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ABSTRACT. Chlorpromazine and related drugs including 
trifluoperazine, clopenthixol, and fluphenazine are in vitro 
inhibitors of mitochondrial carnitine palmitoyltransferase 
and cytochrome c oxidase and of peroxisomal carnitine 
octanoyltransferase from mouse heart and liver. By con­
trast with 0.1 % ethyl 2(5(4-chlorophenyl)pentyl) oxiran-
2-carboxylic acid or 0.1 % clofibrate-containing diets, the 
treatment of mice with 0.1 % chlorpromazine-containing 
diet fails to induce peroxisomal proliferation in liver and 
heart. An 05% chlorpromazine-containing diet did induce 
peroxisomal proliferation. Inhibition of peroxisomal fJ­
oxidation presumably via the reduction of carnitine octan­
oyltransferase by chlorpromazine elicits the appearance in 
liver of lamellar structures resembling those seen in human 
peroxisomal disorders and induces accumulation of very 
long-chain fatty acids in plasma. The peroxisomal prolif­
eration induced by administration of high dose chlorpro­
mazine is ascribed to its ability to depress mitochondrial 
fatty acid oxidation by impairing cytochrome c oxidase and 
carnitine palmitoyltransferase activities. (Pediatr Res 22: 
748-754, 1987) 

Abbreviations 

DAB, 3,3' -diaminobenzidine 
POCA, ethyl 2(5(4-chlorophenyl)pentyl) oxiran-2-carbox­

ylic acid 

Experiments with chlorpromazine, an inhibitor of peroxisomal 
carnitine octanoyltransferase, have led to the proposal that per­
oxisomal ,B-oxidation which was depressed by the phenothiazine 
in isolated hepatocytes (1) was dependent on carnitine (2). On 
the other hand, the inhibition of both cytochrome c oxidase and 
chlorpromazine palmitoyltransferase activities (2) were proposed 
as the cause of the reduced ketone body formation from long-

chain fatty acids ( I) in isolated hepatocytes incubated in the 
presence of chlorpromazine at concentrations between 0.4 to 1.0 
mM. 

In several circumstances, in vivo inhibition of mitochondrial 
fatty acid oxidation in rodents is associated with peroxisomal 
proliferation. The latter phenomenon mainly consists of an 
increased peroxisomal population and enhanced capacity of the 
peroxisomal fJ-oxidation. One example is treatment of rodents 
with 2-oxiran carboxylic acid derivatives such as POCA which 
are well-known inhibitors of hepatic carnitine palmitoyltransfer­
ase type I and which produce a peroxisomal proliferation in liver 
(3). Another example is given by treatment of mice with valproic 
acid (4, 5). 

Chlorpromazine, unlike 2-oxiran carboxylates, has been re­
ported to produce lipid accumulation but no induction of per­
oxisomal proliferation in rodent livers (6). This discrepancy 
between the in vitro property of chlorpromazine to inhibit mi­
tochondrial fatty acid oxidation and the failure of the drug to 
increase, in vivo, the peroxisomal population and fJ-oxidation 
capacity is only apparent. Indeed, we demonstrate that a diet 
containing 0.5 % (w/ w) chlorpromazine causes peroxisomal pro­
liferation in liver and heart. On the other hand, we report that 
the diet containing only 0.1 % (w / w) chlorpromazine is unable 
to induce peroxisomal proliferation and we cannot conclude that 
this drug concentration inhibits mitochondrial fatty acid oxida­
tion in vivo. In the treated animals, impairment of peroxisomal 
fatty acid oxidation could occur as attested by a lipid deposition 
in liver cells mimicking the storage of very long-chain fatty acids 
in tissues from patients with peroxisomal disorders and by the 
accumulation of the very long-chain substrates in plasma. The 
effects of the administration to mice of the chlorpromazine­
containing diets are compared with those ofa 0.1 % (w/w) POCA 
and high fat [20% oleate-(w/w)] diets. 

