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A Monte Carlo study of the second virial coefficient
of semiflexible ring polymers

Daichi Ida, Daisuke Nakatomi and Takenao Yoshizaki

A Monte Carlo (MC) study was made of the second virial coefficient A2 of the ideal Kratky–Porod (KP) worm-like ring using a

model composed of infinitely thin bonds with harmonic bending energy between successive bonds. Two kinds of statistical

ensembles were generated: one composed of configurations of all kinds of knots with the Boltzmann weight, called the mixed

ensemble, and the other composed of only those of the trivial knot, called the trivial-knot ensemble. The effective volume VE
excluded to one ring by the presence of another, resulting only from a topological interaction, and also the mean-square radius

of gyration /S2S were evaluated for each ensemble. The dimensionless quantity kVE/L
2 proportional to A2 was found to be a

function only of the reduced total contour length kL, as in the case of k/S2S/L, where k�1 is the stiffness parameter of the KP

ring and L is its total contour length. The quantity kVE/L
2 first increased and then decreased after passing through a maximum

at kLC5, as kL was increased. A comparison with literature data for ring atactic polystyrene in cyclohexane at H shows that the

present MC results may qualitatively explain the behavior of the data.
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INTRODUCTION

Interaction between polymer chains, arising only from the chain
connectivity (which inhibits chains from crossing each other), is
important to understand not only the dynamical properties of con-
centrated solutions or melts but also static properties of solutions of
ring polymers.1,2 For ring polymers, this interaction is usually called a
topological interaction (TI) because it works to conserve a given link
type between a pair of ring polymers—it is a topological invariant.
Consequently, a repulsive force, in the sense of the potential of mean
force, results from the TI between unlinked ring polymers; therefore, the
second virial coefficient A2 remains positive even for the ideal rings
without excluded volume, as explicitly shown in the Monte Carlo (MC)
study made by Frank-Kamenetskii et al. using a lattice model.3,4 Their
pioneer work on A2 of rings was followed by the theoretical studies of
Iwata,5,6 des Cloizeaux7 and Tanaka,8 and by the MC study of Deguchi
and Tsurusaki9 based on the Gaussian chain model, which is valid for
very long, flexible ring polymers. We note that des Cloizeaux also
calculated A2 for the rigid ring.7 Experimentally, positive values of A2

were observed for ring atactic polystyrene (a-PS) in cyclohexane at the
Y temperature (34.5 or 35 1C) by Roovers and Toporowski,10 by Huang
et al.11 and very recently by Takano et al.12 in the range of weight-
average molecular weight Mw from 1�104 to 6�105.

The effective volume VE excluded to one ring by the presence of
another is defined from A2 by

A2 ¼ 4NAVE=M
2; ð1Þ

where NA is the Avogadro constant and M is the molecular
weight. The effective excluded volume may be considered pro-
portional to the cube of the root-mean-square radius of gyration
/S2S1/2 in both the rigid-ring and random-coil limits. Therefore,
VEpL3 and L3v in the respective limits, where L is the total contour
length of the ring and v is the exponent in the asymptotic relation
/S2S1/2

pLv in the random-coil limit. The exponent v is 1/2 for
an ensemble constituted of rings of all kinds of knots with the
Boltzmann weight and is considered B0.6 for one constituted of
rings of the trivial knot (unknotted rings).13,14 Thus, A2 is propor-
tional to M in the rigid-ring limit and to M3v�2 (M�1/2 or M�0.2) in
the random-coil limit, and must necessarily have a maximum in the
range of the crossover from the rigid ring to the random coil. The
purpose of this paper is to clarify such behavior of A2 of the ideal ring
in the crossover or, in other words, to examine the effect of chain
stiffness on A2 on the basis of the Kratky–Porod (KP) worm-like chain
model.15,16

As analytical treatment of the TI is complicated even in the
case of the Gaussian chain model,5–8 we resorted to an MC approach
using a model for semiflexible rings composed of infinitely thin bonds
with a harmonic bending energy between successive bonds. We
generated two kinds of statistical ensembles, that is, one composed
of rings of all kinds of knots with the Boltzmann weight and the other
composed of those only of the trivial knot, and compared the results
for /S2S and A2.
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MATERIALS AND METHODS

Model
The MC model used in this study was essentially the same as that used
by Frank-Kamenetskii et al.,17 that is, a ring composed of infinitely
thin n bonds of length l with a harmonic bending energy between
successive bonds. The n joints in the ring were numbered 1, 2, ?, n
from an arbitrary joint, and the ith bond vector from the ith joint to the
(i+1)th was denoted by li (i¼1, 2, ?, n�1); ln was the nth bond vector
from the nth joint to the first. The configuration of the ring could then
be specified by the set {ln}¼[l1, l2, ?, ln�1, (ln)], apart from its position
in an external Cartesian coordinate system. Note that ln is a dependent
variable for the ring. Let yi (i¼2, 3, ?, n) be the angle between li�1 and
li and y1 be the angle between ln and l1. The total potential energy U of
the ring may be written in terms of yi as follows:

