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Translational diffusion coefficient of wormlike regular
three-arm stars

Daichi Ida

Effects of chain stiffness on the translational diffusion coefficient D or (effective) hydrodynamic radius RH (∝ D−1) are examined

theoretically for the regular three-arm star polymers on the basis of the Kratky–Porod (KP) wormlike chain model. The ratio gH of

RH of the regular KP three-arm star touched-bead model to that of the KP linear one, both having the same (reduced) total

contour length L and (reduced) bead diameter db, is numerically evaluated on the basis of the Kirkwood formula and/or the

Kirkwood–Riseman (KR) hydrodynamic equation. From an examination of the behavior of the Kirkwood value gH
(K) and the KR

one gH
(KR) of gH as a function of L and db, it is found that both of gH

(K) and gH
(KR) are insensitive to change in L irrespective of the

value of db and that gH
(KR) is slightly larger than gH

(K) in the ranges of L and db investigated. An empirical interpolation formula is

constructed for gH
(K), which reproduces the asymptotic values

ffiffiffi
3

p
=ð2

ffiffiffi
2

p
� 1Þ (=0.947) in the random-coil limit and 1 in the

thin-rod limit.
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INTRODUCTION

We have made theoretical and/or computational studies of the intrinsic
viscosity [η]1,2 and second virial coefficient A2

3 of the semiflexible
regular three-arm stars. The quantities [η] and A2 are measures of the
average chain dimension as well as the mean-square radius of gyration
S2
� �

, although A2 is related to the chain dimension only in good
solvents or perturbed state. The ratio of gη of [η] of an unperturbed
regular three-arm star chain to that of the corresponding unperturbed
linear one, both having the same molecular weight and chain stiffness,
has been shown to become remarkably smaller than the random-coil
limiting value as the chains become stiffer, as in the case of the ratio gS
of S2
� �

of the former chain to that of the latter.4 Further, for practical
purposes, an empirical interpolation formula for gη has been con-
structed. However, the ratio gA2

of A2 of a perturbed regular three-arm
star chain to that of the corresponding perturbed linear one has been
shown to be rather insensitive to change in chain stiffness.
The (effective) hydrodynamic radius RH is another measure of the

chain dimension and is defined from the translational diffusion
coefficient D as follows:

RH ¼ kBT=6pZ0D; ð1Þ
where kB is the Boltzmann constant, T is the absolute temperature and
η0 is the viscosity coefficient of the solvent. It is then interesting and
necessary to examine the effects of chain stiffness on the ratio gH of RH

of the regular three-arm star chain to that of the corresponding linear
one. In this paper, we evaluate gH of the semiflexible regular three-arm
star polymer on the basis of the Kratky–Porod (KP) chain without
excluded volume as in the case of the previous study of gη,

2 and then,
we construct an interpolation formula for gH for practical purposes.

For an evaluation of D for both of the KP regular three-arm star
and linear chains, we adopt the touched-bead hydrodynamic model as
in the case of the previous study of [η].2 And also, we use the
Kirkwood formula5–7 as in the case of the linear helical wormlike
touched-bead model8,9 including the KP chain as a special case. On
the basis of the Kirkwood formula, for unperturbed linear chains in
the random-coil limit, there holds the asymptotic relation:

D¼ 0:196kBT=Z0 R2
� �1=2 ðlinear; KirkwoodÞ; ð2Þ

where R2h i is the mean-square end-to-end distance of the chains. On
the other hand, if D is evaluated from the Kirkwood–Riseman (KR)
hydrodynamic equation in the scheme of preaveraged hydrodynamic
interaction (HI),7,10 we have another asymptotic relation given by

D¼ 0:192kBT=Z0 R2
� �1=2 ðlinear; KRÞ: ð3Þ

Note that the correct numerical factor 0.192 of Equation (3) was
obtained by Kurata and Yamakawa11 instead of the original approx-
imate one 0.196 obtained in the so-called KR approximation for D.7,10

We also note that the Zimm theory12 on the basis of the unperturbed
(dynamic) Gaussian spring-bead model in the scheme of preaveraged
HI gives the latter relation. The difference between the prefactor of the
right-hand side of Equation (2) and that of Equation (3) is arising
from the fact that the Kirkwood and KR (or Zimm) values of D
correspond to the translational diffusion of the center of mass of the
polymer chain and that of the Zimm center of resistance7,12 as defined
as the point where the translational motion of the entire chain
becomes independent of the internal (segmental) motions in the
scheme of preaveraged HI, respectively.8,13,14 This may be expected to