MATERIALS AN D METHODS 

Adult male NMRI mice, weighing at least 28 g, were used. 
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Control mice were fed on a standard animal food. Treated 
animals were fed on a diet obtained by mixi ng the powdered 

1200 animal food with either 0.1 % clofibric acid, 0.1 % POCA, 20% 
oleate, and 0.1 or 0.5% chlorpromazine. 
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Clofibric acid (2-5p(chlorophenoxy)-2-methylpropionic acid), 
tri fluoperazine, homovanillic acid, and peroxidase type II were 
purchased from Sigma Chemical Co. (St. MO). The CoA 
derivatives of palmitic, lauric, octanoic, hexanoic, and acetic 
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hg. I, Etkct or chlorpromazine on the reaction eatahzed hy l'arl1l­
tine palmitoyltranslcrase and monitored in mouse heart (0) and li\er 
(e) homogenates, The activities arc expressed as the percentage of the 
activity measured in the ahsence of chlorpromazine, 

acids were from Pharmacia (U ppsala. Sweden): I·A D. '\i\ \) \\ere 
from Boerhingcr PharIl1a (Mannheim. FRCi) anc! uthcrcoll1mon 
chemicals \\cre of analytical grade fi'om (Darmstadt. 
f'RG). 

Chlorpromazine was kindly oflcrl'd b\ ProfCssur Ci. l.amhnt 
(Dcpartmcnt of University of Lou\ain. I.ouyain, 
Belgium). Fluphenazine and clopcnthi\ol were gifts from Labal 
(Brussels, Belgium) and l.undbeck (Brussels, Eklgiuml. respcc­
tively. POCi\ was generously gi\en by Dr. Ci. l.udwig of BYK 
Gulden Lomberg Chemische Fabrick Gmbll (Konstan/, I:RC'l. 

Previously established procedures were used f()r the assay of 
thc enl\mes: palmitoYI-Coi\ o\idase, Iaurovl-Cui\ u\idase 
glycolate o\idase (7), carnitine (Xl. l'\tochrome 
c o\idase (9), catalase and urate l;\idase (10). and bl·lt\T\I-Co.\ 
dehydrogenase (II). The evanidc-insensitive laur()\I-C'l;'\ oxi­
dation was measured to LlIarow and de DU\l' (12) 
and the o\idation by' coupkd mouse lin'!' mitochundria uf 
palmitoylearnitine was measured as described bv Van 11001' ('( 
Ill. (13). Protein was mcasured b\ the method (')f I,own ('I ill. 
(14) using bovine serum albumin 'as standard, . 

Flectron microscopic studies \\'ere pnformed as dl'scrihed by 
Van lloof ('I III. (13) for tissue samples without cytocllL'mistn o'r 
Van den Branden ('{ III. f()J' c\lochemical ill\:estigations. 'hl!' 
stereological studies, the sections 'photographed wLTe: in ordn to 

Table I. Flli'cls oil! 1% FOC ',/-, () 1% ('Ioliliml('-, IIlld () 1/;; Ch/OI'[il'lllllll::iIlC-((}lIll1illillg dic/.l gil'l'lI I() lIIic(' dl/rillg.f dil\'.l (III li\'('1 
[wm.\i.lIJllwl IJ.\idillioll.l, cillalllSc, IIl1d ('(Imilillc (J(T/IIW/I/i'UlI(, IIClirili('s* 

Carnitine aeetvltransferase 
Carnitine octanovltranslCrase 
Carnitine hexanoyltranslCrasl' 
Carnitine palmitovltranslcrase 
I,actatc dehydrogenase 
Catalase 
Palmitoyl-CoA oxidase 
l,auroyl-CoA oxidase 
Cyanide-iEsensitive laurtlyl-( 'oA oxida-

tion 
Glycolate oxidase 
Urate oxidase 

Controls 

0 .. \ I ± (l.()6 
2, j() ± (), I () 
2.)7 ± 0., I 
1.12 ± 0,13 
14X ± X 

2461 ± 276 
O,SX ± 0,02 
I 32 ± 0.22 
1,16±(UI 

OA4 ± 0.04 
1,07 ± O,()') 

