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ABSTRACT. Acid sohineomvelinase activitv was deter- . - "  
mined in Epstein-Barr virus-transformed lymphoid cell 
lines (LCL) established from patients affected with Nie- 
mann-Pick disease (NPD) using several substrates: sphin- 
gomyelin derivatives, radiolabeled ['4C]sphingomyelin 
(SM), fluorescent N-(lo-(1-pyrene)decanoyl)sphingo- 
myelin (PI"-SM) or colored trinitrophenylaminolauryl- 
sphingomyelin, and the chromogenic non-natural substrate 
2-N-(hexadecanoyl)amino-4-nitrophenylphosphoryl-cho- 
line. LCL from NPD Type A and Type B showed a severe 
deficiency of acid sphingomyelinase determined using 
either substrate, whereas LCL from normal subjects had 
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an activity close to that of blood leukocytes. Sphingomye- 
linase in normal LCL had the same pH optimum (5.0-5.2) 
and molecular form (PI 5.8) as the enzyme from other 
sources; identical profiles and activity levels were obtained 
using the various analogues of sphingomyelin. However, 
among these derivatives, the assay using PI,,-SM appeared 
as the most useful and sensitive for enzymatic diagnosis of 
NPD. Electron microscopy of NPD LCL demonstrated the 
lysosomal storage. These results prove the validity of LCL 
as an experimental model system f ~ r  NPD. (Pediatr Res 
19:153-157,1985) 

Abbreviations 

LCL, lymphoid cell lines 
NPD, Niemann-Pick disease 
SM, sphingomyelin 
PI"-SM, N-(lo-(1-pyrene)decanoyl)sphingomyelin 
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TNPAL-SM, trinitrophenylaminolaurylsphingomyelin 
HDA-PC, 2-N-(hexadecanoy1)amino-4-nitrophenylphos- 

phorylcholine 

Niemann-Pick disease is a heterogeneous group of hereditary 
diseases characterized by accumulation of sphingomyelin in tis- 
sues of affected patients (5). Following clinical, genetic, and 
biological criteria, several types can be separated: five types 
following Crocker et al. (5, 8) or six types according to Neville 
et al. (26). Only Type A (acute neuropathic form) and Type B 
(chronic non-neuropathic form) of the Crocker's classification 
show a severe deficiency of acid sphingomyelinase activity (EC 
3.1.4.12) (5). In Type C, contradictory results on sphingomyeli- 
nase activity (6, 15, 34) and recent studies on sphingomyelin 
metabolism (23) suggest that sphingomyelinase deficiency, if it 
exists, is not the primary defect. In Types D and E, sphingomye- 
linase activity seems generally to be in the normal range (5, 28); 
a new Type F characterized by a heat-labile sphingomyelinase 
has been recently reported by Schneider et al. (32). 

For the detection of acid sphingomyelinase deficiency, several 
natural or semisynthetic substrates [radiolabeled ( 5 ) ,  fluorescent 
or colored ( I  I ) ,  or a synthetic chromogenic analogue (10, 22)] 
can be accurately used. In contrast, synthetic chromogenic or 
fluorogenic phosphodiesters seem not to be reliable for the 
diagnosis of sphingomyelinase deficiency because of their hy- 
drolysis by several nonspecific phosphodiesterases (1 7, 2 1, 25). 

Experimental studies can be performed using cell cultures. The 
diploid fibroblast culture is the most commonly used model 
system but has several disadvantages: limited lifespan and aging 
(16); modifications of enzyme activities during senescence (27); 
and difficulties in producing large quantities of cellular material 
for biochemical studies. In contrast, Epstein-Ban virus-trans- 
formed LCL have several advantages: continuous cultures for 
long periods; minimal changes in phenotypic expression; and the 
possibility of obtaining a large amount of cellular material due 
to a short doubling time and the capacity of these cells to grow 
in suspension culture (12, 27). Such lines have been used in the 
study of several lysosomal disorders (24, 29-3 1,  35). 

We report in this paper data concerning two new tools (sub- 
strates and culture model system) useful for the study of NPD. 
Enzymatic and ultrastructural studies permit the evaluation of 
these first LCL established from NPD Types A and B. 

MATERIALS AND METHODS 

Chemicals. The different substrates were purchased from: New 
England Nuclear (Paris) for ['4C]methylcholine-SM), specific 
activity 51 mCi/mmol; Sigma (St Louis, MO) for Plo-SM and 
TNPAL-SM; and Koch-Light (Colnbrook, U. K.) for HDA-PC. 