Department of Polymer Chemistry, Kyoto University, Kyoto, Japan
Correspondence: Dr D Ida, Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615–8510, Japan.
E-mail: ida@molsci.polym.kyoto-u.ac.jp
Received 23 March 2015; revised 17 April 2015; accepted 1 May 2015; published online 17 June 2015

Polymer Journal (2015) 47, 679–685
& 2015 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/15
www.nature.com/pj

http://dx.doi.org/10.1038/pj.2015.44
mailto:ida@molsci.polym.kyoto-u.ac.jp
http://www.nature.com/pj


be the case with the star polymers. We then also evaluate D (or RH)
and gH for the KP regular three-arm star chain following the KR
procedure and examine difference between the Kirkwood and KR
values of RH and gH. This is another purpose of this paper.

MATERIALS AND METHODS
The model used in this study is the same as that used in the previous one,2

that is, a regular three-arm star touched-bead model composed of 3m+1
identical spherical beads of (hydrodynamic) diameter db whose centers are
located on the KP regular three-arm star chain contour (see Figure 1 in Ref. 2).
For convenience, the three arms are designated the first, second and third ones,
and the m beads on the ith (i= 1, 2, 3) arm are numbered
(i−1)m+1, (i−1)m+2, …im from the branch point (center) to the terminal
end, with the center bead numbered 0. The angle between each pair of the unit
vectors tangent to the KP contours at the branch point is fixed to be 120°,
so that the three vectors are on the same plane. The linear touched-bead model,
the counterpart of the above star one, is the KP touched-bead model composed
of n+1 identical beads of diameter db whose centers are located on the KP
linear chain contour. We set n+1 equal to 3m+1, so that n= 3m. The n+1 beads
are numbered 0, 1, 2, …, n from one end to the other. For both the star and
linear touched-bead models, the contour distance between the two adjacent
beads is set equal to db. In what follows, all lengths are measured in units of the
stiffness parameter λ− 1 of the KP chain unless otherwise specified.

Kirkwood formula
The Kirkwood formula for D of the chain composed of n+1 beads may be
given by5–7

D ¼ kBT

nþ 1ð Þz 1þ z
6pZ0 nþ 1ð Þ

Xn
i¼0

Xn
j¼0

iaj

R�1
ij

D E2
664

3
775; ð4Þ

where ζ= 3πη0db is the translational friction coefficient of bead and Rij
�1

� �
is

the mean reciprocal of the distance between the centers of the ith and jth beads.
For the [(i−1)m+k]th and [(j−1)m+l]th beads (i, j=1, 2, 3; k, l=1, 2, …, m)

of the KP regular three-arm star chain, that is, the kth bead on the ith arm and the
lth bead on the jth arm, respectively, R i�1ð Þmþk½ � j�1ð Þmþl½ ��1

� �
may be given by

R i�1ð Þmþk½ � j�1ð Þmþl½ ��1
� � ¼ R�1 tðiÞk ; tðjÞl

� �D E
ð5Þ

with tðiÞk denoting the contour distance from the branch point to the contour
point on the ith arm where the center of the [(i− 1)m+k]th bead locates on,
so that

tðiÞk ¼ kdb: ð6Þ
The theoretical expression for R�1 t ið Þ

k ; t jð Þ
l

� �D E
has been obtained in the

previous paper.2 Here we give only the results with a brief description. For the
KP regular three-arm star chain under the consideration, R�1 t ið Þ

k ; t jð Þ
l

� �D E
may

be given by

R�1 tðiÞk ; tðjÞl
� �D E

¼ R�1 tðiÞk ; tðjÞl ; 1203
� �D E

for iaj

¼ R�1 tðiÞk � tðiÞl
��� ���; 0; 1203� �D E

for i ¼ j;
ð7Þ

where R�1 t1; t2; 1203ð Þh i is the mean reciprocal of the end-to-end distance of
the (unperturbed) once-broken KP chain of total contour length t1+t2 such that
two KP subchains 1 and 2 of contour lengths t1 and t2, respectively, are
connected with a bending angle θ= 120° (see Figure 2 in Ref. 2). We note
that R�1 t; 0; 1203ð Þh i and/or R�1 0;t; 1203ð Þh i represent the mean reciprocal of
the end-to-end distance of the KP linear chain of contour
length t. The interpolation formula for R�1 t1; t2; 1203ð Þh i may be given by

