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Highly soluble phenylethynyl-terminated imide
oligomers based on KAPTON-type backbone
structures for carbon fiber-reinforced composites
with high heat resistance

Masahiko Miyauchi1, Yuichi Ishida2, Toshio Ogasawara2 and Rikio Yokota3

Novel addition-type phenylethynyl-containing imide oligomers (degree of polymerization: n¼1–10) derived from 1,2,4,5-

benzenetetracarboxylic dianhydride or pyromellitic dianhydride (PMDA), 2-phenyl-(4,40-diaminodiphenyl ether) (p-ODA)

and 4-phenylethynylphthalic anhydride (PEPA) were prepared and evaluated as a matrix resin for high heat-resistant carbon

fiber-reinforced composites. The uncured imide oligomers showed good solubility (430wt%) in N-methyl-2-pyrrolidone and

very low melt viscosities. These imide oligomers were successfully converted to crosslinked structures after curing at 370 1C.

The glass transition temperature (Tg) and the elongation at break (eb) of the cured imide resin were found to be excellent

(almost 340 1C and 415%, respectively). The carbon fiber prepreg was prepared from the imide oligomer solution and

used to fabricate void-free laminates with high Tg. The thermal and mechanical properties of the laminates were determined

at ambient temperature.
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INTRODUCTION

Aromatic polyimides (PIs), such as Kapton (DuPont, Wilmington,
DE, USA) and Apical (Kaneka Corporation, Osaka, Japan), derived
from 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA) and 4,40-
oxydianiline (4,40-ODA), and Upilex-R (Ube Industries, Tokyo,
Japan), derived from 3,30,40,40-biphenyltetracarboxylic dianhydride
(symmetric-BPDA (s-BPDA)) and 4,40-ODA, are well known to
have high dimensional stability, low thermal expansion, and out-
standing thermal and mechanical properties, as well as environmental
stability.1–3 These properties are attributed not only to their rigid
structures (planar and symmetric pyromellitimide or biphenylimide)
but also to the formation of high-ordered structures due to chain-to-
chain interactions. Accordingly, these aromatic PIs did not exhibit
high molecular mobility at temperatures higher than their glass
transition temperature (Tg), indicating that the processing conditions
for molding were extremely severe. Significant effort has been devoted
to the development of aromatic imide oligomers with good
processability and high Tg by disrupting chain-to-chain interactions.

One well-known, high-performance, thermosetting PI is PMR-15,
developed by NASA in the early 1970s for aerospace applications.
High-temperature composites from low-molecular-weight resins that

are end capped with reactive groups, such as PMR-15, are generally
fabricated by autoclave processing. The PMR-15 cured resin exhibited
a cured Tg of 4300 1C, but the resin lacked toughness because of
its high crosslink density.4 Consequently, the PMR-15 composites
exhibited low impact resistance or compressive strength after impact
and displayed microcracking upon thermal cycling.

The second-generation development of high-temperature matrix
resins at NASA focused on phenylethynyl-containing imide oligomers.
The resins were designed for use in high-temperature structural
composites with applications in advanced aerospace vehicles, such
as the once-proposed high-speed civil transport. The materials for
this vehicle were required to have stable mechanical properties
for 60 000 h at 177 1C. PETI-5 was the material selected for the
matrix resin of high-speed civil transport vehicles and was prepared
from the reaction of s-BPDA and two aromatic diamines, with
4-phenylethynylphthalic anhydride (PEPA) as the reactive end cap at
a calculated molecular weight of 5000 g mol�1.5–8 The cured PI film
exhibited a moderate Tg of 270 1C and more than 30% elongation
at break (eb). The moldings and composite laminates exhibited high
toughness, indicating that upon thermal curing, the chain extension
of the imide oligomers is significant and occurs by the thermal
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reaction of PEPA.9,10 The phenylethynyl end cap offered important
benefits, such as a large processing window and good thermo-oxidative
stability. The PETI-5 imide exhibited excellent processability during
the fabrication of neat resin molding, bonded panels and composites
by autoclave processing under pressures of 1.4 MPa or less for approxi-
mately 1 h at 350–370 1C. PETI-5 was extensively evaluated and
selected as a candidate for use as the adhesive and composite matrix
for high-speed civil transport vehicles.11–13