Ultrodex and Ampholines 3.5-10.0 were supplied from LKB 
(Bromma, Sweden). RPMI 1640 and fetal calf serum were from 
Gibco (Grand Island, NY) and other reagents were from Merck 
(Darmstadt, F. R. G.). 

Long term lymphoid cell lines. These were established from 
blood lymphocytes of normal or sick subjects after incubation 
with the Bss strain of Epstein-Barr virus as previously reported 
(30, 3 1). The different LCL corresponded to: Be, normal adult; 
C49, normal newborn; EIG, child with NPD Type A, and Par 
and Alb, NPD Type B. The transformed cells were cultured in 
RPMI 1640 as described in Ref. 3 1, collected 3 days after 
medium change, and stored at -70" C until use. Informed 
consent was obtained from all human patients. 

Determination of molecular forms. Analysis of sphingomyeli- 
nase was carried out using preparative electrofocusing as previ- 
ously reported for hexosaminidase (30). 

Enzyme assays (Table 1). Cells were homogenized by sonica- 
tion (three cycles of 15 s) on Triton X-100,0.25%. Sphingomye- 
linase activity was tested using SM according to Wenger (36), 
using HDA-PC as previously reported (22) and using Plo-SM 
and TNPAL-SM according to Gatt et al. (1 1). The enzymatic 
reaction with these two latter substrates was linear at least for 2 
h and up to 0.5 mg of protein/ml of assay. Protein concentration 
was determined using the method of Bradford (4) with serum 
albumin as standard. 

Analysis ofphospholipids in LCL. Lipids were extracted from 
the cell samples by the method of Folch et al. (9). Phospholipids 
were separated by thin layer chromatography on Silica Gel G 
(Merck) with a solvent system of chloroform/methanol/water, 
100:42:6 (vol/vol/vol). The content of different phospholipids 
was determined by phosphorus assay (7). 

Electron microscopy. Cellular ultrastructure was studied as 
previously described (1). 

RESULTS 

Table 2 shows the sphingomyelinase activities determined with 
the different analogues of sphingomyelin in normal and NPD 
LCL. In LCL from normal subjects, there was no difference in 
activity levels using either substrate. In LCL from NPD Type A 
or B, sphingomyelinase activity was severely deficient. The three 
synthetic analogues of sphingomyelin were also reliable for dem- 
onstration of the sphingomyelinase deficiency. 

These analogues were tested to determine sphingomyelinase 
activity as a function of pH (Fig. 1); normal LCL showed a pH 
optimum between 5.0 and 5.2. The enzymatic values obtained 
at acidic pH were practically superimposable on those by radioas- 
say. At neutral pH (7.5-8.0), slight activity was observed with 
SM and PI,-SM (the sensitivity of the assay using TNPAL-SM 
was not sufficient to determine it); at this pH, HDA-PC was not 
hydrolyzed, in agreement with previous results in brain (20). 

Table 1. Assays of sphingomyelinase in LCL 
Assav SM Plo-SM TNPAL-SM HDA-PC 

Substrate concentrations (mmol.liter-I) 
Sphingomyelin 
Labeled substrate 

Buffer (mol . I - ' )  
Protein requirement ( m g  ml-') 
Final volume (ml) 
Incubation time (min) 
Extraction system* 

Molar extinction coeficient 
Assay sensitivity (pmol/assay) 
References 

0.4 
2000 dpm . nmol-I 

0.15 
0.2-0.5 

0.1 
90 

C/M/W 
2: 1 :0.6 

*The measured product of the enzyme reaction was extracted in the upper phase of each biphasic system. Solvents were: C, chloroform; M, 
methanol; W, water; I ,  isopropanol; H, heptane; SA, sulfuric acid; EA, ethyl acetate; and G, glycine buffer, pH 10.5 (0.2 mol.liter-I). 
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Lymphoid cell extracts solubilized in Triton X-100 were sub- 
jected to isoelectric focusing (Fig. 2): in cells from normal sub- 
jects, only one peak (PI 5.8) was observed using the derivatives 
of natural substrates (radioactive, fluorescent, or colored) or the 
non-natural compound, HDA-PC. Again, enzyme activities us- 
ing either substrate were very similar. In LCL from NPD Types 
A and B, no peak of sphingomyelinase activity was detected. 