0,1"; 

clolihrate 

1,07 ± 0.26 
.l. I S ± 0,16 
.\.79 ± 0,37 
IA) ± 0.12 
167 ± 4 

4')t)6 ± 774 
401 ± 1.00 
'iA'i ± I 12 

:1.tl6 ± 1.14 

0.17 ± 0.07 
O.'Ji ± 0.14 

o I'i 
PO(,\ 

2,7,) ± on 
11,.16 ± 1,04 

.\.61' ± 0.27 
12., ± 7 

91'67 ± 21 X4 
I SOX ± 2.00 
30.7.1 ± I.X6 
26,)' ± ),20 

(Uti ± O.OX 
0,9(, ± 0.07 

0, I '; 
chl"rpn,ma/ine 

027 ± OOl) 
1,56 ± 0.5') 

2.12 ± 0.26 
O,l)'l ± 0.07 
1.,0 ± 6 

1792 ± 17X 
0.')4 ± 0.10 
lAO ± 0,17 

I.m ± 024 

0.2.1 ± 0.0.' 
1.1.' ± (l.(lh 

* EllIyme activities arc expressed as I'mol or suhstrate consumed or product I<mned per min and pL'!' g or li\l'!'. Results arc the mean activitv ± 
SFM calculated rrom at least six animals. 

Table 2. I://i'cls ()17-dal' adminislralioll 010 I(};; POC ',/-, }O% 01('111('-. illld ('h/orpl'lllIllcilll'-COlllilillillg di('ls {(! IIlin' Oil lirer 
11/ il ()('//()I/(/ri al ilnd [)('m\'isIJIIIIII o. \i do I ion\, ('{iI illillC, IIl1d Cil m il ill(, IlCl'11 m III/I Ilil (' IICI i r il iC.I* 

Carnitine aeetyltranslerase 
Carnitine octanoyltranslcrase 
Carnitine palmitovltransferase 
Butyryl-CoA dehydrogenase 
Mitochondrial palmitoyicarnitine oxi-

dation 
Catalase 
Palmitoyl-( 'oA oxidase 
I A1uroyl-CoA oxidase 

Cyanide-insensitive lauroyl-CoA lnida-
tion 

Glycolate oxidase 
Urate oxidase 
Protein (mg/g liver) 

Controls 

1.74 ± (1.37 
10,OX ± 2.12 
6,21 ± 0,95 
'!.24 ± 2.01 
025 ± 0.03 

lOT, ± lAO 
4,70 ± 0.,9 
7.24 ± 100 
(,,()) ± I.,)X 

2,')1 ± (1.32 

5"X ± OAO 
192 ± 26 

0, I 
POCA 

1:'31 ± 4.X7 
63.S7 ± 12.()l) 
17,20 ± 2,60 
'lAO ± 0.')2 

070 ± 0 II 

3'.00 ± 5.64 
X4A2 ± I i.03 
140" ± IX,5 
109.0 ± 13.6 

2.72 ± OAO 
6.22 ± (Un 
1()7 ± 15 

20'.; 
oleate 

4.29 ± OAI 
27.21' ± 6.57 
1(),72 ± 1,,4 
7,Ol)±(UI 
015 ± O,()4 

12,X'l ± 2A7 
24AX ± 4,<).1 
J2.:'2 ± ) .. ,7 
27.5') ± (dO 

.121' ± 0.)2 

1'.06 ± 1.31 
l'i<) ± 16 

OY; 
dllorpnlma/ine 

2.97 ± 0,." 
27,90 ± 0,,' 
\:i.XI ± 
h,h4 ± OXS 
O.Il) ± 004 

10,72 ± 1,'0 
24,,1 ± 502 
.'! 14 ± 4.3X 
30,50 ± !l.X7 

2,S I ± OS' 
6.12±O,h7 
17.\ ± 22 

* Catalase reaction excerted (U/mg rrotein). enzyme activities arc expressed as mU/mg protein, Results arc the mean activitv ± SFM l'alculated 
from at least six animals. 
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analyse distinct cells, taken from ribbons separated by at least 20 
!Lm. The magnification was determined with a grating replica (E. 
F. Fullam Inc., Schenectady, NY). A multipurpose test grid 
similar to that described by Weibel el al. (16) was used to 

A B c o 

calculate the volume fraction or membrane area. For the record­
ing and processing of morphometrical data, an Apple II plus 
(Apple Computer, Inc. Cupertino, CAl was used. 