Yokota et al.14–17 recently found that a PI based on 2,3,30,40-
biphenyltetracarboxylic dianhydride (asymmetric-BPDA or a-BPDA)
and 4,40-ODA exhibited a Tg higher than that of a similar s-BPDA-
based PI, and the a-BPDA-based PI also showed a large drop in the
storage modulus, E0, at temperatures higher than the Tg.

These observations are attributed to the decrease in the inter-
molecular interactions of the PIs that are derived from a-BPDA,
which have asymmetric and nonplanar structures. On the basis of
the thermal and rheological behavior of a-BPDA-based PIs, Yokota
et al.18,19 designed an a-BPDA-based phenylethynyl-terminated oligomer
(TriA-PI) with excellent processability, high temperature resistance
and more than 20% eb after curing at 370 1C for 1 h.

Because TriA-PI is insufficiently soluble in the imide form, the
prepregs were manufactured by impregnating the carbon fibers with
a TriA-PI amide acid oligomer solution at high concentrations.
However, the evolution of water caused by the imidization of the
amide acid oligomers during molding has a tendency to create voids
in the composites. The preparation of void-less, high heat-resistant
composites can be achieved using prepregs prepared by impregnating
the fibers with a high concentration solution of imide oligomers if
imide oligomers can be synthesized with both high solubility and
good processability.

We describe in this paper the design and preparation of a
phenylethynyl-terminated imide oligomer derived from pyromellitic
dianhydride (PMDA) and an asymmetric diamine, 2-phenyl-4,40-
diaminodiphenyl ether (p-ODA). PMDA has symmetric and planar
structures, and p-ODA is an extremely simple diamine with asym-
metric and nonplanar structures. The effects of the asymmetry and
the resulting nonplanar structure on the solubility and processability
of addition-type aromatic imide oligomers were investigated.

On the basis of the thermal and rheological behavior of the
PI(PMDA/p-ODA) film, we found by using dynamic mechanical
analysis (DMA) measurements that the asymmetric and nonplanar
structures of p-ODA were able to prevent the intramolecular–
intermolecular interactions of the PMDA-based PI chains. Moreover,
the PEPA-terminated aromatic imide oligomers were found to have
high solubility in N-methyl-2-pyrrolidone (NMP) (433 wt%) and
good processability. In addition, upon thermal curing at 370 1C for
1 h, the crosslinked polymers exhibited excellent thermal (Tg

4340 1C) and mechanical properties (elongation at break, eb410%).

MATERIALS AND METHODS

Materials
The following chemicals were purchased from the indicated sources and used

without further purification: PMDA (Tokyo Kasei, Tokyo, Japan; melting point

286 1C), NMP (Kanto Kagaku, Tokyo, Japan) and PEPA (Manac, Tokyo, Japan;

melting point 152–153 1C). 4,40-ODA (melting point 189–190 1C) and p-ODA

(melting point 115–116 1C) were kindly supplied by Seika (Wakayama, Japan).

Measurements
Differential scanning calorimetry (DSC) was performed using a TA instruments

DSC-2010 thermal analyzer at a heating rate of 20 1C min�1, with the Tg taken

at the inflection point of the differential heat flow (DH) versus temperature

curve in a nitrogen atmosphere. The samples were measured in a sealed

aluminum pan. DMA were performed on thin film specimens (23.7 mm long,

5.0 mm wide and 0.05–0.15 mm thick) using a rheometric solids analyzer

(RSA II instrument) at a heating rate of 10 1C min�1 and load frequency of

1 Hz in air. Dynamic thermogravimetric analyses were conducted using a TA

instruments SDT-2960 thermal analyzer at a heating rate of 5 1C min�1. Melt

viscosity measurements were performed on a AR-2000 dynamic rheometer

(TA Instruments, New Castle, DE, USA) at a heating rate of 5 1C min�1.

