B. SALLE, J. SENTERRE, G. PUTET, J. RIGO (Introd by A. 173 FANCONI), Department of Neonatology-Lyon (France) and Department of Neonatology-Liege (Belgium). FAT, CALCIUM (Ca) AND MAGNESIUM (Mg) BALANCE IN PRETERM IN-FANTS (PI) FED HUMAN MILK (HM) OR LOW BIRTH WEIGHT FORMULA (LBWF) AT DIFFERENT POSTNATAL AGE.

During the last trimester of pregnancy, the fetal skeletal growth requires a massive mineral transfer from mother to fetus. Interruption of this process favors the development of osteopenia in Pl. We studied in 12 PI (BW: 1318 g ± 142; GA: 30.5 wks ± 1.5), 6 fed either IIM or LBWF, fat absorption and Ca and Mg absorption and retention at 20-25 days (study I) and 44-45 days (study II) after birth. IIM was enriched in phosphate (9 mg/dl) and babies received 1500 l.U. vit.D/d. The results were (in mg/kg/day): *:p<0.05

	CAL	CIUM	MAGN	IESIUM	F	AΤ
Study I	HM	LBWF	HM	LBWF	HM	LBWF
Intake	49±5	84± 7*	4.8±0.9	8.1 t 0.5 *	5.30±0.69	5.3510.23
Feces	17±8	46±19*	2.6±0.5	4.3±1.6*	1.50±0.42	0.72 ± 0.24
Urine	2± 1	2 ± 2	0.4±0.2	0.8±0.6	-	-
Retention	30± 5	36±24	1.8±1.0	3.0±1.6*	-	-
Absorption (%)	66±14	44±25	46±12	47 ± 20	72± 6	87 ± 4*
Study II						
Intake	46± 7	85± 9*	4.9±0.8	9.3±2.1*	5.74±0.70	5.56 + 0.23
Feces	8 ± 3	31± 7*	1.4±0.4	4.6±1.9*	0.51 ± 0.23	0.52 ± 0.19
Urine	3 ± 1	3 t 2	1.0±0.8	1.3±1.0	-	
Retention	35 ± 9	51 ± 7*	2.5±0.9	3.4±1.1*	-	_
Absorption (%)	82± 9	64 ± 7*	70±10	52±12	91 ± 4	91± 3
These results sh						
but increased w	ith post	natal age	e. 2) In Pi	fed LBWF	, fut absorp	ption was
normal, Ca and	Mg rete	ention wa	s higher	in both stu	dies.	

R.Schilling*, F.Haschke*, C.Schatten*, M.Schmid*, W.Woloszczuk* (Introduced by H.Frisch)
Department of Pediatrics and L.Boltzmann-Institute 174

Department of Pediatrics and I.Boltzmann-Institute for Clinical Endocrinology, Univ. of Vienna, Austria ELEVATED TOTAL AND FREE 1,25-DIHYDROXYVITAMIN D CONCENTRATIONS (1,25Dc) IN SERUM OF PREMATURE INFANTS Elevated 1,25Dc repeatedly were found in premature infants. We investigated if high 1,25Dc 1) are accompanied by a high "free 1,25OH₂D index" (FDI; ratio molar concentrations 1,25OH₂D index" (FDI; ratio molar concentrations 1,25OH₂D index" (FDI) and 2) are induced by hypothese fields or binding protein(DBP)) and 2) are induced by hypophosphatemia or hyperparathyroidism.Matched pairs of 14 premature infants(birthnyperparatnyroidism.Matched pairs of 14 premature infants(birth-weight1430g,980-1700g; x, range; gestational age33weeks,31-35weeks) were fed human milk with supplements of phosphorus(P) or calciumt P. VitaminD, 1000I.U./d were given.P,iPili(midregional antibody), 250HD(RIA),1,25Dc(RRA),DBP(radial immunodiffusion) and alkaline phosphatase(AP) were measured in serum at bodyweights 1800+75g(I) and 2150+75g(II), respectively. Results were not significantly different within pairs and therefore are indicated together as x+SD:

	250HD (ng/ml)	1,25Dc (pg/ml)	DBP (ng/d1)	FDI	P(mg/d1)	iPTH(mol/1)	_
I	27+11	75 <u>+</u> 28	15,0+3,3	6,6+2,7	6,7+1,2	46+16	
II	28+12	90+22	13,8+2,7	8,8+2,6	6,7+0,4	65+35	

AP was normal in all samples.Both 1,25Dc and FDI were high when compared to adult reference values but occurred without hypophos-

phatemia or hyperparathyroidism.