Very long-chain fatty acids were measured in plasma, each 
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Fig. 2. Effects of various treatments of mice on the activity and sedimentability of heart peroxisomal enzymes. A, untreated mice; S, C, and D, 

mice receiving 4 days of the 0. 1 % POCA, 20% oleate, and 0.5 % chlorpromazine-containing diets, respectively. The supernatant (SN) and pellet (P) 
fractions were obtained after high speed centri fugation (3,000,000 x g min) of the postnuclear supernatan ts (6,000 x g min) from , in each condition, 
six pooled myocardia. The values reported in histograms are the means calculated from results of three separate experiments. The enzyme activities 
are expressed as nmol (m U) or !LmOI (U) of substrate consumed or product formed per min per ml of fraction. Each (SN or P) fraction corresponds 
to 200 mg of myocardium/mt. PPO, peroxisomal palmitoyl-CoA oxidase (H20, production); PLO, peroxisomal lauroyl-CoA oxidase (H,O, 
production); elLa, cyanide-insensitive lauroyl-CoA oxidation (NADH production). 

Table 3. Quantitative ultrastructural analysis of mouse liver hepatocytes* 

0. 1% 20% 0.5 % 
Controls POCA oleate chlorpromazine 

Fractional volume (% of cytoplasm ic 
volume) 

Peroxisomes IAI ± 0.12 3.87 ± OAI 2.35 ± 0.29 2.5 1 ± 0.30 
Lipid droplets 0.29 ± 0.15 3.28 ± 0.92 1.57 ± 0.61 1.90 ± 0.26 
Mitochondria 19.50 ± 0.93 18.53±1.13 18.29 ± 1.07 15.95 ± 0.76 

External surface (!Lm2/!Lm 3) 
Peroxisomes 0.118±0.012 0.369 ± 0.035 0.188 ± 0.028 0.313 ± 0.042 
Lipid droplets 0.024 ± 0.009 0.08 1 ± 0.015 0.136 ± 0.075 0.153 ± 0.024 
Mitochondria 1.241 ± 0.081 1.037 ± 0.056 0.984 ± 0.095 0.971 ±0.043 

Feature/ !Lm' 
Peroxisomes 0.063 ± 0.006 0.192 ± 0.019 0.121 ± 0.017 0.232 ± 0.035 
Lipid droplets 0.010 ± 0.004 0.022 ± 0.004 0.019 ± 0.007 0.085 ± 0.010 
Mitochondria OA95 ± 0.025 OA36 ± 0.035 0.377 ± 0.027 0.375 ± 0.020 

Particles/ !Lm3 
Peroxisomes 0.097 0.308 0. 198 0.5 14 

*The analyzed section area was 1357, 1460, 1430, and 1453 !Lm' for control, 0.1% POCA, 20% oleate, and 0.5% chlorpromazine treatments, 
respectively. Values are given ± SEM for analyzed sample. The est imation of particles numbers is obtained by application of the equation: Nv = 
(N,)3/2/{3(Vv)I/', (16), where Nv is the number of particles per unit volume, N, is the number of profiles per unit area in section, Vv is the volume 
fraction of particles, and j3 is a shape factor. Peroxisomes are considered as spheres ({3 = 1.382) and their population is considered homogeneous in 
size. 
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experimental gro up consisting of at leas t four animal s. Their 
extraction was performed as descrihcd hy Folch 1'1 (II. (1 7) afi er 
addition of 2 /l g of heptacosanoic acid as internal standard and 
before transmethylation with Hel 2 0J in methanol at 75'(' for 
16 h. The gas chromatographic identification of meth ylcsters was 
made by comparison of the reten tion times with those ofknowll 
standard s. 