R�1 t1; t2; 1203ð Þh i ¼ R2h i�1=2
1þ 5 R2h i11=2
h i�1

´ f EE t1; t2; 120
3ð Þ þ 0:045 R2h i3=2

h
þ 0:40t1t2 t1 þ t2ð Þe�t1 t2

þ 5 R2
� �11=2

f DDE t1; t2; 120
3ð Þ
i
; ð8Þ

where

f EE t1; t2; yð Þ¼ 1þ 3

8

R4h i
R2h i2

� 1

 !
; ð9Þ

f DDE t1; t2; 120
3ð Þ ¼ 6

p

� 	1=2

1� 11

40 R2h i þ
431

4480 R2h i2
þ C t1; t2ð Þ

R2h i2
" #

; ð10Þ

and C(t1,t2) is given by

C t1; t2ð Þ ¼ 108t2 þ 77t4

640 1þ t4

 � ð11Þ

with

t2 ¼ t�2
1 þ t�2

2


 ��1
: ð12Þ

In Equations (8)–(10) R2h i ¼ R2 t1; t2; yð Þh i and R4h i ¼ R4 t1; t2; yð Þh i are the
second and fourth moments, respectively, of the end-to-end distance of the
once-broken KP chain that are given by

R2 t1; t2; yð Þ� � ¼ t1 þ t2 � 1

2
1� e�2ðt1þt2Þ
h i

� 1

2
1� e�2t1

 �

1� e�2t2

 �

1þ cos yð Þ; ð13Þ

R4 t1; t2; yð Þ� �
¼ 5

3
t1 þ t2ð Þ2 � t1 þ t2ð Þ 26

9
þ e�2ðt1þt2Þ

� 


þ 2 1� e�2ðt1þt2Þ
h i

� 1

54
1� e�6ðt1þt2Þ
h i

� 1� e�2t1

 � 5

3
t2 þ t2e

�2t2 � 3

2
1� e�2t2

 �þ 1

18
1� e�6t2

 �� 
�

þ 1� e�2t1

 � 5

3
t1 þ t1e

�2t1 � 3

2
1� e�2t1

 �þ 1

18
1� e�6t1

 �� 
�

´ 1þ cos yð Þ � 1

4
ð1� e�2t1 Þ � 1

3
ð1� e�6t1 Þ

� 


´ 1� e�2t2

 �� 1

3
1� e�6t2

 �� 


1� cos 2y

 �

: ð14Þ
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Figure 1 Plots of g ðKÞ
H (L,db) and g ðKRÞ

H (L,db) against log L. The open
and closed circles represent g ðKÞ

H and g ðKRÞ
H , respectively, for db=0.001 (pip

up), 0.003 (pip right-up), 0.01 (pip right), 0.03 (pip right-down), 0.1 (pip
down), 0.2 (pip left-down), 0.3 (pip left) and 0.4 (pip left-up). The dashed
curves connect smoothly the theoretical values at constant db. The lower and
upper horizontal lines represent the random-coil limiting valuesffiffiffi
3

p
= 2

ffiffiffi
2

p
� 1

� �
(=0.947) of g ðKÞ

H and 0.964 of g ðKRÞ
H , respectively. The

solid curves represent the values calculated from the interpolation formula
for g ðKÞ

H (see the text).
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We note that the expression for R2 t1; t2; yð Þh i given by Equation (13) was first
derived by Mansfield–Stockmayer.4 In the rod limit, Equation (8) reduces to

R�1 t1; t2; 120
3ð Þ� � ¼ t21 þ t22 þ t1t2


 ��1=2
rod limitð Þ: ð15Þ

For later convenience, D obtained from Equation (2) is designated D(K)

hereafter.

Kirkwood–Riseman equation
On the basis of the KR hydrodynamic equation in the scheme of preaveraged
HI,7,10 D of the chain composed of n+1 beads may be written as follows:

D ¼ kBT=z
Xn
i¼0

ci; ð16Þ

where ψi is the solution of the following linear simultaneous equations:

ci¼ 1� z
6pZ0

Xn
j ¼ 0
ai

R�1
ij

D E
cj: ð17Þ

The expression for Rij
�1

� �
has already been given by Equation (5) with

Equations (7)–(14). We note that if we assume ci ¼ nþ 1ð Þ�1c, that is, the
average force exerted on the solvent of the ith bead equal to the average total
force of the entire chain divided by n+1, for all i, Equations (16) and (17) may
reduce to Equation (4). We also note that this assumption is equivalent to the
KR approximation for D mentioned in the Introduction section. For later
convenience, D obtained from Equations (16) and (17) is designated D(KR)

hereafter.