Specimen disks (25.4 mm diameter and 1.0�1.5 mm thick) were prepared by

compression molding of the imide oligomer powder at room temperature.

PI films
PMDA/p-ODA and PMDA/4,40-ODA PIs were prepared using a conventional

two-step procedure from poly(amic acid)s with the corresponding diamine

and dianhydride, as described in an earlier report.20

PMDA/p-ODA/PEPA imide oligomers
Phenylethynyl-containing imide oligomers were prepared from the reaction of

PMDA and PEPA with the appropriate quantity of p-ODA.21 Initially, the

aromatic diamine(s) were dissolved in NMP at room temperature under

nitrogen, and the appropriate quantities of PMDA were added and stirred into

one portion. After the complete dissolution of PMDA, PEPA was added with

extra NMP to adjust the concentration of total solids to 33 wt% (w/w). The

solution was allowed to stir for 2 h at room temperature. The imide oligomers

were prepared directly from the amide acid solutions by imidization at 195 1C

for 5 h in an oil bath. The p-ODA-based imide oligomers (n¼ 1–4) remained

soluble during the imidization process. By contrast, the 4,40-ODA-based imide

oligomer (n¼ 4) precipitated during the imidization process. The imide oligo-

mers were isolated by adding the reaction mixtures to water and washing with

methanol. The yellow powders were dried at B240 1C for 4 h under vacuum to

a constant weight, with yields 495%.

Preparation of cured resins
The obtained imide oligomers were molded using a MP-WNL MINI TEST

PRESS machine (Toyo Seiki Seisaku-Sho, Tokyo, Japan). A 6 cm� 6 cm� 0.05 mm

PI film frame was put onto a 20 cm� 20 cm stainless-steel plate with UPILEX-S

separator films. The imide oligomers were initially heated at 310 1C for 10 min

and subsequently heated to 370 1C and held for 1 h at a pressure of 1.4 MPa.

Brown-colored, film-like specimens of 6 cm� 6 cm� 0.05 mm were obtained.

Processing of PI/carbon fiber composites
An NMP solution of imide oligomers (35 wt%) was impregnated into a 30 cm2

of plain woven carbon fiber (Toho Tenax IM600-6K, desized by washing with

acetone and then drying). The imide oligomer solution prepreg was dried at

100 1C for 10 min. The average areal weight of the prepregs was almost

380 g m�2. The average solid, volatile and carbon fiber contents were 35, 17

and 48 wt%, respectively. The plain fabric composites (12 Ply) were cured in a

vacuum hot press machine (Kitagawa Seiki, Hiroshima, Japan, KVHCII-Press).

The solvent (NMP) was initially removed at 260 1C for 2 h without applying

any pressure. The temperature was subsequently increased to 370 1C and held

for 1 h at a pressure of 1.4 MPa. DMA was performed on a rectangular

specimen (17.5 mm span length, 5.0 mm width and 2.1 mm thick), using a TA

Instruments DMA Q-800 in the single cantilever beam test mode at a heating

rate of 10 1C min�1 with a 1 Hz cycling rate and strain of 0.1% in air. The

laminates were ultrasonically scanned (C-scanned, Pulse echo), cut into

specimens and tested for mechanical properties. The panel was examined for

microcracks and voids using a microscope at up to � 400 magnification. The

short beam shear strength, based on a three-point bending test, was

determined for the specimens (approximately 80 mm long, 60 mm width

and 20 mm thick). Five specimens were tested at room temperature.