RESU LTS 

Hioch('mical SllIdi('s. In rilm Inhihilio/l lir ('h!orfimllw :: illc 01 
S('veral J:'n:l'/I/(, , /clirili('s. The inhibitory clTect of chforproma­
".i nc on the activity of the total mitochondrial carnitine palmi­
to vltransfCrase from mouse heart and li ver is illustrated in Figure 
I. "In this ex periment the liver elvyme activity in the presence of 
I mM chlorpromazine amounted to 0.07 (control \'a lues 1. 1 (l) 
U/g ti ssue . The heart en"yme reaction was completel y prevented 

by til is coneent ration of the phenot hiazi ne. /\ nalogs i nclud 1 ng 
fluph enazine. clopcnthixol. and also inhihitcd 
both li \er a nd hea rt carnitine palmitoyltransferases. In both 
organs. higher to lowcr inhibitions \\ cre rcspccti\c1y achin cd by 
chlorpromazinc, triflu operazi ne, clopcnthi xol. ;1I1d fluphena/inc 
(not shown). Mouse li \'c r and hcart c\tochrome l' (l.\idase al'l i\ '­
ities \\ere similarl\ inhibited b\ chlorproma zi ne and co uld not 
be det ected in the prcsenec of more than (Ui m M chlorproma­
zine. The strongest inhibit io n \\ as obtained un(iL'r cloJ)l' nthi xol: 
0.15 mM elopcnthi,ol induced complete inhibition of Cyto­
chrome c ox idase acti\'it y from li nT or hea rt. Peroxiso mal (,;Ir­
nitine octanoyltransfcrasc was inhibited h\ pil enotili;vinl's in 
these mouse ti ss ll cs (data not SllO\\ n) as prev iousl, reporll'd I'm 
rat liver (2). 

Ill(' IJ . / % CIJ/OIpmllw::ill('-COlllllillilig f) i('/ ;\timini str;ltion or 
a 0.1 'Ji ehlorprOJlla /inc-conlaining di et f())' I wI; had lillie 01' no 

Fig. 1. Peroxiso mal prolife ratio n in hepatocytes from the 0.5',:;. ch lo rpromal. il)(>trcatc<i mice. L lipid droplets: 1'. pcrosisomcs . . '1. control nltlllSl' 
liver (I ,.tln). H. chlorpromazinc-treated Illouse liver, O.5'ii (I 11 III ). 
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effect on liver peroxisomal ,6-oxidation, catalase, or carnitine 
acyl transferase activities (Table I). Prolonged treatment with 
0.1 % chlorpromazine (I month) did not further modify these 
enzyme activities (not shown). By contrast, in livers from animals 
given the 0.1 % clofibrate or 0.1 % POCA-containing diet for I 
wk, an enhanced capacity of peroxisomal ,6-oxidation as well as 
increased carnitine acyltransferase activities were measured (Ta­
ble 1). The administration of 0.1 % chlorpromazine-containing 
diet failed to increase the activity of the peroxisomal j-3-oxidation 
in heart (not shown). 

Administration to Mice o/a 0.5% Chlorpromazine-Conlaininf; 

Diel . The higher dose of chlorpromazine was effective after 4 
days in producing increased liver peroxisomal ,6-oxidizing capac­
ity and proliferation of hepatic peroxisomes (see below). The 
effects of this treatment on liver enzymology were less pro­
nounced than those obtained under 0.1 % POCA treatment and 
of the same magnitude as those found after a high fat diet (Table 
2). The hepatic enzymes were affected differently by the treat­
ments and, in livers from the 0.5 % chlorpromazine-treated mice, 
the activities of palmitoyl-CoA oxidase, lauroyl-CoA oxidase, 
and cyanide-insensitive lauroyl-CoA oxidation were increased 5-
fold; those of carnitine acyltransferases were approximately 2-

Fig. 4. Comparison between cardiomyocytes from control (A) and 0.5% chlorpromazine-treated (8) mice. Note the massive organelle proliferation 
characterizing the heart cell from the treated animal. 

Fig. 5. Comparison between the peroxisomal proliferations induced by various treatments in myocardium. Peroxisomes are recognised by their 
positive response (hlack laheling) to the DAB reaction. A, untreated mice; 8, 0.1 % POCA-treated mice; C, 20% oleate-treated mice; D, 0.5% 
chlorpromazine-treated mice. 
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fold higher. whil e catalase, glycolate oxidase. uratc oxidase. a nd 
but yryl-CoA deh ydrogenase acti vities as we ll as mitochondrial 
palmitoylea rnitin e oxidation were normal or decreased (Tahle 
2). 

lIeart peroxisomal induction was minimal in mice rece i\'ing 
POCA a nd optimal in the animal g ive n 0.5 % chlorpromaline or 
high bt diets. Bioc hemical changes characteriling the peroxi so­
mal prolif'cration in the heart were the e nhancement of carnitine 
octanoyltransf'crase (not show n ), catalase and peroxisomal 11-
oxidiling activities, and a highe r proportion of th ese acti\'ities 
linked to sedimentab les parti cles (Fig. 2 ). 

