as 
above with HSA added. NaOH (0.1 N) and 0.1-N HCI were 
added to the media, with no bilirubin, in the same vol as in the 
bilirubin-treated cells. 

42K-+ injlux. To assess the effect of bilirubin on Na+ Kt ATPase 
activity, the following series of experiments were carried out. 
Cells were seeded at a density of 4-5 x 105/plate and prepared 
as described above. Bilirubin in concentrations of 75 pM and 
100 pM and B/A 0.8 and 1.5 was added to the test cells and 
incubated for 2 and 4 h. To determine whether the bilirubin 
effect, if any, is on passive or active transport of K', another set 
of similar experiments was done in which the cells were incubated 
in media containing 0.5-mM ouabain for 10 min before the 
addition of 4%+. At 1 h before the end of the incubation period, 
2-mM 42K+ was added. At the end of the 60-min incubation 
period, the culture dishes were placed on ice, the medium was 
removed, and the cells were washed five times with ice-cold PBS 
(31). Then the cells were harvested in 0.5 mL PBS, scraped off 
into an Eppendorf test tube, and counted in a Beckman Gamma 
Counter (Beckman Instruments, Fullerton, CA) for 1 min. The 
background counts were always less than 1% of the total and 
were subtracted from the total counts. 

42K+ influx and (31T]thymidine uptake. To compare the effect 
of bilirubin on 42K+ influx and ['Hlthymidine uptake, the cells 
were grown as before and exposed to 125-pM bilirubin with B/ 
A of 0.8 and 1.5 for 2, 4, and 6 h. At 1 h before the end of the 
incubation period, the cells were pulse labeled with 42K+ and 
handled as described above. At the time of the addition of 4%+, 

cells were also pulse labeled with ['Hlthymidine, 2 pCi/dish for 

60 min to assess thymidine uptake by the cells. Uptake was 
assessed as reported previously (1 8). 

MTT assay. The MTT assay has been used effectively for 
assessment of cell viability (32). It assesses the ability of the 
mitochondria to cleave the dye to form a dark blue formazan. 
To achieve this, the cells were seeded and grown as described 
above and exposed to 100-pM bilirubin, B/A ratio of 1.5, for 0, 
1, 2, 3, and 4 h. MTT was prepared and sterilized as described 
before (18, 32). At 60 min before the end of the exposure to 
bilirubin, 100 p1 of the MTT was added. At the end of the 
incubation period, the cleaved dye, seen as blue crystals within 
the cells, was dissolved in 1 mL of isopropanol-HCI (0.04 N) by 
agitation with repeated pipetting until a blue solution was ob- 
tained. The absorbance of the individual cultures was then read 
in a diode array spectrophotometer (Hewlett-Packard Co., Palo 
Alto, CA) with a test wavelength of 570 nm and a reference 
wavelength of 630 nm. The difference in absorbance is a direct 
measure of mitochondria1 function and cell viability (32). 

L-[35S]rnethionine incorporation into protein. N- 1 15 cells were 
seeded and grown as before and exposed to 100-pM bilirubin, at 
B/A ratio of 1.5, for 0, 1, 2, 3, and 4 h. At 1 h before the end of 
the incubation period, the cells were pulse labeled with 10 pL of 
1/100 dilution of a stock solution of L-[35S]methionine for 60 
min. At the end of the incubation, the medium was removed 
into an Eppendorf test tube, the cells were suspended in 0.5 mL 
PBS and scraped off into another Eppendorf test tube. Proteins 
in the medium and in the cells were precipitated with 1 mL of 
10% trichloroacetic acid solution. After centrifugation at 10 000 
x g for 5 min, the supernatant was removed and the pellet 
redissolved in 1-N NaOH. Half of the pellet was measured for 
radioactivity by liquid scintillation counting using ACS (Amer- 
sham Corp., Arlington Heights, IL) as scintillant and the other 
half used for protein estimation (33). 