The significance of high total and free 1,25Dc in premature infants and the mechanisms of its regulation remain to be eluci-

M.Garabédian*, R.Brauner*, R.Grimberg*, C.Prévot*, R.Rappaport, 175

> CNRS UA.583, INSERM U.30 and Pediatric Endocrinology Unit, Hôpital des Enfants-Malades, 75015 Paris, FRANCE. CHANGES IN PLASMA 1,25-(OH)2D DURING LHRH ANALOGUE TREATMENT IN GIRLS WITH CENTRAL PRECOCIOUS PUBERTY.

In an attempt to better understand the control of plasma 1,25-(OH)2D concentrations during puberty, these concentrations have been measured in 12 girls (age 3 yr 6 mo-8 yr 10 mo) with central precocious puberty before and after 3, 6, 9, 12, 18 and 24 months of treatment with a LHRH analogue (Buserelin®, Hoechst). Mean and extreme values for 1,25-(OH) $_2$ D were 76 pg/ml (53-114) before treatment, 68 pg/ml (43-107) and 45 pg/ml (26-87) after 12 and 18-24 months of treatment respectively. No correlation was found at any time studied between plasma 1,25-(OH)2D and: plasma estradiol, plasma DHAS, vaginal maturation index, hone age, height gain (cm/year), plasma SmC/IGF_I, serum calcium, phosphorus and alkaline phosphatase activity. Plasma 1,25(OH)₂D values were also not correlated with plasma basal LH and fSH before treatment, but were significantly correlated with plasma basal LH (r = 0.67, p<0.02) and plasma basal FSH (r = 0.71, p<0.01) after 12 months of treatment.

From these results, one may speculate that the control of plasma 1,25-(OH)₂D during puberty is not directly dependent upon skeletal growth, skeletal maturation and ovarian secretion but could be, at least partially, dependent upon central factors.

Z.Hochberg, M. Jaffe*, A. Benderly*, Y. Weisman* 176 Rambam Medical Center, Haifa Medical Center and Technion Faculty of Medicine, Haifa, and Ichilov Hospital, Tel-Aviv, Israel.
THERAPEUTIC APPROACH TO 1,25-DIHYDROXYVITAMIN D3 [1,25(0H)2D3)]-RESISTANT RICKETS

The syndrome of 1,25(0H)₂D₃-resistant rickets and alopecia has been shown to be caused by defective receptors to the active D-metabolite (ESPE, 1982; JCEM 55:1020, 1982). In search of a therapeutic approach, 7 paţients aged 2-12 years were treated. On a megadose of 60 ug/m²/day of 1α0HD for 8 months, serum 1,25(0H)₂D₃ increased to 1100-3000 pg/ml (normal, 20-80 pg/ml), but rickets was not healed. Treatment of 3 patients with 20 ug/m²/day of 24,25(0H)₂D₃ with serum 24,25(0H)₂D₃ of 6.2-14 ng/ml (normal 1.5-4 ng/ml) failed to heal the rickets. With combined treatment of 24,25(0H)₂D₃ and 30 mg/m²/day i.v. calcium, rickets was not healed. Two children, 6 and 3 years old, received 70 mg/m²/day elementary calcium through an intracaval catheter, and serum calcium was maintained at 9.1-10 mg/dl. Bone pains and muscular weakness disappeared within a week. Serum PTH and phosphatase normalized after 1 and 4 months, respectively. X-rays demonstrated complete healing of the rachitic bone changes after 4 and 6 months, respectively, and the children's growth accelerated to 16.5 and 9.8 cm/year, respectively. These observations indicate that normalization of serum calcium is sufficient for healing of rickets and growth, even in the absence of functioning 1,25(0H)₂D₃ receptors. of functioning 1,25(OH)2D3 receptors.