UðflngÞ ¼
a
2

Xn
i¼1

y2
i ; ð2Þ

where a is the bending force constant. The MC model so defined
becomes identical with the KP ring of total contour length L in the
continuous limit n-N, l-0, and /cos yiS-1 under the conditions
nl¼L and

l
1+hcos yi

1 � hcos yi ¼ l�1; ð3Þ

where l�1 is the stiffness parameter of the KP model and /cos yS is
defined as

hcos yi ¼
Zp

0

e�ay2=2kBT cos y sin y dy=
Zp

0

e�ay2=2kBT sin y dy ð4Þ

with kB the Boltzmann constant and T the absolute temperature.17,18

Note that the MC model reduces to the freely jointed chain in the limit
of a-0.

In what follows, we set l¼1 for simplicity and carried out MC
simulations for the rings with values of a/kBT given in the first column
of Table 1. The values of /cos yS calculated from Equation (4) and
those of l�1 of the corresponding KP model calculated from Equation
(3) with l¼1 are given in the second and third columns, respectively.

MC sampling
For the initial configuration {ln}, we adopted an n-sided regular
polygon of unit side length, which is the most stable configuration,
and sequentially deformed it by the virtual motion introduced by
Deutsch.19 We let v be the unit vector along the vector distance
between a pair of joints randomly chosen under the condition that
they not be next to each other. If the ith and jth joints (ioj) were
chosen, v was along the vector sum

Pj�1
k¼i lk. As illustrated in Figure 1,

a trial configuration {l¢n} was generated by rotating the shorter part
of the ring around v by an angle f randomly chosen in the range of

[�p, p). The bond vectors li, li+1, ?, lj�1 were rotated if j�ipn/2 and
the rest otherwise. If the bond vector lk underwent the rotation, l¢k
could be given by20

l0k ¼ vv � lk+ðcos fÞðI� vvÞ � lk+ðsin fÞv�lk
� Rðv; fÞ � lk; ð5Þ

where I is the unit matrix and the rotation matrix R(v; f) is given by

Rðv; fÞ ¼ðcos fÞI+ð1 � cos fÞ
v2
x vxvy vxvz

vyvx v2
y vyvz

vzvx vzvy v2
z

0
B@

1
CA

+ sin f

0 �vz vy

vz 0 �vx

�vy vx 0

0
B@

1
CA

ð6Þ

with vx, vy, vz the Cartesian components of v in an external system.
With this rotation, l¢k was renormalized to l¢k (corr) so that |l¢k (corr)|¼1,
that is,

l0kðcorrÞ ¼ l0k=jl0kj ’ ½1 � 1
2ðjl

0
kj2 � 1Þ�l0k: ð7Þ

This was carried out to suppress roundoff errors characteristic of
computer work. (Note that |l¢k�l¢k (corr)|{1.) If the bond vector lk did
not undergo the rotation, on the other hand, we had l¢k¼lk.

Then, the adoption of the next trial configuration {l¢n} was
determined by the Metropolis method of importance sampling21 on
the basis of the total potential energies given by Equation (2) for {l¢n}
and {ln}. That is, {l¢n} was adopted as the next configuration with the
(transition) probability t({l¢n}|{ln}) defined as

tðfl0ngjflngÞ ¼ minð1; e�DU=kBTÞ ð8Þ
with DU given by

DU ¼ Uðfl0ngÞ � UðflngÞ ¼
a
2
ðy02i +y02j � y2

i � y2
j Þ; ð9Þ

where y¢i (i¼2, 3, ?, n) is the angle between l¢i�1 and l¢i and y¢1 the
angle between l¢n and l¢1. If {l¢n} was discarded, {ln} was again adopted
as the next configuration.

Through this MC algorithm, we sampled one configuration at every
Mnom (nominal) steps and Ns configurations in total after an
equilibration of 104�Mnom steps. As each MC step did not
conserve a knot type, the ensemble so obtained was composed of Ns

configurations of all kinds of knots with the Boltzmann weight. We
call this ensemble the mixed ensemble. Following the procedure of
Vologodskii et al.22 to distinguish the trivial knot from the others
using the Alexander polynomial,23 we extracted configurations of the
trivial knot from the mixed ensemble and evaluated the ratio ft.k. of
the number of the configurations to Ns. Unfortunately, however, this
procedure could not exclude all the nontrivial knots, for example,
the Kinoshita–Terasaka knot having 11 crossings.24 Nevertheless, we
accepted the values of ft.k. so evaluated, considering that the number
of residual nontrivial knots could be very small, if any existed.

Table 1 Values of /cos hS and k�1

a/kBT /cos yS l�1

0 0 1

0.3 0.1695 1.408

1 0.4406 2.575

3 0.7305 6.421

10 0.9064 20.36

30 0.9674 60.34

100 0.9901 200.3

φ

i

j

v

Figure 1 Illustration of an elementary step in MC simulations.