RESULTS 

Bilirubin stability. Figure 1 demonstrates the stability of 35- 
pM bilirubin in 50-mM Tris buffer solution at different B/A in 
the range of 0.5 to 8 at 37°C. In the albumin-free state, virtually 
all of the bilirubin precipitated out of the solution immediately. 
At a B/A of 1 or less, the absorbance of the bilirubin solution 
remained unchanged over a 24-h period. The bilirubin solution 
became less stable as the B/A increased and declined to 60% of 
the initial level at a B/A of 8. The same pattern was seen when 
DMEM was used instead of Tris buffer. 

42K+ influx. The effect of bilirubin on 42K+ influx is given in 
Table 1. The total 42K+ influx is inhibited by bilirubin only at a 
concentration of 100 pM and B/A 1.5, and this becomes manifest 
only after 4 h of exposure. In this time frame, the portion affected 
is only the ouabain inhibitable or active (Na'K+ATPase) com- 
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Fig. 1. The solubility of 35-pM bilirubin (Br)  in 50-mM Tris buffer 
at B/A of 0.5 ( I ) ,  1.0 ( 2 ) ,  2.0 ( 3 ) ,  4.0 (4) and 8.0 ( 5 ) .  Curve (6) represents 
35-pM bilirubin in Tris Buffer in the absence of albumin. Absorbences 
were measured at 0, 0.5, 1 ,  3, and 24 h. In the absence of albumin, 
bilirubin precipitates out of solution within 30 min, whereas at  B/A up 
to 3, up to 10% bilirubin is lost by 24 h. Similar results were obtained 
for DMEM. 
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ponent. No effect was seen on the ouabain resistant, or passive 
influx component. 

42K+ influx and pH/thyrnidine uptake. The effect of exposure 
to 1 2 5 - ~ M  bilirubin, a t  B/A of 1.5, on 42K' influx and ['HI 
thymidine uptake, is depicted in Figure 2. Uptake of [%]thy- 
midine was decreased by 40% of control values within 4 h of 
exposure. 4'K+ influx was affected only after 4 h of exposure, 
and to a lesser degree than the effect on [3H]thymidine uptake. 

MTT assay. The mitochondrial function measured as the 
difference in absorbance at  560 and 630 n m  in the MTT assay 
is given in Table 2. The results show a decrease in the ability of 
the bilirubin-treated cells to  cleave the M T T  dye shortly after the 
exposure. Although a 43% reduction in activity was seen after 2 
h of exposure to  bilirubin, the most pronounced effect on viabil- 
ity (63% reduction of activity) was seen after 4 h of exposure. 

L-~5S/rnetl~ionine incorporation into protein. At the end of 2, 
3, and 4, h exposure of the cells to  1 0 0 - ~ M  bilirubin, B/A of 1.5, 

Table 1. Effect of bilirubin treatment of N-I15 cells on 42K+ influx* 
42 K+ influx-cpm/ 42K+ inf lu~-cprn /~g  

wg DNA/h D N A / ~  
(2 hr bilirubin (4 hr bilirubin 

exposure) exposure) 

Bilirubin concentration Ouabain Ouabain Ouabain Ouabain 
B/A (PM) resistant inhibitable resistant inhibitable 

Control 38 + 3 210 k 4.3 45 t 6 202 k 2.5 
0.8 7 5 36 + 5 207 + 4.5 44.9 k 3 208 + 4.7 

Control 44 + 3 214 + 5.4 52 + 0.5 207 + 6.9 
0.8 100 42 + 5 208 + 5.7 40 + 0.3 207 a 3.5 

Control 37 2 166 + 4.8 44 + 4 166 ? 3.4 
1.5 75 31 k 6 167 + 3.5 4 0 k  4 1 2 3 +  4.61- 

Control 41 + 4  1 6 9 k 3 . 1  4 2 ? 3  1 6 3 k 4 . 5  
1.5 100 36 k 5 160 + 3.0 37 + 3 130 + 1.38 

* Values given are mean + S D  from three measurements X 2. 
t p  = 0.00001. 
8 p = 0.0003. 