RESULTS AND DISCUSSION

We have calculated the Kirkwood value D(K) and the KR one D(KR) of
the translational diffusion coefficient D from Equation (4) and from
Equation (16) with the numerical solution ψi of the linear simulta-
neous equations (17), respectively, for both the KP regular three-arm
star and linear touched-bead models, in the ranges of the total number
n+1 of bonds from 4 to 9001 and of the bead diameter db from 0.001
to 0.4. Note that the total contour length L of the chain is equal to
(n+1)db, as already mentioned in the Materials and methods. In
Equations (4) and (17), Rij

�1
� �

is given by Equation (5) with
Equations (7)–(14). On the basis of the values of D(K) and D(KR) for
the star and linear chains having the same L and db so obtained along
with Equation (1), we evaluate the Kirkwood value gðKÞH and the KR

one gðKRÞH of the ratio gH as functions of L and db defined by

gðKÞH L; dbð Þ ¼ RðKÞ
H starð Þ

RðKÞ
H linearð Þ

¼ DðKÞ linearð Þ
DðKÞ starð Þ ð18Þ

and

gðKRÞH ðL; dbÞ ¼ RðKRÞ
H starð Þ

RðKRÞ
H linearð Þ

¼ DðKRÞ linearð Þ
DðKRÞ starð Þ ; ð19Þ

respectively.
In the following subsections, we first examine the behavior of gðKÞH

and gðKRÞH as functions of L and db and compare the theoretical values
of the two ratios. Then we construct an interpolation formula for gðKÞH .

Comparison between gðKÞH and gðKRÞH

Figure 1 shows plots of gH against the logarithm of L. The open and
closed circles represent the theoretical values of gðKÞH and gðKRÞH ,
respectively, for db= 0.001 (pip up), 0.003 (pip right-up), 0.01
(pip right), 0.03 (pip right-down), 0.1 (pip down), 0.2 (pip left-
down), 0.3 (pip left) and 0.4 (pip left-up); the dashed curves
connecting smoothly the respective theoretical values at constant db.
The solid curves represent the values calculated from an interpolation
formula for gðKÞH , as discussed later.
In the case of gðKÞH , the asymptotic value in the random-coil limit,

that is, the limit L→∞ (in units of λ− 1) may be given by

lim
L-N

gðKÞH L; dbð Þ ¼
ffiffiffi
3

p
= 2

ffiffiffi
2

p
� 1

� �
¼ 0:947 random coilð Þ; ð20Þ

which may be calculated from the relation gðKÞH ¼
½ ffiffiffi

2
p � 1

 �

f 1=2 þ 2� ffiffiffi
2

p
 �
f �1=2��1 obtained for the Gaussian regular

f-arm stars by Kurata and Fukatsu15 and by Stockmayer and Fixman16

(the latter authors using the KR approximation for D). The asymptotic
value is represented by the lower horizontal line. As L is decreased,
gðKÞH first increases from the random-coil limiting value and then
decreases and exhibits a minimum after passing through a maximum,
in the range of db investigated except for db= 0.4. The behavior of gðKÞH

depends also on db. It should be noted that the difference between the
maximum and minimum of gðKÞH is rather small (4% at most).
As for gðKRÞH , its values are slightly (3% at most) larger than those of

gðKÞH and exhibit no appreciable maximum in contrast to the case of

gðKÞH , in the ranges of L and db investigated. We have evaluated the

random-coil limiting value of gðKRÞH (L,db) from the numerical

theoretical values with large db. Figure 2 shows plots of gðKRÞH against
L− 1/2 for db= 0.1, 0.2, 0.3 and 0.4. All the symbols have the same
meaning as those in Figure 1. The dashed curves connect smoothly
the theoretical values at constant db and solid lines indicate the
respective initial tangents. It is seen that as L− 1/2 is decreased to 0

(L→∞), gðKRÞH approaches a constant value irrespective of the
value of db. On the basis of such numerical results, it may be
concluded that

lim
L-N

gðKRÞH L; dbð Þ¼ 0:964 random coilð Þ: ð21Þ

Note that the values of gðKRÞH for smaller db have been omitted in
Figure 2, since we cannot make L− 1/2 (= [(n+1)db]

− 1/2) small enough

to evaluate gðKRÞH at L− 1/2= 0. We also note that the asymptotic value
so obtained is consistent with an available theoretical value of 0.96
obtained by Irurzun17 for the Gaussian regular three-arm star chain
without excluded volume on the basis of the KR equation. In Figure 1,
the upper horizontal line represents the asymptotic value 0.964.