Second virial coefficient of semiflexible ring polymers
D Ida et al

736

Polymer Journal



To make a trivial-knot ensemble, in addition to the mixed ensemble,
Ns configurations of the trivial knot were extracted from many mixed
ensembles by the above procedure. Although this trivial-knot ensem-
ble inevitably included residual nontrivial knots, we ignored their
contribution as in the case of the evaluation of ft.k..

It should be noted here that a possible roundoff error in numerical
processes might violate the ring-closure condition,Xn

i¼1

li ¼ 0: ð10Þ

Therefore, we confirmed that the absolute value of the vector sum on
the left-hand side of Equation (10) did not exceed 10�9 for every
configuration.

All numerical work was carried out using a personal computer with
an Intel Core i7-860 CPU (Intel, Santa Clara, CA, USA). A source
program coded in C was compiled by the GNU C compiler version
4.5.0 (Free Software Foundation, Inc., Boston, MA, USA) with real
variables of double precision. For the generation of pseudorandom
numbers, the subroutine package MT19937 supplied by Matsumoto
and Nishimura25 was used instead of the subroutine RAND included
in the standard C library.

Mean-square radius of gyration
The mean-square radius of gyration /S2S, that is, the ensemble
average of the square radius of gyration S2 as a function of {ln}, could
be evaluated from

hS2i ¼ N�1
s

X
flng

1

n

Xn
i¼1

jSiðflngÞj2
" #

; ð11Þ

where the sum is taken over Ns configurations in a given ensemble and
Si is the vector distance from the center of mass of the ring to the ith
joint given by

Si ¼ ð1 � di1Þ
Xi�1

j¼1

lj �
1

n

Xn�1

j¼1

Xj
k¼1

lk ð12Þ

with dij the Kronecker delta. In what follows, /S2Smix and /S2St.k.

denote /S2S’s calculated from Equations (11) and (12) using the
mixed and trivial-knot ensembles, respectively.

Second virial coefficient
To evaluate the intermolecular potential energy resulting from the TI
between two unlinked rings, a proper method was needed to deter-
mine whether the two rings were linked (nontrivial link) or not (trivial
link). Two methods are available. One is based on the Alexander
polynomial for links of two components,26 which is more reliable but
less feasible and was adopted by Frank-Kamenetskii et al.3,4 and
Deguchi and Tsurusaki.9 The other is based on the Gauss linking
number Lk,26 which is more feasible but less reliable and was adopted
by Iwata,5,6 des Cloizeaux7 and Tanaka.8 We note that Lk of some
kinds of nontrivial links, including the so-called Whitehead link,26

vanishes as in the case of the trivial link.26 In this study, we adopted
the latter method to save computation time.

We considered a pair of rings 1 and 2 and let ripðxpÞ be the vector
position of the contour point on the ipth bond vector lip (ip¼1, 2, ?, n)
of ring p (p¼1, 2), with the contour distance from the ipth joint being
xp (0pxpo1). The vector ripðxpÞ is given by

ripðxpÞ ¼ xplip+Sip+rc:m:;p; ð13Þ

where Sip , in turn, is given by Equation (12) and rc.m.,p is the vector
position of the center of mass of ring p. The Gauss linking number Lk

for the pair of rings 1 and 2 could then be written in the form,

Lk ¼ 1

4p

Xn
i1¼1

Xn
i2¼1

Ci1i2 ; ð14Þ

where Ci1 i2 is defined by

Ci1 i2 ¼
Z1

0

Z1
0

ðli1�li2Þ � ½ri2ðx2Þ � ri1ðx1Þ�
jri2ðx2Þ � ri1ðx1Þj3

dx1dx2: ð15Þ

Integration over x1 and x2 led to27

Ci1 i2 ¼ Fða1; a2Þ+Fða1+1; a2+1Þ � Fða1+1; a2Þ
� Fða1; a2+1Þ ð16Þ

with F(x, y) given by

Fðx; yÞ ¼ arctan
xy+a2

3 cos yi1i2
a3ðx2+y2 � 2xy cos yi1 i2 +a2

3 sin2 yi1i2Þ
1=2

" #
;

ð17Þ
where yi1 i2 is the angle between li1 and li2 and a1, a2 and a3 in
Equations (16) and (17) are given by

a1 ¼� ðsin yi1 i2Þ
�2ðSi2 � Si1 +rÞ � ðli1 � li2 cos yi1 i2Þ;

a2 ¼ðsin yi1i2Þ
�2ðSi2 � Si1 +rÞ � ðli2 � li1 cos yi1 i2Þ;

a3 ¼ðsin yi1i2Þ
�2ðSi2 � Si1 +rÞ � ðli1�li2Þ ð18Þ

with r¼rc.m.,2–rc.m.,1 the vector distance between the two centers of
mass.