RESULTS AND DISCUSSION

Thermal and rheological properties of PMDA/p-ODA PIs
Recently, Yokota et al. found that the thermoplastic PI a-BPDA/
4,40-ODA exhibited a high Tg of 319 1C and a remarkably large drop
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in the E0 above the Tg (Figure 1). The difference in the temperature
dependence of the DMA curves between PI(a-BPDA/4,40-ODA) and
PI(s-BPDA/4,40-ODA) was attributed to the geometric structures of
the PI chains. The a-BPDA-based PIs not only have an amorphous
morphology but also have a higher Tg because of the restriction of
free rotation as a result of internal steric hindrance.

Figure 2 shows the temperature dependence of the E0 curves of
PI(PMDA/p-ODA) and the PI(PMDA/4,40-ODA) films observed by
the DMA measurement in air. The Tg was determined from the E0 as
the tangent taken at the curve before and after the drop-off in the
modulus. The PI(PMDA/4,40-ODA) film did not show an obvious Tg

based on the high-ordered molecular interaction of the polymer
chains with a symmetric and rigid structure.22,23 In contrast,
PI(PMDA/p-ODA) clearly showed not only a high Tg at 325 1C but
also a remarkably large drop of E0 from 109 to 107 Pa (the rubbery
plateau region) above the Tg. The observed high Tg and the
remarkably large drop in E0 are attributed to the pendant phenyl
group of p-ODA, which restricted rotation. Moreover, the intra/
intermolecular interactions of the PI(PMDA/p-ODA) chains were
also prevented by the steric hindrance of the pendant phenyl
group substituted onto the PI(PMDA/4,40-ODA) chain. In Figure 2,
the increasing behavior of E0 observed at temperatures above
420 1C is attributed to the thermo-oxidative crosslinking of cured
resin caused by the DMA measurement in air. The wide-angle
X-ray diffraction patterns of PI(PMDA/p-ODA) showed only a
broadened peak without a dependency on the annealing tempera-
ture, indicating that PI(PMDA/p-ODA) did not form a high-ordered
structure.20

The thermal and mechanical properties of the aromatic PI(PMDA/
p-ODA) film, determined by DSC and tensile measurements, are
summarized in Table 1. The PI(PMDA/p-ODA) showed a high Tg up
to 330 1C in a nitrogen atmosphere and high Td5 values were recorded
as 549 1C on the thermal gravimetry analysis curve. Moreover, the
PI(PMDA/p-ODA) was also found to be very tough on the basis of
the high elongation of the thin film tensile specimens.

Solubility, processability and thermal properties of imide
oligomers
The PMDA-based imide oligomers derived from 4,40-ODA and
p-ODA were obtained from the imidization of the solution of
the corresponding amide acid oligomers (Figure 3). The PMDA/
4,40-ODA/PEPA imide oligomer (n¼ 4) was insoluble in NMP and
could not be compression molded because of the lack of melt flow.
In contrast, the PMDA/p-ODA/PEPA imide oligomers (n¼ 1–4) were
completely soluble in the NMP solution at high concentrations, even
at room temperature (430 wt%).

Table 2 summarizes the solubility and thermal and mechanical
properties of the PMDA/p-ODA/PEPA imide oligomer and cured
resin (n¼ 1–10). The minimum melt viscosity of the imide oligomers
also increased with the degree of polymerization (Supplementary
Figure S1). However, all of these materials exhibited their respective
minimum melt viscosities at temperatures at which the phenyl-
ethynyl groups react. Thus, all of these imide oligomers are not

Figure 1 Dynamic mechanical analysis (DMA) curve of PI(s-BPDA/4,40-ODA)

(black line) and PI(a-BPBA/4,40-ODA) (red line). PI(a-BPDA/4,40-ODA)

showed both a higher glass transition temperature (Tg) and a remarkably

large drop above the Tg. Asymmetric-BPDA, 2,3,30,40-biphenyltetracarboxylic

dianhydride; 4,40-ODA, 4,40-oxydianiline; PI, polyimide; 3,30,40,40-biphenyl-

tetracarboxylic dianhydride, symmetric-BPDA.
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Figure 2 Dynamic mechanical analysis (DMA) curve of PI(PMDA/4,40-ODA)

(black line) and PI(PMDA/p-ODA) (red line). E0 of PI(PMDA/p-ODA) showed

a remarkably large drop above the glass transition temperature (Tg).