Time (hrl 

Fig. 2. The effect of bilirubin (125 wM) on ['Hlthymidine uptake (a) 
and 42K+ influx ( h )  by N-1 15 cells. Data is expressed as CPM/@g DNA 
accumulated over a I-h period. 0, control: B, B/A 0.8; 1 B/A 1.5. 

Table 2. MTT a.s.sa~~,fi~r viability c!f'control and hiliruhin-treated 
cells* 

Difference in absorbance 
(A560-A630) 

Duration of exposure 
(h) Control cells Bilirubin-treated cells % Control 

0 0.2548 k 0.0122 0.2502 k 0.0045t 100 
1 0.23 18 ? 0.0062 0.207 1 + 0.0096 87 
2 0.222 + 0.0 172 0.1203 + 0.0072 57 
3 0.2066 k 0.0046 0.1203 + 0.0072 60 
4 0.2153 ? 0.01 14 0.0799 + 0.0133 37 

*Cells were treated with 100-wM bilirubin, B/A 1.5. An equivalent 
amount of HSA was added to control cells. 

t Mean + S D  of two triplicates analyses. 

Fig. 3. The effect of 100-wM bilirubin on L-[75S]methionine uptake ~ 
by N-1 15 cells at  B/A 1.5 (0) compared to controls (a). Data is expressed ~ 
as cpm mg protein accumulated over a I-h period. I 

there was a significant decrease in L-[35S]methionine incorpora- 
tion into protein compared to control (Fig. 3). The decrease in 
incorporation into protein was noticed in proteins extracted from 1 
cells and media. 1 

DISCUSSION 1 
The mechanism of bilirubin toxicity to  the central nervous 

system has been debated extensively over the past years. The ~ 
difficulties in analyzing the results and the inability to point to a 
primary bilirubin target stems from variation in experimental 
designs, the use of different animal models and difficulties in 
correlating the chemical, biochemical, and clinical knowledge of 
the bilirubin molecule in in vitro and in vivo experiments. 

Most of the work done on bilirubin toxicity in neural tissues 
can be divided into two major groups. In one group, the hyper- 
bilirubinemic Gunn rat served as the model; in the other, brain 
cells from normally developed animals were used. The difference 
between the two is a major one. The use of the Gunn rat as a 
model for bilirubin encephalopathy is based on the assumption 
that the damage seen is primarily due to bilirubin. Studies in 
Gunn rats have shown that bilirubin is indeed toxic to the 
mitochondria (4), causes changes in membrane morphology (2), 
affects glycolytic (23, 24) and other cellular enzymes (9), modu- 
lates neurotransmitter synthesis (25) and may inhibit protein 
(19-22) and DNA (17) synthesis. Though extensive damage to 
the nervous system in the Gunn rat can be attributed to  bilirubin, 
a genetically determined bilirubin-independent abnormality in 
these animals cannot be excluded (34, 35). 

Exposure of neural cells to  bilirubin for a limited time period 
may not properly reflect the more prolonged influx of bilirubin 
encountered in the clinical situation. Yet the input from many 
studies points to damaging effects. Bilirubin was shown to impair 
mitochondria1 reactions (5, 6, 18), and to inhibit various cellular 
enzymes either directly (7, 8, 10, 11) or via alterations in the 
membranes (12-16). Despite this, no specific target has been 
singled out as the primary one for bilirubin toxicity. 

A major concern when experimenting with a B/A that exceeds 
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one, is the instability of the bilirubin solution leading to forma- REFERENCES 
tion of bilirubin aggregates and coaggregates of bilirubin and 
albumin (26-29). Once aggregates are formed, changes in free 
bilirubin concentration occur, giving rise to experimental varia- 
bility. This problem has not been addressed in experiments 
dealing with bilirubin toxicity in vitvo (24, 37-41). In previously 
reported data, when either free bilirubin or bilirubin in excess of 
albumin was used, the toxic effect appears to  be an instant one, 
within minutes of exposure (4-7, 10, 15). One often used solution 
to the bilirubin stability problem is raising the pH of the buffer 
to  8.2 or higher (16, 42, 43). This proves to be an impractical 
approach when experimenting with live cells. When complexed 
with HSA, bilirubin in solution is stable at different concentra- 
tions (27). In carrying out the studies herein described, attention 
is given to the stability of bilirubin in DMEM solutions. Under 
these conditions, where bilirubin is maintained in solution, tox- 
icity is slower in occurring and is dependent on both the amount 
of free bilirubin and the time of exposure. Direct interaction of 
bilirubin with the purified enzymes, as opposed to interaction 
with the whole cell, may well be the reason for the time difference, 
but one cannot exclude the possibility that toxicity was delayed 
or did not occur as a result of bilirubin instability in solution. 