The potential energy U12 between rings 1 and 2 is explicitly defined,
using the McMillan–Mayer symbolism,28,29 as

U12ð1; 2Þ ¼ 0 if Lk ¼ 0
¼ 1 otherwise;

ð19Þ

and the averaged intermolecular potential (potential of mean force)
U12 (r) as a function of the distance r¼|r| between the centers of mass
of rings 1 and 2 is defined by

U12ðrÞ ¼ �kBT ln exp �U12ð1; 2Þ
kBT

� �� �
r

: ð20Þ

In Equation (20), /?Sr indicates the conditional equilibrium
average over the configurations of the two rings with r fixed using
the single-ring distribution function for each and the bending poten-
tial energy given by Equation (2). The second virial coefficient A2 may
be written in terms of U12(r) as follows,

A2 ¼ 2pNA

M2

Z1
0

1 � exp �U12ðrÞ
kBT

� �� �
r2dr: ð21Þ

In practice, exp[�U12(r)/kBT], that is, the conditional average on
the right-hand side of Equation (20), was evaluated as a function
of r for each ensemble constituted of Ns configurations. First, we
randomly chose a pair of configurations (rings 1 and 2) from the Ns

configurations and randomized their orientations in the external
coordinate system. To obtain exp[�U12(1, 2)/kBT]¼d0,Lk, we then
calculated Lk for the pair at given r from Equation (14) with Equations
(16)–(18). Finally, we determined the value of exp[�U12(r)/kBT]
to be Nt.1./Np, where Np is the total number of sample pairs
and Nt.1. is the number of the trivial links (Lk¼0) included in the
Np pairs.

With the values of exp[�U12(r)/kBT] so obtained for various
values of r, the effective volume VE could then be calculated from
Equation (1) with Equation (21) by numerical integration applying
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the trapezoidal rule formula. As in the case of /S2S, VE’s obtained for
the mixed and trivial-knot ensembles are denoted by VE,mix and VE,t.k.,
respectively.

RESULTS AND DISCUSSION

We carried out MC simulations for polymer rings with the values
a/kBT given in the first column of Table 1 and with n¼10, 20, 50, 100
and 200. Extra MC simulations were carried out for the rings with
a/kBT¼0 (freely jointed chain) and for n¼500 and 1000. To keep the
mean number of (real) configurational changes at every Mnom

(nominal) steps nearly equal to n, we set Mnom¼n for a/kBT¼0,
MnomC2n for a/kBT¼0.3 and 1, MnomC5n for a/kBT¼3 and 10, and
MnomC10n for a/kBT¼30 and 100. Five mixed and five trivial-knot
ensembles were then constructed for each case of a/kBT and n, each
constituted of 105 (¼Ns) configurations except for a/kBT¼0 and
n¼1000. For that case, each ensemble was constituted of 104 config-
urations. We note that many mixed ensembles were constructed to
extract 105 (or 104) configurations of the trivial knot from them. To
determine A2 [or exp(�U12/kBT)], 106 (¼Np) pairs of configurations
were chosen from each ensemble.

Fraction of the trivial knots
The ratio ft.k. of the number of configurations of the trivial knot
included in a given mixed ensemble to the total number Ns of
configurations in the ensemble was evaluated. The values of ft.k. and
its statistical error are given in the second column of Table 2 as the
mean and s.d., respectively, of five independent MC results for given
values of a/kBT and n.

Figure 2 shows plots of ft.k. against the logarithm of the reduced total
contour length lL, that is, the total contour length L¼n divided by the
stiffness parameter l�1. The open circles represent the MC values for
a/kBT¼0 (pip up), 0.3 (pip right-up), 1 (pip right), 3 (pip right-
down), 10 (pip down), 30 (pip left-down) and 100 (pip left).
For comparison, the MC values (dot) obtained by Moore et al.14 are
shown for rings with a/kBT¼0 in the range of n(¼lL) from 15 to
3000. We note that Moore et al.14 adopted the procedure for extracting
configurations of the trivial knot proposed by Deguchi and Tsurusaki9

using not only the Alexander polynomial but also the Vassiliev
invariants30 of degree 2 and 3. The data points for various values of
a/kBT along with those of Moore et al. seem to form a single-
composite curve, indicating that ft.k. is a function only of lL. It is
interesting to note that ft.k. is almost equal to unity up to lLC10 and
then monotonically decreases to zero with increasing lL, and finally
seems to vanish as predicted by Diao et al.31,32

The agreement of ft.k. as a function of lL between the present
MC results and those of Moore et al. indicates that the present MC
method for constructing mixed ensembles and the procedure for
extracting configurations of the trivial knot from the ensembles
works satisfactorily.

Mean-square radius of gyration
The mean-square radii of gyration /S2Smix and /S2St.k were
calculated from Equation (11) with Equation (12) for all mixed and
trivial-knot ensembles, respectively. The values of /S2Smix/n and its
statistical error are given in the third column of Table 2 as the mean
and s.d., respectively, of five independent MC results for given values
of a/kBT and n. The fifth column gives values of /S2St.k/n and its
statistical error evaluated in the same manner.

