	301 SERIAL CALCITONIN SERUM CONCENTRATIONS IN PREMATURE INFANTS DURING THE FIRST 12 WEEKS OF LIFE. Laura S. Hillman, Nancy Hoff, Eduardo Slatopolsky and John G.
	Haddad (Spon. by R.E. Hillman), Washington Univ. School of Med.,
1	St. Louis Children's Hosp., Dept. of Peds., Barnes Hosp. and
	Jewish Hosp. of St. Louis, Depts. of Med., St. Louis, MO
1	Serum human calcitonin (HCT) is highest within the first 48
	hrs. of life. In term infants, HCT decreased to a mean ± S.E. of
	151 ± 22 pg/ml at 1 week of age. Premature infants, however, had
	225 ± 40 pg/ml. Twelve small premature infants were followed for
1	3 months to see if elevations of HCT persisted. Birth weight and
	gestation were 1123 \pm 218 gm (760-1600 gm) and 30 \pm 2.5 weeks
	(27-34 wks.). As shown below, moderate to severe osteopenia was
	present at 6 weeks of age. Hypocalcemia, elevations in serum
	alkaline phosphatase, and elevations in serum PTH with amino
	aciduria were frequent during the first 9 weeks. Serum HCT slowly
	fell, but remained elevated in 9/12 infants at 3 months. HCT may
	play an important role in the mineralization of infant bone and
	elevated serum HCT persists in the premature. The stimulus to
	HCT secretion during this period is presently unknown.
	Adult 1-2 wk. 3-4 wk. 6 wk. 9 wk. 12 wk.

	Addit	1-2 WK.	3-4 WK.	0 WK.	9 WK.	12 WK.
HCT pg/ml	71±6	364±52	291±36	254±40	236±37	220±77
Calcium mg%	9.7±.06	8.3±.27	8.9±.23	8.7±.33	9.1±.30	9.6±.35
Alk.Phos.I.U.	<400(infa	ant)	373±41	409±49	506±71	447±116
PTH µl Eq/ml						
25-OHD ng/ml	24±1.5	18 ± 2	21 ± 3	22 ± 2	21 ± 3	26 ± 4
# infants with			3/12	11/12	4/12	2/12
moderate osteou	penia					

PROVOCATIVE AND INTEGRATED CONCENTRATIONS OF GROWTH 302 HORMONE (GH) IN DIVERSE GROWTH DISORDERS. N.J. Hopwood R.P. Kelch, W.B. Zipf, M.L. Spencer and G.E. Bacon. Univ. of Michigan, Department of Peds., Ann Arbor, MI 48109. Since provocative tests for GH release may not reflect normal GH secretory patterns, we studied 18 children with diverse growth disorders, age 7-18 yrs, by two standard stimuli (L-Dopa, arginine, insulin-induced hypoglycemia) and by continuous blood withdrawal (collected hourly) for 12 and 24 hr integrated GH concen-trations (ICGH). Tests were started at 0800 hr; 12 hr ICGH was trations (ICGH). Tests were started at 0300 nr; 12 nr ICGH Was calculated for 1800-0600 hrs. Six patients with normal stimula-tion tests (peak >10 ng/ml) had 12 hr ICGH = 5.2 ± 2.6 ng/ml(mear \pm S.D.; range 2.5-9.1); two boys with delayed adolescence had no hourly peak > 10 ng/ml. Five patients with borderline stimulation tests (peak GH 7-10 ng/ml) had 12 hr ICGH 4.0 \pm 2.3 (range 1.5-6.7); in 3/5, the peak integrated hourly levels were low: 4.5, 4.7 & 8.7 Source nationst with low stimulation tests (neak \leq 7 ng/ 4.7, 8.7. Seven patients with low stimulation tests (peak < 7 ng/ml) had 12 hr ICGH 0.75 \pm 0.6 ng/ml (range 0.18-1.96); all had hourly peak ICGH < 3.5 ng/ml and 6/7 had clinical evidence of GH deficiency. Patients with delayed puberty bud borderline or normal provocative GH; however, 4/5 had low 12 hr ICCH and hourly peaks. There were highly significant correlations between ICGH peak, 12 hr ICGH and peak provocative GH (p < 0.001). In all groups, 1 hr ICGH correlated with 24 hr ICGH (p < 0.001). With the exception of one child with obesity, growth velocities correlated mor closely with ICGH than with provocative GH. Constant withdrawal may be helpful particularly in patients with borderline provocative tests and/or sexual immaturity.