Table 2. Acid sphingomyelinase activity (nmol. h-I. mg-I) in 
LCL fvom normal subjects and from NPD patients using 

nattlral substrate and various analogues ofsphingomyelin* 
Cell line SM Plo-SM TNPAL-SM HDA-PC 

Normal subjects 
Be (adult) 10.3 10.5 

(7.5-12.5) (8.0-1 1.0) 
C4s (newborn) 8.5 9.7 

(7.5-10.5) (9.0-12.0) 
NPD patients 

E l G  (type A)  0.8 0.4 
(0.0-1.8) (0.0-1.2) 

Par (type B) 1.6 1.1 
(0.0-2.0) (0.0-1.8) 

Alb (type B) 1 .O 0.9 
(0.6-1.9) (0.0-1.7) 

*Activity is the mean of 3 to 1 1  determinations on different cell 
batches. 

Fig. 1. Effect of pH on sphingomyelinase activity in LCL. Sphingo- 
myelinase activity was tested in LCL from normal subjects (U) 
and from patients affected with NPD Type A (line ElG, 0.. . . -0) and 
Type B (line Par, 0.. . . .O) using the various substrates (for abbrevia- 
tions, see "Materials and Methods"). Assays were performed as described 
in the text, using the following buffers (0.1 M): sodium acetate buffer 
(pH 3.6-5.5), Tris-maleate buffer (pH 5.2-8.5), and Tris-HCI buffer (pH 
7.2-9.0). 

Total phospholipid content approximated 120 nmol.mg pro- 
tein-' in normal LCL; these results agree with those reported by 
Gottfried in cultured lymphoid cells (13). In NPD LCL, total 
phospholipid amount varied from 2 10 to 280 nmol. mg pro- 
tein-'. In contrast to the constant amount of phosphatidylcho- 
line, the amount of sphingomyelin was increased by 3 to 6 times 
in NPD LCL (Table 3). 

Ultrastructural investigations of LCL from NPD showed an 
abnormal presence of electron-dense intracytoplasmic inclusions 
(Fig. 3b) compared to normal cell lines (Fig. 3a). High resolution 
micrographs demonstrated that the granules were made up of 
pleiomorphic material. The major component exhibits alternat- 
ing light and dark bands. This results from the organization of 
the material into irregular concentric lamellae (Fig. 3c). These 
osmiophilic bodies are similar to those found in noncultured 
biopsy liver specimens of NPD patients (not shown). 

DISCUSSION 

The aim of this work was (i) to demonstrate the valididy of 
NPD LCL as a new experimental model system for enzymatic 
studies of this disease, and (ii) to compare the reliability of various 
analogues of sphingomyelin for diagnosing sphingomyelinase 
deficiency. 

The validity of LCL as a model of NPD was proved enzymat- 
ically and ultrastructurally. First, sphingomyelinase in normal 
LCL seems to be not modified by Epstein-Barr virus transfor- 

Fig. 2. Electrofocusing profiles of acid sphingomyelinase in LCL from 
normal subjects and from NPD patients. Sphingomyelinase activity 
(expressed as nmol/h/ml of fraction) was tested in LCL from normal 
subjects (line Be, U) and from NPD Type A or Type B patients 
(lines E lG or Par, 0. . . . .O). The Triton extracts were prepared from 
about 500 X lo6 cells and I5 mg of protein of 220,000 X g supernatant 
fluid were applied on the granulated gel. Assays were performed as 
described in the text. 

Table 3. Sphingomyelin levels in LCL* 

Protein? Phosphatidylcholine Sphingomyelin 
Cell line ( m g  ml-I) (nmol phosphorus/mg protein) (nmol phosphorus/mg protein) 

Normal subjects 
Be (adult) 19.5 5 1 17 
C49 (newborn) 13.6 79 16 

NPD patients 
E lG  (type A) 6.8 63 55 
Par (type B) 4.4 94 90 
Alb (type B) 2.1 102 7 1 