Figure 3 shows double-logarithmic plots of l/S2S/L (¼l/S2S/n)
against lL. The open and closed circles represent l/S2Smix/L and
l/S2St.k./L, respectively; the various directions of pips carry the same

meaning as those in Figure 2. The solid curve represents the theoretical
values of l/S2Smix/L for the KP ring calculated from the
following:16,18,33

lhS2imix

L
¼ lL

4p2
½1 � 0:1140lL� 0:0055258ðlLÞ2

+0:0022471ðlLÞ3 � 0:00013155ðlLÞ4 for lLp6

¼ 1

12
1 � 7

6lL
� 0:025 exp½�0:01ðlLÞ2�

� �
for lL46:

ð22Þ
The KP theory of /S2Smix is for the so-called phantom chain, and its

value becomes L2/4p2 in the rigid-ring limit and l�1L/12 in the
random-coil limit.29,34,35 All MC values of l/S2Smix/L, except those
for a/kBTp1 and np20, seem to form a single-composite curve and
to agree almost completely with the KP theory values. This is an

3210−1

0

−1

−2

−3

log �L

lo
g 

(�
〈S

2 〉 /
 L

)

Figure 3 Double-logarithmic plots of l/S2S/L against lL. The open and closed

circles represent the values of l/S2Smix/L and l/S2St.k./L, respectively, and

the solid curve represents the KP theory values.16,18,33 Various directions of

pips attached to the circles carry the same meaning as those in Figure 2.
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Figure 2 Plots of ft.k. against log lL. The open circles represent the present

MC values, with various directions of pips indicating different values of a/kBT:

pip up, 0; successive 451 rotations clockwise correspond to 0.3, 1, 3, 10, 30

and 100, respectively. The dots represent the values obtained by Moore et al.14
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indication that the present MC method for constructing mixed
ensembles works satisfactorily. The values for a/kBTp1 and np20
are somewhat dispersed because of chain discreteness. It is interesting
to see that l/S2St.k./L deviates upward gradually from l/S2Smix/L as
lL is increased from B10, where ft.k. begins to decrease from unity.
Note that the dimensions of the ring of the trivial knot ought to be
larger than those of nontrivial knots.

It is seen from Figure 3 that the intramolecular topological
constraint, which makes the ring preserve the trivial knot, works
in the same manner as the intramolecular excluded-volume effect.7,13

In light of this observation, we examined the behavior of a kind
of expansion factor defined by /S2St.k//S2Smix as a function of
lL. Figure 4 shows double-logarithmic plots of /S2St.k//S2Smix

against lL. The closed circles represent the values /S2St.k//S2Smix

Table 2 Values of ft.k., /S2S/n, and VE/n
2

n 102ft.k. (error %) /S2Smix/n (error %) 102VE,mix/n
2 (error %) /S2St.k./n (error %) 102VE,t.k./n

2 (error %)

a/kBT¼0

10 97.85 (0.1) 0.09165 (0.1) 0.5789 (0.2) 0.09211 (0.1) 0.5833 (0.4)

20 94.21 (0.1) 0.08756 (0.2) 0.5688 (0.5) 0.08865 (0.2) 0.5771 (0.3)

50 84.59 (0.1) 0.08499 (0.2) 0.4981 (0.4) 0.08786 (0.2) 0.5134 (0.4)

100 69.36 (0.1) 0.08411 (0.2) 0.4247 (0.4) 0.08915 (0.1) 0.4483 (0.4)

200 41.19 (0.3) 0.08380 (0.1) 0.3496 (0.2) 0.09219 (0.2) 0.3838 (0.2)

500 13.59 (0.0) 0.08349 (0.2) 0.2589 (0.0) 0.09826 (0.0) 0.3040 (0.0)

1000 1.84 (0.0) 0.08336 (0.2) 0.2015 (0.3) 0.1050 (0.2) 0.2534 (0.2)

a/kBT¼0.3

10 99.16 (0.0) 0.1150 (0.2) 0.8295 (0.5) 0.1152 (0.2) 0.8316 (0.5)

20 96.92 (0.1) 0.1162 (0.2) 0.8353 (0.4) 0.1171 (0.2) 0.8408 (0.4)

50 89.95 (0.1) 0.1169 (0.2) 0.7500 (0.4) 0.1197 (0.2) 0.7689 (0.4)

100 78.24 (0.2) 0.1173 (0.2) 0.6544 (0.3) 0.1227 (0.1) 0.6812 (0.3)

200 58.25 (0.2) 0.1173 (0.1) 0.5460 (0.3) 0.1266 (0.1) 0.5864 (0.3)

a/kBT¼1

10 99.93 (0.0) 0.1648 (0.1) 1.532 (0.4) 0.1648 (0.1) 1.536 (0.4)