0.40.30.20.10

0.97

0.96

0.95

0.94

L−1/2

g H
(K

R
)

Figure 2 Plots of g ðKRÞ
H against L−1/2. All the symbols have the same

meaning as those in Figure 1. The dashed curves connect smoothly the
theoretical values at constant db and the solid lines indicate the respective
initial tangents.
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This asymptotic value is 1.8% larger than that of gðKÞH given by
Equation (20).
For an examination the difference between gðKÞH and gðKRÞH , it is

useful to derive the asymptotic relations between RH and S2
� �1=2

in
the random-coil limit for both of the regular three-arm star and linear
chains. From Equations (2) and (3), using the asymptotic relation
R2h i¼ 6 S2

� �
for the linear chain7 in this limit along with

Equation (1), we may obtain

RðKÞ
H ¼ 0:663 S2

� �1=2
random coil; linearð Þ; ð22Þ

RðKRÞ
H ¼ 0:677 S2

� �1=2
random coil; linearð Þ: ð23Þ

As for the regular three-arm star chain in the random-coil limit, from
Equations (18)–(23) using the asymptotic value 7/9 of gS,

18 we then
obtain the relations

RðKÞ
H ¼ 0:712 S2

� �1=2
random coil; starð Þ; ð24Þ

and

RðKRÞ
H ¼ 0:740 S2

� �1=2
random coil; starð Þ: ð25Þ

It is seen that for the regular three-arm star chain RðKRÞ
H is 3.8% larger

than RðKÞ
H , while for the linear chain the former value is 2.1% larger

than the latter.
Further we give the asymptotic forms of gðKÞH and gðKRÞH in the thin-

rod limit, that is, the limit of L→ 0 (in units of λ− 1) and L/db→∞. In
this limit, D(K) for the regular three-arm star chain may be written in
the form (see Appendix):

lim
L-0

L=db-N

DðKÞ ¼ kBT ln L=dbð Þ
3pZ0L

thin rod limit; starð Þ: ð26Þ

As for the linear chain, we have7

lim
L-0

L=db-N

DðKÞ ¼ kBT ln L=dbð Þ
3pZ0L

thin rod limit; linearð Þ: ð27Þ

We note that Equation (27) may be obtained directly from
Equation (4) with Equations (5), (7), and (15) along with the relation
L= (n+1)db. In the rod limit, gðKÞH should be a function only of

L/db, that is,

lim
L-0

gðKÞH L; dbð Þ ¼ gðKÞH;0 L=dbð Þ rod limitð Þ: ð28Þ
From Equation (18) with Equations (26)–(28) we have

lim
L=db-N

gðKÞH;0 L=dbð Þ¼ 1 thin rod limitð Þ: ð29Þ

On the other hand, D(KR) for the regular three-arm star chain (see
Appendix) and that for the linear one19 in the thin-rod limit may be
written in the forms:

lim
L-0

L=db-N

DðKRÞ ¼ kBT ln L=dbð Þ
3pZ0L

thin rod limit; starð Þ ð30Þ

and

lim
L-0

L=db-N

DðKRÞ ¼ kBT ln L=dbð Þ
3pZ0L

thin rod limit; linearð Þ; ð31Þ

respectively. In the rod limit, gðKRÞH should also be a function only of
L=db, that is,

lim
L-0

gðKRÞH L; dbð Þ ¼ gðKRÞH;0 L=dbð Þ rod limitð Þ: ð32Þ
From Equation (19) with Equations (30)–(32) we have

lim
L=db-N

gðKRÞH;0 L=dbð Þ¼ 1 thin rod limitð Þ: ð33Þ

All of these equations for D(KR) and gðKRÞH have the same forms as the

corresponding ones for D(K) and gðKÞH given by Equations (26),(27) and
(29).
Such salient results given by Equations (29) or (33), that the

translational diffusion coefficient of the regular three-arm star chain
becomes identical with that of the corresponding linear chain in the
thin-rod limit may be regarded as indicating the defect of the
Kirkwood formula or that of the scheme of preaveraged HI as in
the case of rigid rings.7,8,20–24

Interpolation formula for gðKÞH

Now we are in a position to construct an interpolation formula for
gðKÞH on the basis of the numerical theoretical values of gðKÞH (L,db) as
already shown in Figure 1 along with the asymptotic relations given by
Equations (20) and (29) in the random coil and thin-rod limits,
respectively.
We have evaluated gðKÞH;0(L/db) numerically in the same manner as

gðKÞH (L,db) mentioned above using the expression Rij
�1

� �
given by

Equations (5),(7) and (15) in place of that for the KP chain. Figure 3
shows plots of gðKÞH;0 against [ln(L/db)]

− 1. The open circles represent
the values so obtained. As [ln(L/db)]