Mmp/IIJlogiCllI,lllIilics, The peroxisomal population was stud­
ied by light and e\c;ctron mi croscopy in liver and heaJ1 from 
0.1 % POCA-, 20 'X, oleate-. 0.1 and O. S'},;, chlorprom;lI. ine-trca ted 
mice and compared with co ntrol s. During the administration of 
the 0.1 'X, chlorproma/.ine-containing dict. an ahn o rmal occu r­
rence of lipid droplets was obse rved in liver cytosol but no 
significant change was induced at the level of perox isomal pop­
ulation in li ver and heart. 

l.if!id l)mf!lc/s In hepatocytes from animals receiving the O.5 Sii 
chlorpromali ne-con ta i ni ng diet. the n umber of lipid droplets 
was increased relati ve to the control li ve r cells while a pecu liar 
aspect of t he smooth endoplasm ic rcticulu m was not iced. The 
accumulation of lipid drop\c;ts was also observed in hcpatocytes 
from 0.1 % POC,I\ - and 20 % oleate-treatcd miec. The charac tcr­
ist ics of this abnormal accumulation of lipid droplets arc given 
in Table J. Converse ly to li ve r. no abnormal accum ulati on of 
lipid droplcts was see n in cardiac cells from trcated animals. 

f'l'm.\iS()/lI l1ll'mli/i'm lil!lI . Peroxisom es were increased in size 
and number in hepatocytes from treated animals (Tablc J). Thc 
increase or thc pcroxisomal volume frac tion was maximal aller 
POC/\. By contrast with pero xisomes. little or no change in the 
mitochondrial population could he reco rdcd. The ratio between 
the peroxisomal and the mi tochondrial volumc fractions werc 
equal to (un. 0. 2 1. 0.1 J. and 0.16 in li vers from the control. thc 
0.1 % PO('A-. 20'X, olea1c-. and O.S ';!;, ch lorpromali nc-treated 
animal s, respectively. The ratio hetwecn the peroxi so mal and the 
mitochondrial envelope surfaccs also was increased aftcr treat­
ment Crable J). Figure J illu strates the perox isomal prolilCration 
in livcr from mice givc n thc O.5'}-;' chlorpromazinc treatmcnt. 

In myocardial cells. increased numbers of mi crobodies were 
observed 4 da ys aner the onset of the trea tm cnts of mice wi th 
the 0.1 'Ir, [>O('A-, 20 % oleatc-, and 0. 5% chlorpromal ine-co n­
taining diets (Fig. 4). Thc peroxisomal nature 01' these cellular 
structures was strongly supported by th ei r cytochemical reaction 
for catalase. Ma xi ma l peroxisome proliferation in heart cclls was 
obtained ancr administration of oleate and chlorpromazine while 
POCA treatment was less eilicient (Fig. 5). 

I,amella,. .';/mclilf"Cs. The 0.1 and n.S % chlorpromazinc trea t­
ments resulted in the abnormal occurrcnce of lam ellar structurcs 
in the li ve r cytosol (hg. 6). The lattcr materi a l was more fre­
q uenti y sec n in the an i mals recei vi ng th e lower dose or chlorpro­
maline. It is similar to that observed in cy tosol or in Iysosom es 
from li ver or other ti ssues of patients sulkring fro m peroxisomal 
deficiency sy ndrom es (Fig. 6) and is classicall y believcd 10 rep­
resent very long-chai n acid deposition ( 111- 22). In the 0.1 % 
chlorprom;lI.ine-treated animals, the defi c ient oxidat ion of very 
long-chain ratty acids was confirmed by thcir accumulation in 
plasma; the C2,'/(' 22 ratio [ratio between cerotic (C2,,) and be heni c 
(Cn) acids] was increascd 2- to J -f()ld (23) . 