20 99.29 (0.0) 0.1894 (0.1) 1.621 (0.3) 0.1898 (0.1) 1.623 (0.4)

50 96.02 (0.0) 0.2050 (0.2) 1.538 (0.2) 0.2071 (0.2) 1.553 (0.3)

100 89.35 (0.1) 0.2098 (0.1) 1.378 (0.4) 0.2152 (0.2) 1.411 (0.3)

200 76.01 (0.1) 0.2121 (0.1) 1.184 (0.2) 0.2228 (0.1) 1.240 (0.2)

a/kBT¼3

10 100 0.2234 (0.0) 2.866 (0.6) 0.2234 (0.0) 2.861 (0.3)

20 99.98 (0.0) 0.3425 (0.1) 3.974 (0.4) 0.3426 (0.2) 3.981 (0.6)

50 99.51 (0.0) 0.4550 (0.4) 4.194 (0.6) 0.4561 (0.3) 4.203 (0.5)

100 97.56 (0.1) 0.4955 (0.2) 4.006 (0.5) 0.4994 (0.2) 4.025 (0.4)

200 92.27 (0.1) 0.5154 (0.1) 3.628 (0.3) 0.5261 (0.1) 3.700 (0.3)

a/kBT¼10

10 100 0.2497 (0.0) 3.623 (0.4) 0.2497 (0.0) 3.629 (0.3)

20 100 0.4573 (0.0) 6.775 (0.3) 0.4574 (0.0) 6.754 (0.4)

50 99.98 (0.0) 0.9295 (0.1) 11.99 (0.6) 0.9294 (0.1) 12.01 (0.5)

100 99.91 (0.0) 1.283 (0.2) 13.42 (0.5) 1.285 (0.2) 13.43 (0.3)

200 99.19 (0.0) 1.490 (0.2) 13.25 (0.4) 1.493 (0.1) 13.30 (0.5)

a/kBT¼30

10 100 0.2577 (0.0) 3.880 (0.2) 0.2577 (0.0) 3.877 (0.5)

20 100 0.4924 (0.0) 7.753 (0.4) 0.4924 (0.0) 7.766 (0.4)

50 99.99 (0.0) 1.152 (0.1) 17.64 (0.4) 1.152 (0.1) 17.67 (0.6)

100 99.98 (0.0) 2.073 (0.0) 29.28 (0.3) 2.073 (0.1) 29.31 (0.4)

200 99.97 (0.0) 3.252 (0.2) 38.61 (0.4) 3.253 (0.2) 38.72 (0.6)

a/kBT¼100

10 100 0.2606 (0.0) 3.966 (0.3) 0.2606 (0.0) 3.976 (0.2)

20 100 0.5052 (0.0) 8.158 (0.3) 0.5052 (0.0) 8.164 (0.2)

50 100 1.233 (0.1) 19.98 (0.3) 1.233 (0.1) 19.98 (0.3)

100 99.99 (0.0) 2.392 (0.0) 37.95 (0.3) 2.392 (0.0) 37.93 (0.2)

200 99.98 (0.0) 4.503 (0.1) 67.87 (0.5) 4.503 (0.1) 68.00 (0.4)
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calculated from the MC values /S2Smix/n and /S2St.k./n given in
the third and fifth columns of Table 2; the various directions of
pips carry the same meaning as those in Figure 2. For comparison,
the MC values (dot) obtained by Moore et al.14 for rings with
a/kBT¼0 in the range of n(¼lL) from 300 to 3000 are also shown.
The data points for various values of a/kBT along with those of
Moore et al. seem to form a single-composite curve, indicating that
/S2St.k.//S2Smix is also a function only of lL. As a natural con-
sequence of the behavior of ft.k. shown in Figure 2, /S2St.k.//S2Smix

is almost equal to unity up to lLC10, then monotonically increases
with increasing lL. Although /S2St.k.//S2Smix is considered to
become proportional to Lv (vC0.2) in the random-coil limit,13,14

it is difficult to derive a definite conclusion from only the present
data for lLp103.

The agreement of /S2St.k.//S2Smix as a function of lL between the
present MC results and those of Moore et al. reconfirms the validity of
the present MC method for constructing mixed ensembles and the
procedure for extracting configurations of the trivial knot from the
ensembles.

Second virial coefficient
We first examined the behavior of the average intermolecular potential
U12 as a function of the reduced distance r¼r/S2S1/2 between the
centers of mass of rings 1 and 2; r is the distance between the centers of
mass of the two rings. For both the mixed and the trivial-knot
ensembles with given values of a/kBT and n, U12/kBT was evaluated
for various values of r. We note that the values of /S2Smix and
/S2St.k. given in Table 2 were used in the determination of r for the
mixed and trivial-knot ensembles, respectively.