THE ROLE OF RENIN AND ANGIOTENSIN IN SALT-LOSING CAH. James M. Horner and Raymond L. Hintz(Spon. by S.Davic Holtzman) Dept. of Pediatrics,Stanford Medical Center, 303

Stanford, California.
Seven children with salt-losing CAH who had been off mineralo-
corticoid for several years were studied. 9 children with non-
salt-losing CAH were controls. The 7 subjects showed clinical
evidence of poor control despite suppressive doses of hydrocorti-
sone; most showed coincidental signs of glucocorticoid excess.
Chemical assessment of control included serum 17-OHP, PRA, and
ACTH and 24-hour urine 17-KS and PT. The salt-losers were then
placed on Florinef, 0.1 mg bid with improvement in all measured
parameters(see table), decreased fatigue and salt craving, and
in some, a decreased cortisol requirement without hypertension.
Group n HCmg/m2/d 17KS mg/d PT mg/d 170HP ng/d1 PRA ng/1/min
$\frac{d10dp}{NSL} = 9 + 19.9 \pm 3.8 + 3.1 \pm 0.5 + 2.5 \pm 0.7 + 1030 \pm 383 + 40 \pm 6$
SL 7 22.8 [±] 3.2 22.0 [±] 2.9 41.1 [±] 6.7 19134 [±] 2639 361 [±] 75
SL+Fx1m 7 22.8 [±] 3.2 12.5 [±] 3.5 15.2 [±] 4.8 4117 [±] 1814 108 [±] 34
SL+Fx3m 6 20.3±2.3 9.3±1.8 6.7±1.3 240± 49 42±14
Values=mean#SEM_NSL=non-salt-loser_SL=salt-loser_F=Florinef
HC=hydrocortisone 17KS=17-ketosteroids PT=pregnanetriol 170HP=
17-OH-progesterone PRA=plasma renin activity
We thus conclude: 1)the renin-angiotensin system can stimulate
all zones of the adrenal cortex, and elevated PRA can lead to
poor control in salt-losing CAH just as can inadequate suppres-
sion of ACTH; 2)salt-losers need mineralocorticoid as well as

glucocorticoid replacement for optimal control; and 3)salt-losers should be maintained on mineralocorticoid for life.

HORMONE STUDIES IN PREADOLESCENT 47, XXY BOYS. Michae

J. Hudson, Jeremy S.D. Winter, Arthur Robinson. University of Colorado School of Medicine, Department of 304 Biophysics and Genetics; National Jewish Hospital and Research enter, Denver; University of Manitoba, Department of Pediatrics Manitoba.

Sixteen 47,XXY boys have been followed prospectively from birth and are being recalled for endoorine studies. To date 6 boys (6yr-13yr) have been studied and available results are presented LHRH stimulation test (1Qug/Kg IV bolus) and HCG stimulation (2,000 IV 1M X 3 days) were given and analyzed for LH, FSH, test

osterone & estradiol.			10 0	n (
CA (yr-mo)	12–6	11-4	10–3	9-6
Pubic/Genital Rating	P1G2	P1G2	P1G1	PIGI
Bone Age (yr-mo)	10-9		10-0	9-0
Testicular size (cm)	2.5	2.7	1,25	1.2
Basal FSH (ug/dl)		6.1	12.7	14.3
Post LHRH FSH (ug/dl)		10.3	34.0	28.0
Basal LH (µg/dl)		3.3	2.1	3.0
Post LHRH LĤ (µg/dl)		19.3	4.8	3.8
Basal testosterone (ng/dl)	135	41	10	12
Post HCG testosterone (ng/dl)		676	54	85
Basal estradiol (ng/dl)	6.5	1.1		2.8
Post HCG estradiol (ng/dl) We interpret these data to indi	3.4 10359 1	1.2) normal 1	nituitar	1.9 v function
we interpret these data to in		/ HOLMELL	- the bra	, rancordo
2) the elevated estradiol, which	en is a	ssociated	with ny	pergonado-
trophic hypogonadism in 47,XXY	adults	with Kli	nefelter	's syndrom
starts to manifest itself befor	re pube	rty and m	ay be an	early in-
dication of later hypogonadism.	•		_	