4,40-ODA, 4,40-oxydianiline; PI, polyimide; PMDA, 1,2,4,5-benzenetetra-

carboxylic dianhydride or pyromellitic dianhydride; p-ODA, 2-phenyl-(4,40-

diaminodiphenyl ether).

Table 1 Thermal and mechanical properties of PI(PMDA/p-ODA) film

Tg (oC)

[Z]NMP, 30 1C

(dl g�1)a DSC DMA

Td5

(1C)b

Eave

(GPa)c

sb,ave

(MPa)d

eb, ave

(%)e

PI(PMDA/p-ODA) 2.0 333 325 549 3.3 158 38.5

Abbreviations: DMA, dynamic mechanical analysis; DSC, differential scanning calorimetry;
eb, elongation at break; NMP, N-methyl-2-pyrrolidone; PAA, poly(amic acid)s; p-ODA, 2-phenyl-
4,40-diaminodiphenyl ether; PI, polyimide; PMDA, pyromellitic dianhydride or 1,2,4,5-
benzenetetracarboxylic dianhydride; Tg, glass transition temperature.
PI(PMDA/p-ODA) has a high Tg and excellent mechanical properties.
aInherent viscosity of PAA(PMDA/p-ODA) measured in NMP at 30 1C.
bFive percent of weight loss measured in N2.
cAverage values of modulus.
dAverage values of tensile strength.
eAverage values of elongation at break.
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stable at the temperatures of their minimum melt viscosities.8

These results indicate that the PMDA/p-ODA/PEPA imide oligomer
has significantly better processability for molding fiber-reinforced,
heat-resistant composites compared with conventional PMDA-based
PIs. The low melt viscosities of the imide oligomer (n¼ 1–4) are
thought to be due to the formation of randomized repeating units
of three types, shown in Figure 4: (a) head-to-tail , (b) head-to-head
and (c) tail-to-tail.

Thermal and mechanical properties of the cured resins
In Table 2, the thermal and mechanical properties of the cured resin
(PMDA/p-ODA/PEPA) were obtained from 100 to 150 mm homo-
geneous brown films. The Tg values of each cured resin, measured by
DMA, were found to be very high. The E0 of the cured resin also
exhibited a large drop at temperatures above Tg, as the pendant
phenyl group of p-ODA in the polymer chain disrupts intermolecular
interactions. The pattern of increase of E0 was observed at tempera-
tures up to 420 1C because of the thermo-oxidative crosslinking
caused by performing the measurements in air. All of the cured resins
exhibited high Td5 values (4525 1C). Surprisingly, the eb values
of the cured polymers were very high (49.5%), indicating that the
reaction mechanism of the PEPA was mainly chain extension rather
than cyclization or crosslinking, as reported by Meyer et al.,9,10

Nakamura et al.24
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Figure 3 Synthesis of phenylethynyl-terminated imide oligomers. The

phenylethynyl-terminated imide oligomers were prepared via amide acid

oligomers by the solution imidization process.