Figure 5 shows plots of U12 (r)/kBT against r for pairs of rings with
the indicated values of a/kBT and n. The solid and dashed line
segments connect the values for the mixed and trivial-knot ensembles,
respectively. For comparison, we also show the values for a pair of
200-sided regular polygons of unit side length (dotted line segments),
which corresponds to the values in the limit of a/kBT-N and which
were obtained in the same manner as that for the pairs of rings with
finite a/kBT.

For rings with (a/kBT, n)¼(0, 1000), (0, 500), (0, 200) and (1, 200),
whose lL were 1000, 500, 200 and B80, respectively, U12/kBT for a
given mixed ensemble was larger than that for the corresponding
trivial-knot ensemble; their values themselves and the difference
between them become small with decreasing lL. Such behavior of
U12(r)/kBT may be considered to reflect the density of the bonds
constituting the ring around its center of mass. As for the rings with
(a/kBT, n)¼(10, 200) and (100, 200), whose lL were B10 and B1,
respectively, U12/kBT for the two ensembles become almost identical
with each other, because any configurations of nontrivial knots can
hardly exist in the mixed ensemble for lLt10, as seen from Figure 2.

It is interesting to find a dip in U12 (r)/kBT around r¼0 for the ring
with (a/kBT, n)¼(100, 200) and also for the regular polygon. The dip
may reflect the fact that the density of the bonds around the center of
mass almost vanishes to allow another ring to enter the space. Such
behavior of U12/kBT has also been found by Hirayama et al.36 for a
self-avoiding polygon and by Bohn and Heermann37 for a self-
avoiding closed path on a simple cubic lattice.

Now we proceed to achieve the purpose of this paper: to examine
the behavior of the effective volume VE or the second virial coefficient
A2 as a function of lL. We numerically calculated VE,mix and VE,t.k.

from Equation (1) with Equation (19) with the values of U12/kBT for
the mixed and trivial-knot ensembles, respectively. The values of
VE,mix/n2 and VE,t.k./n

2 are given in the fourth and sixth columns,
respectively, of Table 2, along with their statistical errors. These values
and their associated statistical error for given values of a/kBT and n are
the mean and s.d., respectively, of five independent MC results.

Figure 6 shows double-logarithmic plots of lVE/L2 (¼lVE/n2
pA2)

against lL. The open and closed circles represent lVE,mix/L2 and
lVE,t.k./L

2, respectively; the various directions of pips carry the same
meaning as those in Figure 2. The dotted straight line with unit slope
represents the theoretical values for the rigid ring calculated from7

VE ¼ L3=24p2 ðrigid ringÞ; ð23Þ

and the curve associated with the data points for lVE,mix/L2 represents the
values calculated from an interpolation formula, which is given below.

The data points for lVE,mix/L2 for various values of a/kBT seem to
form a single-composite curve, which first increases along the dotted

3210−1

0.2

0.1

0

slope 0.2

log �L

lo
g 

(〈
S

2 〉 t.
k.

/ 〈
S

2 〉 m
ix

)

Figure 4 Double-logarithmic plots of /S2St.k.//S2Smix against lL. The

closed circles represent the MC values, with various directions of pips

carrying the same meaning as those in Figure 2. The dots represent the

values obtained by Moore et al.14

43210

4

3

2

1

0

(� / kBT, n) = (0, 1000)

(0, 500)

(0, 200)

(1, 200)
(10, 200)
(100, 200)

U
12

(�
) /

 k
B
T

−

�

Figure 5 Plots of U12(r)/kBT against r for a pair of rings with the indicated

values of a/kBT and n. The solid and dashed line segments connect the

values for the mixed and trivial-knot ensembles, respectively, and the dotted

line segments connect those for a pair of 200-sided regular polygons.

Second virial coefficient of semiflexible ring polymers
D Ida et al

740

Polymer Journal



straight line in the range of lLt0.1, then deviates downward
progressively from the line with increasing lL, and finally decreases
after passing through a maximum at lLC5. Each data point for
lVE,t.k./L

2 almost completely agrees with the corresponding one for
lVE,mix/L2 in the range of lLt10, where ft.k.C1 and /S2St.k./
/S2SmixC1, and then lVE,t.k./L

2 gradually deviates upward from
lVE,mix/L2 with increasing lL. Although lVE,mix/L2 and lVE,t.k./L

2

are considered to become proportional to L�1/2 and L�0.2, respectively,
in the random-coil limit, as mentioned in the introduction, it is
difficult to confirm the validity of the exponents on the basis of the
present data for lLp103.