AMNIOTIC FLUID TRIIODOTHYRONINE AND CORTISOL CORRELA-**305** HIGHL FLOID TO TO 43 WEEKS GESTATION. <u>A.H. Klein</u>, B.E.P. Murphy, T.H. Oddie, R. Artal and D.A. Fisher. Fetal-Maternal Research Laboratories, UCLA-Harbor General Hosp., Torrance, CA and McGill University, Dept. of Medicine, Montreal <u>305</u>

Fetal-Maternal Research Laboratories, UCLA-Harbor General Hosp., Torrance, CA and McGill University, Dept. of Medicine, Montreal General Hosp., Montreal, Canada. Thyroxine (T4), triiodothyronine (T3) and reverse T3 (rT3), concentrations by RIA and cortisol (C) by radiotransinassay were measured in amniotic fluid (AF) samples from human pregnancies between 10 and 43 weeks gestation. T4 increased with gestational age (GA) between 10 and 30 weeks (r = +0.54, p<0.01) reaching a mean of 1.2 µg/dl (95% confidence limits [CL] 0.81 to 1.8 µg/dl) between 25 and 30 weeks. T4 decreased with GA between 20 and 43 weeks (r = -0.34, p<0.01) to a mean term level of 0.61 µg/dl (CL 0.33 to 1.13 µg/dl). rT3 increased with GA between 10 and 20 weeks, rT3 decreased with GA (r = -0.77, p<0.001) to a mean concentration of 62 ng/dl at term. Mean T3 increased from 5.4 ng/dl at 16-20 weeks to 12.1 ng/dl at 39-42 weeks. Mean C in AF increased between 30 and 43 weeks (13.5 ng/ml to 27.8 ng/ml). AF-C correlated directly with T3 (r = +0.51, p<0.01) and indi-rectly with rT3 (r = -0.43, p<0.01) batween 10 and 43 weeks. Al-though the source of the AF iodothyronines is unknown, the high rT3 and low T3 concentrations reflect fetal serum levels more than maternal. The significant correlation between 13 and C are consistant with recent data indicating cortisol dependent in-creases in serum T3 concentrations and <u>in vitro</u> tissue conversion of T4 to T3 prior to the onset of labor in fetal sheep.

	306 ONTOGENESIS OF IUDOTHYRONINE PRODUCTION AND CLEARANCE IN SHEEP. A.H. Klein, D. Padgett, P. Castagna, G. Calvario, T.H. Oddie and D.A. Fisher. Fetal-Maternal
	SUU Calvario, T.H. Oddie and D.A. Fisher. Fetal-Maternal
	Research Laboratories IICLA-Harbor Gen Hospital Torrance, CA.
1	Research Laboratories, UCLA-Harbor Gen. Hospital, Torrance, CA. Production rates (PR, $\mu g/M^2/d$) and metabolic clearance rates
	(MCR, L/M2/d) for thyroxine (T4), triiodothyronine (T3), and re-
	verse T3 (rT3) were measured in 4 newborn sheep 7 to 14 days of
	age using single injection non-compartmental methods. Results
	were related to data in fetal and adult sheep. Thyroid secre-
1	tion of T3 and rT3 were calculated from T3/T4 and rT3/T4 ratios
	measured in adult and fetal thyroid glands:
1	Fetus From Newborn From Adult. From
	MCR PR Thyroid MCR PR Thyroid MCR PR Thyroid
1	T4 3.9 335 7.3 511 2.5 146
	T4 3.9 335 7.3 511 2.5 146 T3 80 <27 <27 40 96 52 42 28 14
	rT3 19 102 3 28 28 5 74 38 I
	Newborn T4 MCR>fetal (p<.05) and adult (p<.01); newborn T4 PR>
	fetal (p<.05) and adult (p<.01). Fetal T3 MCR>newborn (p<.01) =
	adult; newborn T3 PR>fetal (p<.01)>adult (p<.001). Fetal rT3 MCR
	= newborn <adult (p<.05);="" fetal="" pr="" rt3="">newborn (p<.01) = adult.</adult>
	The T3 secreted from the thyroid is minimal in fetus, approxi- mates 54% in newborn, and 51% in adult animals. Percent rT3 se-
	cretion approximates 3% in fetus, 18% in newborn, and 3% in a-
	dult animals. Conclusions: In the newborn a) T4 secretion is
	increased; b) T3 production is increased as a result of increas-
	ed secretion and augmented I4-T3 conversion; c) rT3 production
- 1	from T4 is decreased, and rT3 secretion is minimal; d) thyroid
	sensitivity to TSH or pituitary-thyroid feedback appears to be
	altered during this period.