Table 2 Solubility and thermal and mechanical properties of (PMDA/

p-ODA/PEPA) imide oligomers (n¼1–10) and their cured resin

Imide oligomer Cured resina

n

Calculated number–

average molecular

weight (Mn�103)

Solubility

in NMP

(wt%)

Tg

(1C)b

Min. melt

viscosity

(Pa � s (1C))c

Tg

(1C)d

Td5

(1C)e

eb

(%)f

1 1.19 433g 152 1 (336) 356 528 9.6

2 1.65 433g 178 30 (338) 348 530 10.2

3 2.11 433g 202 144 (337) 348 536 11.4

4 2.57 433h 226 208 (340) 346 539 15.7

6 3.48 Partially 226 2239 (341) 342 543 16.9

10 4.86 Insoluble 252 11100 (330) 336 543 11.9

Abbreviations: DMA, dynamic mechanical analysis; DSC, differential scanning calorimetry;
eb, elongation at break; NMP, N-methyl-2-pyrrolidone; PEPA, 4-phenylethynylphthalic anhydride;
p-ODA, 2-phenyl-4,40-diaminodiphenyl ether; PI, polyimide; PMDA, pyromellitic dianhydride
or 1,2,4,5-benzenetetracarboxylic dianhydride; TGA, thermogravimetric analyses; Tg, glass
transition temperature.
The (PMDA/p-ODA/PEPA) imide oligomers have good solubility and excellent processability
for molding composites. Each cured resin was also found to have high Tg values and good eb.
aCured at 370 1C for 1 h under the pressure of 1.4 MPa.
bDetermined on powdered samples by DSC at a heating rate of 20 1C min�1 in N2.
cDetermined by rheometer at a heating rate of 5 1C min�1.
dDetermined by DMA at a heating rate of 10 1C min�1 in air.
eDetermined by TGA at a heating rate of 5 1C min�1 in air.
fAverage values of elongation at break.
gSolution stable for up to a few months.
hGelation occurred after a few days.
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Incorporation of the BAFL diamine monomer into the
PMDA/p-ODA/PEPA imide oligomers
After preparing a highly concentrated NMP solution of the PMDA/
p-ODA/PEPA imide oligomer (33 wt%, n¼ 4–10) at 150 1C, the
solution formed a gel after storage for several days at room
temperature. When the gel was heated to 150 1C for 1 h, it gradually
changed to a solution without any precipitation of solids. This
behavior is possibly due to the intermolecular interactions of the
tail-to-tail units (Figure 4c) in the oligomer chains in the NMP
solution, resulting in some molecular order that leads to the
formation of a reversible gel.

In general, the preparation of the prepreg from solution requires an
approximately 30 wt% solid solution to obtain sufficient resin content
in a single dip process. The above gelation behavior is undesirable;
therefore, it was proposed to investigate the use of a second diamine
that would provide more steric hindrance and prevent gelation from
occurring. The addition of a bulky substituent on the polymer side
chain is well known to improve solubility; therefore, we selected 9,9-
bis(4-aminophenyl)fluorene (BAFL), which contains a bulky fluorenyl
side group, as a diamine monomer to copolymerize with the PMDA/
p-ODA imide oligomer.

Table 3 shows the solubility and thermal and mechanical proper-
ties of the PI imide oligomer containing 10 mol% of BAFL. An
addition of a small amount of BAFL allowed the imide oligomer
solution to remain stable for over a few months with no sacrifice
in the melt viscosity or the Tg of the cured resin. Only a decrease
in the eb of the cured resin was observed, indicating that the
molecular mobility and flexibility derived from the ether linkage
of the p-ODA in the polymer chains was decreased concomi-
tantly with the increase in the rigid units of PMDA-BAFL-PMDA.
Increasing the amount of BAFL in the oligomers produces improved
solubility, a higher Tg and increasing melt viscosity (Supplementary
Table S1).

On the basis of these results, the PI PMDA/p-ODA(90);BAFL(10)
imide oligomer was found to have high solubility (433 wt%), storage
stability in an NMP solution and low melt viscosity (o1500 Pa � s).
Upon thermal curing, the imide oligomer exhibited both a high Tg

(4350 1C) and good mechanical properties (eb413%).