[)ISCUSSIO;\l 

Changes illdllced ill I iI'('/". Peroxisomal prolilCra tion in li ver 
from roden ts in a va riet y of conditions has been documented 
extensively (12, 24). I n most cases it consists of the enhancement 
of both peroxisomal fi-ox idi/.in g activities and peroxisomal vol­
ume fractions. In addition to the pcroxiso mal changes. increased 
ability of mitochond ria to oxidile btty acids also has bee n 
reported (25-27). Diets containing 0.1 '1;, POC A, 2()';-" oleate. and 

most prohably 0.5(";· chlllrprom;ll.inc 1c;ld to thl' inhihitlllll or 
chro ni c O\erloading o f mitocho ndrial btl \ acid oxidation. I n­
dUc1ion of pCJ"(n isomal prolikration is a common characteristic 
of th ese ani mal models. 

In thc animals recci l'ing a 0.1" ; chio rproma li ne-L'llllwi nin g 
e1ie!. no peroxi so mal prolikratilln occurs. In this case. the per­
oxisomal fatty acid oxidation is impaired ill 11\'(J as :lttl's ted hI' 
the deficicnt ox idation of I'ery long-chain Litty acids. I.amellar 
strueturcs that arc similar to the in clusions in thl' l'crd)J"()hepa­
tore nal sy ndrome (Zellweger di sease) and Rl'isu m dis­
ease li vers and in adreno lcukodystrophy hrain are ohscned in 
hepatocytes from 0.5 ';;' ehiorpmlllaline-trea tcd anim:lis and 
compared with lamellar structurl'S in a patil'nt with tiL-liciL'nt 
acyl-CoA oxidase. These struc tures arc heli e\L'd to he L'iicited 11\' 
the we ll-kn own storage of \Tn long-chai n 1;ltty acids in tllL'se 
di seascs (I X, 2S). The shortcning of \cry long-chain suhstrates 
has been dem onstrated to be caulYled hI' th e pL'rll'.isoml's (29. 
31). Multilamellar struct ures also ha\c bel'n (kscribed in Il'so­
somes from ti ssues e,Xposed to ca tioni c amphiphilic drugs that 
inhibit lysosomal phosphol ipid degradation (32 - .1 . .t). In our l'X­
pcrimcnts. th e increasc of \'Cry long-chain :\cids in plasma 
supports th e id ea tha t lamellar structurcs reprcsent \en iong-

Fig. 6. Lamellar structureS scen in li \"c'r C\'tosnl fro m a n.1 (";. c hlor­

promazine-treated mouse (.,1) and i'rom a pati ent wit h the ac\'I-( '00\ 

oxidase deficiency (/3). 
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chain fatty acid deposition consecutive to the inhibition (in vivo) 
of peroxisomal fatty acid oxidation. Both mechanisms (deficient 
phospholipid degradation and peroxisomal fatty acid oxidation) 
may operate simultaneously in the genesis of the lamellar struc­
tures in chlorpromazine-treated mouse livers. 

The mouse liver carnitine acyltransferases are inhibited by 
chlorpromazine and are not inactivated by the phenothiazine. 
Indeed, the activity of these enzymes measured on liver homog­
enates are normal and increased in mice given the 0.1 and 0.5 % 
chlorpromazine-containing diets, respectively. 

Peroxisomal proliferation also takes place in the myocardium. 
Both biochemical and cytochemical aspects of heart peroxisomal 
induction have been studied in previous works. In rodents, 
peroxisomal {1-oxidation activity has been measured in the heart 
(35, 36) as well as its enhancement when partially hydrogenated 
fish oil or soybean oil are included in the diet (37). The morpho­
logical description of heart peroxisomes in rodents, but also in 
primates, has been given previously (38). Fahimi et at. (39) have 
demonstrated that ethanol in the diet was efficient enough in 
rats to increase myocardial catalase activity and the number of 
heart DAB-reactive organelles. The increase of heart peroxisomes 
has also been described in mice given phytol (15). With the 
present work, we demonstrate the parallelism that exists between 
the number of DAB-positive organelles and the activity and 
sedimentability of catalase and peroxisomal {1-oxidation. As was 
suggested for liver, the propensity of the treatments to induce 
peroxisomal proliferation in the heart might be correlated to 
their ability to depress mitochondrial fatty acid oxidation in this 
tissue. 
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