− 1 is decreased (L/db is increased),
gðKÞH;0 first decreases and then increases to the asymptotic value 1 after
passing through a minimum. For later convenience, we have
constructed an interpolation formula for gðKÞH;0(L/db) in the range of
L/db\10, which is given by

gðKÞH;0 xð Þ ¼ 1� 1:84723 ln xð Þ�1 þ 9:01492 ln xð Þ�2

1� 1:46180 ln xð Þ�1 þ 8:88140 ln xð Þ�2 for x\10:

ð34Þ
In Figure 3, the curve represents the values calculated from
Equation (34) with x= L/db. The error in the value of gðKÞH;0(L/db) in
the range of L/db\10 (solid part) does not exceed 0.1%.
Next, we consider the ratio gðKÞH =gðKÞH;0. Figure 4 shows plots of

gðKÞH ðL; dbÞ=gðKÞH;0ðL=dbÞ against the logarithm of L, where gðKÞH =gðKÞH;0 has

10.80.60.40.20

1

0.95

0.9

[ln(L / db)]
−1

g H
,0

(K
)

Figure 3 Plots of g ðKÞ
H;0(L/db) against [ln(L/db)]

−1. The open circles represent
the theoretical values. The horizontal line segment represent the asymptotic
value 1 in the limit of [ln(L/db)]−1→0 (L/db→∞). The curve represents the
values of the interpolation formula, the solid part indicating the range of
L=db\10 (see the text).
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been evaluated by dividing the gðKÞH values shown in Figure 1 by the
gðKÞH;0 values calculated from Equation (34) with x= L/db. All the
symbols in Figure 4 have the same meaning as those in Figure 1. It is
seen that as L is increased, gðKÞH =gðKÞH;0 as a function of L and db, which is
represented by f(L,db) hereafter, first increases from unity and then
decreases after passing through a maximum in the range of db
investigated. Considering the asymptotic conditions limL→ 0 f(L,db)= 1
and limL-Nf L; dbð Þ ¼ ffiffiffi

3
p

= 2
ffiffiffi
2

p � 1

 �

, which hold in the limit of
L/db→∞, we have constructed an interpolation formula for f(L,db),
which may be written in the form,

f ðL; dbÞ ¼ 1þ a1Lþ a2L2 for L o6
¼ b0 � 1þ b1 ln Lð Þ�1� �

´ exp �b2 ln Lð Þ�1 � b3 ln Lð Þ�2� �þ 1 for LZ6:

ð35Þ
In Equation (35), the coefficients ai (i= 1, 2) and bi (i= 0, 1, 2, 3) may
be given by

a1 ¼ f 6;dbð Þ � 3f 0 6;dbð Þ � 1½ �=3
a2 ¼ �f 6;dbð Þ þ 6f 0 6;dbð Þ þ 1½ �=36 ð36Þ

and

b0 ¼
ffiffiffi
3

p
= 2

ffiffiffi
2

p � 1

 �

b1¼ 0:276181þ 0:473221db � 0:240008db
2

þ 0:018263þ 0:572154db
2


 �
ln db

b2¼ 2:66405� 7:02277db þ 2:26380db
2

� 0:11568þ 7:14996db
2


 �
ln db

b3¼ 4:50327þ 0:06635db þ 4:03912db
2

þ 0:33442� 9:70377db
2


 �
ln db;

ð37Þ

respectively, where f′(L/db)= ∂f(L/db)/∂L. Note that in Equation (36)
the values of f(6,db) and f′(6,db) may be calculated from Equation (35)
and Equation (37). In Figure 4, the solid curves represent the values
calculated from Equations (35)–(37) with the corresponding values of
db. It is seen that the interpolation formula may well reproduce the
numerical theoretical values in the ranges of L and db so examined,
although for 0tLt1 the numerical theoretical values seem to deviate
downward slightly (up to 0.5%) from the corresponding values of the
interpolation formula. Such a slight deviation is within experimental
error (1% at least) in D determined by conventional methods and

then causes no significant error in a practical use of the present
interpolation formula for analysis of experimental data.
The factor gðKÞH (L,db) may therefore be approximately expressed as

gðKÞH L; dbð Þ ¼ gðKÞH;0 L=dbð Þf L; dbð Þ; ð38Þ

where gðKÞH;0(L/db) and f(L,db) are given by Equation (34) and Equation
(35) with Equations (36) and (37), respectively. In Figure 1, the solid
curves represent the approximate values calculated from Equation (38)
with Equations (34)–(37) with the corresponding values of db. It is
seen that the interpolation formula for gðKÞH (L,db) so proposed may
well reproduce the numerical theoretical values in the ranges of db
investigated and of L=db\10. The error in the value of gðKÞH in those
ranges of db and L/db does not exceed 0.4%.