*All determinations were done in duplicate. 
t The number of cells was respectively 100 x lo6, 50 X lo6, and 20 X lo6 for Be and C49, E lG and Par, and Alb. 
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mation since it shows the same pH optimum as in other cells (3, 
14, 37) or tissues (33). Activity levels in normal LCL were slightly 
higher than in blood leukocytes (3, 14, 21, 37). Moreover, LCL 
have only one molecular form (PI 5.8): these results agree with 
those reported by the same procedures on blood leukocytes, 
lymphocytes, and human brain (19). We did not observe the 
minor molecular forms described by Callahan et al. (6) or Besley 
(2); these differences could be due to the different tissue origin 
and different electrofocusing technique (on thin layer in our case, 
on column for other authors). Secondly, LCL appear to be a 
useful model for NPD; indeed, LCL from affected patients 
showed a severe sphingomyelinase deficiency (Table 2; Figs. 1 
and 2). This deficiency explains the cytoplasmic storage of ab- 
normal osmiophilic material similar to myelin-like structures at 
the electron microscopic level (Fig. 3) as reported in tissues (5) .  

Moreover, the nature of these amphiphilic lipids was specified 
by the phospholipid analysis that showed a sphingomyelin stor- 
age in NPD LCL (Table 3). However, this accumulation is less 
than in the tissues of patients, probably because of the absence 
of contribution by exogenous sphingomyelin (in contrast to the 
macrophage cells in the organism) and a short doubling time of 
LCL. 

Several analogues of sphingomyelin have also been tested on 
LCL for enzymatic diagnosis of NPD without the use of radio- 
activity. We compared (Table 1) the assays using the new deriv- 
atives of sphingomyelin synthesized by Gatt et al. (1 1) and the 
assay using the chromogenic analogue HDA-PC; methylumbel- 
liferyl-derived phosphodiesters have been previously shown as 
nonspecific for sphingomyelinase determination (2 1). 

The linearity of PI"-SM and TNPAL-SM hydrolysis as a func- 
tion of protein concentration was very similar to that reported 
for fibroblasts and amniotic cells (1 1). On the other hand, the 
similarities of the activity levels obtained using the new substrates 
and using radiolabeled substrate or HDA-PC are consistent with 
the data of Gatt et al. (1 1). The specificity of these derivatives is 
demonstrated by the fact that pH optimum curves and electro- 
focusing profiles are suberimposable on those of natural sub- 
strate, and by the fact that they are able to show the sphingo- 
myelinase deficiency in NPD LCL. Ranges of enzyme activity 
in various cell batches were similar when using natural or syn- 
thetic substrate. Consequently, these substrates can be used read- 
ily for sphingomyelinase assay and NPD diagnosis. 

However, we will discuss their advantages and disadvantages 
in comparison to natural substrate. The radiolabeled substrate is 
specific but requires a radiometric procedure, and it is subject to 
decomposition with time (18). The chromogenic compound 
HDA-PC provides an easy assay, specific for acid sphingomyeli- 
nase (20) but a good product extraction system is essential to 
eliminate possible interference by hemoglobin (22). However, 
this non-natural chromogenic substrate gives a relatively insen- 
sitive assay. The derivatives recently synthesized by Gatt allow a 
rapid assay of sphingomyelinase using small quantities of cellular 
material and a convenient fluorometric or spectrometric deter- 
mination. These analogues are hydrolyzed by both acid and 
neutral sphingomyelinases (1 I). However, the fluorometric assay 
using PI,-SM is much more sensitive than that using TNPAL- 
SM; thus, PI,-SM can be used 20-fold-diluted whereas TNPAL- 
SM must be used pure (thus it is more expensive). 

Our present results indicate that the above substrates can be 
used to determine acid sphingomyelinase activity. However, the 
fluorescent assay using PI,-SM seems to be the most useful, 
reliable and sensitive assay. In the same way as these substrates 
constitute a new tool for NPD diagnosis, LCL from NPD rep- 
resent a new experimental model system for this lysosomal 

Fig. 3. Electron micrographs of LCL. a, established from normal storage disorder. w e  are now investigating the metabolic features 
subject (line Be); b and c, established from NPD patient (line Par). Note of this model. 
numerous irregular whorled cytoplasmic inclusions (-+) corresponding 
to distended lysosomes which contain disordered, dense lipid lamellae ~ ~ k ~ ~ ~ l ~ d ~ ~ ~ ~ t ~ .  ~h~ authors thank M ~ ~ .  Th&kse Pemchot 
(2) separated by clear, electron-empty zones. a, x 3,500; b, x 22,500; c, and Michele Vuillaume for culturing the cells, and Mrs. Yvette 
x 45,000). Jonquikre for reading the English manuscript. 
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