Carbon fiber-reinforced PI composites
The prepreg of the phenylethynyl-terminated PMDA/p-ODA(90);-
BAFL(10) imide oligomers was prepared by impregnating a carbon
fiber plain woven cloth with the NMP solution of the imide
oligomer.25–27 A PI/carbon fiber composite was fabricated from
the prepreg in two steps. First, the laid-up prepregs (12 ply) were
heated at 260 1C for 2 h on a hot plate under vacuum to remove
the solvent. The laminate was subsequently cured at 370 1C for 1 h
under 1.4 MPa of pressure. The resultant composite was of good
quality as determined by an ultrasonic inspection (Figure 5). No void
or cracks were observed in the composites by optical microscopy or
a c-scan. The fibers in the composite appeared to be well wet-out by
the resin.

The Tg of PI/carbon fiber composite was 356 1C, the same as that of
the neat cured resin (Table 3). The short beam shear strength of the
composite was found to be high (63 MPa), presumably due to the
excellent quality of the laminate. In the fabrication of the 12 ply
laminates, no problems were encountered with the removal of
volatiles. It is unknown whether the removal of the volatiles will be
more difficult with thicker laminates.

The detailed thermal and mechanical property measurements of
the composites prepared from the phenylethynyl-terminated (PMDA/
p-ODA; BAFL) imide oligomers are now in progress. We believe that
this PMDA/p-ODA-type imide resin possesses a variety of excellent
properties that will greatly enhance the possibilities for developing
new heat resistance composite materials.

CONCLUSIONS

A novel phenylethynyl-terminated, addition-type imide oligomer
(n¼ 1–4) with a Kapton-type backbone structure was found to have
high solubility and good processability. The imide oligomers were
successfully converted to a cured resin with a Tg 4345 1C and
excellent preliminary mechanical properties. Preliminary studies were
conducted for processing and determining the thermal and mechan-
ical properties of the carbon fiber-reinforced PMDA/p-ODA(90);-
BAFL(10) composite. The IM600 plain woven composite exhibited
excellent processability, high Tg and good mechanical properties at
high temperatures.

Table 3 Thermal and mechanical properties of (PMDA/p-

ODA(90);BAFL(10)/PEPA) imide oligomer (n¼4)

Imide oligomer Cured resina

Calculated number–average

molecular weight (Mn�103)

Solubility in

NMP (wt%)

Tg

(1C)b

Min. melt

viscosity

(Pa � s)c
Tg

(1C)d

Td5

(1C)e

eb

(%)f

2.60 433g 220 154 356 548 11.3

Abbreviations: BAFL, 9,9-bis(4-aminophenyl)fluorine; DMA, dynamic mechanical analysis;
DSC, differential scanning calorimetry; eb, elongation at break; NMP, N-methyl-2-pyrrolidone;
PEPA, 4-phenylethynylphthalic anhydride; p-ODA, 2-phenyl-4,40-diaminodiphenyl ether;
PMDA, pyromellitic dianhydride or 1,2,4,5-benzenetetracarboxylic dianhydride; Tg, glass
transition temperature.
The imide oligomer exhibited good solution stability and very low melt viscosity. The cured
resin was also found to have a high Tg and a good eb.
aCured at 370 1C for 1 h under the pressure of 1.4MPa.
bDetermined on powdered samples by DSC at a heating rate of 20 1C min�1 in N2.
cDetermined by rheometer at a heating rate of 5 1C min�1.
dDetermined by DMA at a heating rate of 10 1C min�1 in air.
eDetermined by TGA at a heating rate of 5 1C min�1 in air.
fAverage values of elongation at break.
gSolution was stable for up to a few months.

Figure 5 The polyimide/carbon fiber composite (30cm�30cm). A polyimide/

carbon fiber composite without voids was fabricated from the imide solution

prepreg.
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We believe that these excellent properties of the PMDA/p-ODA-
based addition-type aromatic PIs suggest promising possibilities for
the application to highly heat-resistant composites prepared by imide
solution prepreg techniques.
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