Comparison with experiment
Finally, we make a comparison of the present theoretical result with
experimental data in a literature. Figure 5 shows plots of gH against the
logarithm of the weight-average molecular weight Mw for the regular
three-arm star polystyrene in cyclohexane at 34.5 °C (Θ) obtained by
Huber et al.25 The open circles represent the experimental values. The
curve represents the KP theory values of gðKÞH lL̂; ld̂b

� �
, where L̂ and

d̂b is the total contour length and bead diameter, respectively, of the
KP regular three-arm star touched-bead model in real length units,
calculated from Equation (38) with Equations (34)–(37) along with
the relation logMw ¼ log lL̂þ log l�1ML


 �
with ML the molecular

weight per unit contour length. The solid part of the curve indicates
the range of L=db\10. The necessary KP parameter values used
in the calculation of the KP theory values are λ− 1= 20.0 Å and
ML= 39.0 Å− 1 determined by Norisuye and Fujita26 for (linear) atactic
polystyrene in cyclohexane at 34.5 °C (Θ) and d̂b ¼ 9.9 Å estimated
from the relation27 d¼ 0:891d̂b with d the hydrodynamic diameter of
the KP cylinder model8 using with d= 8.8 Å determined for the same
system by Huber et al.28 It is seen that the present theory may
explain qualitatively the behavior of the experimental values,
which increase with decreasing Mw, although including the range of
L/dbt10.

43210−1−2

1.02

1

0.98

0.96

log L 

g H
(K

)
/g

H
,0

(K
)

Figure 4 Plots of g ðKÞ
H ðL; dbÞ=g ðKÞ

H;0ðL=dbÞ against log L. All the symbols have
the same meaning as those in Figure 1. The solid curves represent the
values of the interpolation formula with the corresponding values of db (see
the text).

76543

1

0.95

0.9

log Mw

g H

Figure 5 Plots of gH against the logarithm of Mw for regular three-arm star
polystyrenes in cyclohexane at 34.5 °C (Θ). The open circles represent the
experimental data obtained by Huber et al.25 The curve represents
the corresponding KP theory values, the solid part indicating the range
of L/db\10 (see text).
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CONCLUSION

We have evaluated the Kirkwood value gðKÞH and the KR one gðKRÞH of
the ratio gH of RH of the unperturbed KP regular three-arm star
touched-bead model to that of the KP linear one, both having the
same (reduced) total contour length L and (reduced) bead diameter
db. From an examination of the behavior of gðKÞH and that of gðKRÞH

as functions of L and db, it is found that both of gðKÞH and gðKRÞH are
insensitive to change in L irrespective of the value of db and that gðKRÞH

is 3% at most larger than gðKÞH in the ranges of L and db. The empirical
interpolation formula for gðKÞH has been constructed, which reproduces
the asymptotic values

ffiffiffi
3

p
= 2

ffiffiffi
2

p � 1

 �

(= 0.947) in the random-coil
limit and 1 in the thin-rod limit.
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APPENDIX

Asymptotic form for D of the regular three-arm star in the rod limit
In this appendix, we derive the asymptotic solutions in the limit of
L/db→∞ (thin- or long-rod limit) for D(K) and D(KR) of the KP
regular three-arm star in the rod limit.

Kirkwood value
The asymptotic form of D(K) for the regular three-arm star in the thin-
rod limit may be directly derived from Equation (4) with Equations
(5)–(7) and (15).
In the case of the regular three-arm star, the summation in

Equation (4) may be rewritten in the form,

Xn
i¼0

Xn
j¼0

iaj

R�1
ij

D E
¼ 2

X2
i¼0

Xm
j¼1

R0 imþjð Þ�1
� �"

þ
X2
i¼0

Xm�1

j¼1

Xm
k¼jþ1

R imþjð Þ imþkð Þ�1
� �

þ
X1
i¼0

X2
j¼iþ1

Xm
k¼1

Xm
l¼1

RðimþkÞðjmþlÞ�1
� �#

: ð39Þ

Recall that L= (n+1)db and m= n/3. In the limit of L/db→∞, that is,
m→∞, we may perform the first and second summations on the
right-hand side of Equation (39) as follows:

X2
i¼0

Xm
j¼1

R0 imþjð Þ�1
� � ¼ 3

db
ln mþ gE þO m�1


 �� �
;

X2
i¼0

Xm�1

j¼1

Xm
k¼jþ1

R imþjð Þ imþkð Þ�1
� � ¼ 3m

db
ln mþ gE � 1þO m�1


 �� �
;