G. Saggese*, S. Bertelloni*, G.I. Baroncelli* (Introd 177 by S. Bernasconi) Department of Pediatrics, University of Pisa, Italy. 1,25(OH)2D3 TREATMENT IN IDIOPATHIC JUVENILE OSTEOPOROSIS (IJO).

IJO is a rare condition of osteoporosis in childhood. The disease requires rapid growth to be clinically manifest and it occurs in adolescence or in early childhood. The pathogenesis is unknow. We examined 3 boys (FM, 2.3 yrs; DBM, 12.1 yrs, TM, 11.5 yrs) and 1 girl (GR, 12.6 yrs) with IJO. Ca, P, Mg were in normal range. Calciotropic hormones and therapy were as follows:

case	25-0H-D	1,25(OH)2D	PTH	CT	BMC*	1,25(OH)2D3
	ng/ml	pg/ml	pg/ml	pg/ml	g/cm	µg/daily
FM	35.4	71.0	322	28.0	-18%	0.50
DBM	41.1	39.2	- 480	9.5	-23%	none
TM	34.0	45.4	420	18.6	-33%	0.50
GR	28.0	35.1	550	39.0	-14%	0.25

(nv:25-OH-D 35.5±7.1 ng/ml,1,25(OH)2D 74.6±7.1 pg/ml,PTH 410±230 pg/ml,CT 34.7±19.3 pg/ml)(*Bone Mineral Content, Norland 2783). The therapy reduced incidences of fractures. After 6 mth (FM, TM, GR) and 1 yrs (FM, GR) of treatment, BMC was significantly (p < 0.01) increased. DBM showed a very slow increment of mineralization with significant recovery only 2.7 yrs after the first evaluation. No adverse effects of 1,25(OH)2D3 therapy were observed; CaU/CrU ratio remained in the normal range.

E.Takeda*, Y.Kuroda*, M.Miyao* (Introd. by A.Prader) Department of Pediatrics, University of Tokushima, 178 Tokushima, Japan. TREATMENT OF THREE PATIENTS WITH VITAMIN D-DEPENDENT RICKETS TYPE II AND ALOPECIA WITH $1\alpha-$ HYDROXYVITAMIN D3 AND CALCIUM

Three patients with rickets that appeared at 1 to 2 years old and alopecia that appeared at 2 to 4 months old were diagnosed at 2 to 3 years old as having vitamin D-dependent rickets type II 2 to 3 years old as having vitamin D-dependent rickets type 11 (VDDR II), because of hypocalcemia, hyperparathyroidism, and increased plasma levels of alkaline phosphatase and 1,25-dihydroxyvitamin D₂[1,25-(0H),D₃]. Impaired nuclear uptake and normal cytosol binding of [3H]1,25-(0H)₂D₃ were observed in cultured skin fibroblasts and PHA-stimulated lymphocytes of these patients. In addition, the incorporation of C-thymidine into PHA-stimulated lymphocytes of the patients was not reduced by

1,25-(OH)₂D₃, unlike in control lymphocytes.

These patients were treated with la-hydroxyvitamin D₃[1α-OHD₃] and calcium(Ca) lactate. Two patients responded to 3 ug/kg/day of lα-OHD₃ and 2 g/day of Ca lactate, and their blood chemistry and bone lesions were normalized after 15 and 36 weeks of treatment. However, the most severe case responded only partially to 5 ug/kg/day of 1α -OHD, and 2 g/day of Ca lactate. The alopecia of the patients was not improved by these treatments. These results suggest that high doses of 1α -OHD, may be useful in treatment of VDDR II with alopecia, which have been reported to be resistant to treatment, and that VDDR II may be heterogeneous.