ABSTRACTS 429

Disturbances in ventilation-perfusion relationships $(\dot{V}A/\dot{Q})$ and functional residual capacity (FRC) are the most important abnormalities of physiology in distressed neonates. These parameters were measured serially from birth to recovery in 14 infants with hyaline membrane disease. VA/Q relationships were studied by determining alveolar arterial gradients for oxygen, carbon dioxide and nitrogen. FRC was determined by a helium rebreathing method. AaDo2 was measured after 100% oxygen breathing, and where possible during air breathing. Venous admixture and shunts were calculated using standard formulae and assumptions. Three infants had nitrogen washout determinations during the recovery period. Arterial samples were obtained from the temporal or right radial artery. The data allows the following conclusions: (1) In most infants FRC decreased between the first and second day (2) Underperfusion ($\dot{V}A/\dot{Q} > 1$) increased progressively in the first 2 days (3) Venoarterial shunting varied little in the first 2 days (4) Most infants reach a normal FRC by 15 days (5) During recovery the absence of nitrogen gradient, normal nitrogen washout, and the presence of a large venous admixture with a small shunt suggests that diffusion limitation is a major problem.

Alveolar instability with inspired 100% O₂ in the newborn lung. C. R. Parks, E. R. Alden, D. E. Woodrum, and W. A. Hodson (Intr. by W. G. Guntheroth). *Univ. of Washington, Seattle, Wash.*

Right to left shunt determinations in newborn infants have suggested that alveoli are unstable with inspired oxygen concentrations of 100%. Theoretically alveoli with very low VA/Q ratios should collapse with inspired 100% oxygen, resulting in a decrease in alveolar-arterial nitrogen difference (A-ADN₂) and an increase or no change in alveolar-arterial oxygen difference (A-aDO₂), and an increase or no change in shunt.

Four newborn lambs were ventilated at constant tidal volume initially with 40% oxygen for 1½ hours, then with 100% oxygen for 3 hours and then returned to 40% oxygen for 1½ hours. Arterial and mixed venous blood was sampled at the end of each period and analyzed for PO₂, PN₂, PCO₂. Alveolar PO₂ and PN₂ were calculated.

O ₂	A-aDO ₂ mm Hg (mean)	a-ADN ₂ mm Hg (mean)	% Shunt
40%	121	27	9.1
100%	360		16
40%	152	6	16

Three lambs (Table) had a large number of alveoli with very low VA/Q. Decrease in a-ADN₂, with an increase in A-aDO₂ and shunt, indicates conversion of alveoli with very low VA/Q to alveoli with collapse.

One lamb had a small number of alveoli with low VA/Q. In this animal no changes were anticipated nor found with 100% O₂ inhalation.

It is concluded that in the newborn period, alveoli with very low VA/Q may collapse with inspired 100% O₂.

BOON, D. I. 390

AUTHOR INDEX

Abaci, F. 393
ABRAMSON, D. 396
Adam, P. 417
Addanki, S. 421
Adler, W. H. III 379
Admirand, W. H. 391
Aladjem, S. 411
Alakija, W. 388
ALBRITTON, W. L. 414
Alden, E. R. 429
Allderdice, P. W. 423, 424
Allen, E. 403
ALTEMEIER, W. A. III 379
Амез, М. 374
Амоз, D. B. 379
Anania, R. 385
Anderson, G. 426
Appleman, H. D. 390
Arcilla, M. B. 422
Arcilla, R. A. 428
Arguedas, G. J. A. 402
Arnaud, C. 392
Atkins, T. E. 376
ATWOOD, G. F. 425
Auld, P. A. M. 428
Aur, R. J. A. 408
Avery, M. E. 416
Ауоцв, Е. М. 379, 405

Bongiovanni, A. M. 389, 397, 398, 400, 423

BAEHNER, R. L. 408

DOON, D. J. 550
Borer, R. C., Jr. 415
Воттімі, Е. 423
BOUCHER, D. W. 403
BOUTTE, C. A. 407
Bowie, E. J. W. 409
Brady, J. 414
Brasel, J. A. 418, 420
Breg, W. R. 423, 424
Brickman, A. 403
Brill, A. 373
Britt, S. 377
Bruck, E. 397
Brunell, P. A. 403
Bryan, A. C. 426, 428
Bryan, M. H. 413
Bryson, M. F. 385
Buckley, R. H. 379
Burke, E. C. 383
Burley, S. 405
Burr, I. M. 397
Burt, L. S. 374
Butler, D. G. 389
Buynak, E. B. 402
Buzon, M. 386
Campbell, A. G. M. 39
Cassin, S. 427
Castro, J. R. 408