ð40Þ
where γE (= 0.5772···) is the Euler constant. In this limit, the third
summation on the right-hand side of Equation (39) may be converted
to an integral and it may be calculated to be

X1
i¼0

X2
j¼iþ1

Xm
k¼1

Xm
l¼1

R imþkð Þ jmþlð Þ�1
� �

¼ 3m

db
ln 3þ 2

ffiffiffi
3

p� �
� 3 ln 3ð Þ=2� ln 2�

ffiffiffi
3

p� �h i
: ð41Þ

Then we have

lim
L-0

L=db-N

Xn
i¼0

Xn
j¼0

iaj

R�1
ij

D E
¼ 2L

d2b
ln L=dbð Þ þ O ln L=dbð Þ½ �0
 �� �

: ð42Þ

From Equation (4) and Equation (42), we obtain Equation (26).

KR value
In the thin-rod limit, we may convert the summations in Equations
(16) and (17) to integrals. In the case of the regular three-arm
star, Equation (16) with Equation (17) may then be rewritten
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in the form,

DðKRÞ ¼ kBT 3pZ0L
Z 1

0
c xð Þdx

� 
�1

; ð43Þ
where ψ(x) is the solution of the integral equation,

c xð Þ¼ 1� 1

2

Z 1

0
K0 x; tð Þc tð Þdt þ 2

Z 1

0
K1 x; tð Þc tð Þdt

� 

: ð44Þ

In Equation (44), K0(x,t) and K1(x,t) are the continuous versions of
the mean reciprocal of the distance between the centers of two beads
on the same arm and on the different arm, respectively, and they are
explicitly given by

K0 x; tð Þ ¼ x � tj j�1 for x � tj jZ3db=L
¼ 0 for x � tj jo3db=L;

ð45Þ

K1 x; tð Þ ¼ x2 þ t2 þ xt

 ��1=2

: ð46Þ
From Equation (44), the function F(x) may be defined by

F xð Þ ¼ 1� 2f xð Þ

¼
Z 1

0
K0 x; tð Þf tð Þdt þ 2

Z 1

0
K1 x; tð Þf tð Þdt; ð47Þ

where ϕ(x)=ψ(x)/2. We then expand ϕ(x) and Kk(x,t) (k= 0, 1)
in terms of the shifted Legendre polynomial P~l xð Þ as follows:

f xð Þ ¼
XN
i¼0

fiP
~
i xð Þ; ð48Þ

Kk x; tð Þ ¼
XN
i¼0

XN
j¼0

Kk;ijP~i xð ÞP~j tð Þ k¼ 0; 1ð Þ; ð49Þ

where P~l xð Þ is defined by

P~l xð Þ ¼ �1ð ÞlPl 2x � 1ð Þ ð50Þ

with Pl(x) the Legendre polynomial. We note that P~l xð Þ satisfies the
following orthogonality relation,Z 1

0
P~l xð ÞP~l0 xð Þdx ¼ 2l þ 1ð Þ�1dll0 ; ð51Þ

where δll′ is the Kronecker delta. In Equations (48) and (49), the
expansion coefficients ϕi and Kk,ij may be given by

fi ¼ 2iþ 1ð Þ
Z 1

0
f xð ÞP~i xð Þdx ð52Þ

and

Kk;ij ¼ 2iþ 1ð Þ 2jþ 1ð Þ
Z 1

0

Z 1

0
Kk x; tð ÞP~i xð ÞP~j tð Þdxdt k¼ 0; 1ð Þ;

ð53Þ
respectively. Substituting Equations (52) and (53) into the second line
of Equation (47) and carrying out the integrations, F(x) may be
rewritten in the form,

F xð Þ ¼
XN
i¼0

XN
j¼0

2jþ 1ð Þ�1 K0;ij þ 2K1;ij


 �
fjP

~
i xð Þ: ð54Þ

It can be shown in the limit of L/db→∞ that

K0;ij ¼ �1ð Þiþj 4jþ 2ð Þdijln L=dbð Þ þ O ln L=dbð Þ½ �0
 � ð55Þ
and K l;ij ¼ O ln L=dbð Þ½ �0
 �

. Then we have

F xð Þ ¼ 2ln L=dbð Þ þ O ln L=dbð Þ½ �0
 �� �
f xð Þ: ð56Þ

From the first line of Equation (47) and Equation (56) along with the
relation j xð Þ ¼ c xð Þ=2; c xð Þ may be written in the from,

c xð Þ ¼ ln L=dbð Þ þ O ln L=dbð Þ½ �0
 �� ��1
: ð57Þ

Substituting of Equation (57) into Equation (43) and carrying out the
integration over x, we obtain Equation (30).
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