In the present investigation, we have shown that bilirubin, a t  
concentrations of 35-125 pM and B/A of 1.5, is stable over a 
24-h period in the medium (DMEM) for the neuroblastoma cell 
line N-115. When applying this approach to cell studies, it was 
noticed that a t  50 pM bilirubin and B/A 5 0.8, bilirubin binding 
by the N-I 15 cell in monolayer culture was negligible. However, 
at B/A 1.5, where loss of bilirubin after 24 h was less than lo%, 
cellular uptake of bilirubin in 2 h was found to be 110 ng/pg 
DNA ( 1 8). 

In the studies herein reported, the effect of bilirubin on four 
vital cellular functions-mitochondria1 activity, protein synthe- 
sis, DNA synthesis, and ion transport-is evident. A significant 
reduction in mitochondrial activity is seen within 2 h of exposure. 
This effect seems to occur early and is more pronounced than 
the effect seen on ['Hlthymidine uptake, L-["Slmethionine in- 
corporation into protein or 42K+ influx. The bilirubin effect on 
42K+ influx is ouabain sensitive, and is a reflection of the effect 
of bilirubin on Na'K' ATPase activity. In all these instances, 
the effects seem t o  be dependent on the B/A, bilirubin concen- 
tration, and the duration of exposure. From these studies, it is 
not possible to single out conclusively the primary target for 
bilirubin toxicity, although the data suggest an earlier and more 
pronounced effect occurring with mitochondrial function. The  
effect on L-[isS]methionine incorporation into protein seems to 
develop later in the course of the bilirubin exposure and is less 
pronounced then that seen with ['Hlthymidine uptake. It is 
difficult from these experiments to  determine whether these two 
observations are a direct result of bilirubin toxicity or secondary 
effects arising from the initial effect of bilirubin toxicity on 
mitochondrial function. 

It is therefore concluded that in studies involving cells in 
culture, where it becomes important to  know that the amount 
of bilirubin utilized remains stable and in solution, the optimal 
B/A to use is <3. In this fashion, reproducibility of conditions 
related to  bilirubin toxicity of the cells can be achieved. Using 
this approach, it has been demonstrated that bilirubin affects 
mitochondrial function, [?H]thymidine uptake, L-[35S]methio- 
nine incorporation into protein and Na+-K' ATPase activity of 
the N-115 cell. As mitochondrial dysfunction precedes the other 
three effects and as ATP is required for protein and DNA 
synthesis, as well as for K' transport, these results point to the 
possibility that mitochondria may be the primary target of bili- 
rubin toxicity. 
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Erratum 
There was an error in Table 3 of the article by J. Ramet, et al. titled "Effect of Maturation on Heart Rate 

Response to Ocular Compression Test during Rapid Eye Movement Sleep of Human Infants" (Pediatr Res 
24:477-480, 1988). The headings of columns 1 and 2 were transposed. The correct Table 3 should read: 

Table 3.  Reszllts qf stepwise regression for general measured 
variables' 

Independent Dependent Partial Partial 
variables variables coefficients RZ P 

G A Longest RR 55.3 0 . 3 5  <0.0001 
PNA 10.2 0 . 3 0  <0.0001 

G A %RR maximum 114 0 . 3 8  <0.001 
PNA 2 . 4  0 . 3 1  <0.001 

G A Latency 1 3 6  0 . 2 8  <0.002 
PNA 25.8 0 . 2 3  <0.001 

'Variables were significantly influenced by PNA and GA 
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