From the results shown in Figure 6, lVE,mix/L2 (and also lVE,t.k./L
2)

for the (continuous) KP ring without excluded volume may be
considered a function only of lL. For convenience, we constructed
an interpolation formula for lVE,mix/L2 of the KP ring based on the
MC values of VE,mix/n2 for nX100 given in the fourth column of
Table 2 and the asymptotic form (23) in the rigid-ring limit and the
asymptotic exponent �1/2 in the random-coil limit. We note that the
MC values for n¼10, 20 and 50 were not used to suppress possible
effects of the chain discreteness. The interpolation formula for
lLt103 could be given by

lVE;mix=L
2 ¼ f ðlLÞ for lLt103; ð24Þ

where

f ðLÞ ¼ L

24p2
e�0:6014L+0:5700L 1+

X4

i¼1

CiL
i=2

 !�1" #3=2

ð25Þ

with the coefficients Ci given by

C1 ¼ 0:9630; C2 ¼ �0:7345; C3 ¼ 0:4887; C4 ¼ 0:07915: ð26Þ
The interpolation formula (25) with Equations (26) was accurate
within 1%, and the solid curve in Figure 6 represents its values. An
asymptotic relation lVE,mix/L2¼0.082(lL)�1/2 in the random-coil limit
may be obtained from the formula, although we are uncertain of the
accuracy of the factor 0.082.

To illustrate the relation of VE to /S2S, we considered the
interpenetration function C defined by29

A2 ¼ 4p3=2NA
hS2i3=2

M2
C; ð27Þ

which could be calculated from

C ¼ VE

ðphS2iÞ3=2
¼ n1=2ðVE=n

2Þ
ðphS2i=nÞ3=2

ð28Þ

with the values of /S2S/n and VE/n2 given in Table 2. Figure 7 shows
plots of C against the logarithm of lL. The open and closed circles
represent the present MC values for the mixed and trivial-knot
ensembles, respectively; again, the various directions of pips carry
the same meaning as those in Figure 2. We omitted data points for
n¼10 and 20 from Figure 7 because they were dispersed because of
chain discreteness. The dotted horizontal line indicates the asymptotic
value 1/3Op in the rigid-ring limit, which was calculated from
Equation (28) with VE given by Equation (23) and with /S2S¼L2/
4p2. The curve represents values calculated from Equation (28) using
the interpolation formula for lVE,mix/L2 given by Equations (24)–(26)
and l/S2Smix/L of the KP ring given by Equations (22).

The quantity C for the mixed ensemble deviates slightly downward
from the dotted horizontal line with increasing lL for lLt5 and then
increases after passing through a minimum. The quantity C for the
trivial-knot ensemble is almost identical to that for the mixed
ensemble for lLt10, as a natural consequence of the behavior of
l/S2S/L and lVE/L2 shown in Figures 3 and 6; it is then found to
gradually deviate downward from the latter with increasing lL. Both
quantities may be considered to approach respective asymptotic values
in the random-coil limit. Unfortunately, however, we cannot deter-
mine the asymptotic values from the MC data for lLt103 but only
suppose that the value for the mixed ensemble is larger than that for
the trivial-knot ensemble, also in the random-coil limit. We note that
an asymptotic value 0.61 of C in the random-coil limit may be
temporarily estimated for the mixed ensemble from the asymptotic
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relations lVE,mix/L2¼0.082(lL)�1/2 and l/S2Smix/L¼1/12 mentioned
above.

For comparison, Figure 7 shows literature MC data for trivial-knot
ensembles (closed triangle) obtained by integrating over r of the
interpolation formulas for U12(r)/kBT constructed by Deguchi and
Tsurusaki9 on the basis of their MC values for rings of the trivial knot
composed of n Gaussian springs (n¼50, 100, 200 and 500). We note
that they adopted more reliable criteria to distinguish knot and link
types than ours, that is, the Alexander polynomial and the Vassiliev
invariants of degree 2 and 3 used to select trivial-knot rings and the
Alexander polynomial for links of two components used to select
trivial-link pairs of rings. The present MC values agree with theirs
within numerical error, indicating that the criteria adopted in this
study work satisfactorily.

Comparison with experiment
Finally, we made a comparison of the present MC results with the
experimental ones mentioned in the introduction, where f (lL) given
by Equation (25) with Equation (26) as a function of lL is converted
into A2 determined as a function of Mw by

log A2 ¼ log½f ðlLÞ�+ log
4NAl

�1

M2
L

� 	
; ð29Þ

log Mw ¼ logðlLÞ+ logðl�1MLÞ; ð30Þ

where ML is the shift factor16 defined as the molecular weight per unit
contour length of the corresponding KP ring.

Figure 8 shows double-logarithmic plots of A2 (in cm3 mol g�2)
against Mw. The open circles, squares and triangles represent the
experimental values for ring a-PS in cyclohexane at Y determined
from light scattering (LS) measurements by Roovers and Toporowski
(at 34.5 1C),10 by Huang et al. (at 35 1C)11 and by Takano et al.
(at 34.5 1C),12 respectively. The curve represents MC values of A2

calculated from Equation (29) with Equations (25) and (26), with the
KP parameter values l�1¼16.8 Å and ML¼35.8 Å�1 determined pre-
viously from data for /S2S for linear a-PS in cyclohexane at 34.5 1C

(Y).38 The experimental values obtained by Roovers and Toporowski
and by Takano et al. agree fairly well with each other (within
experimental error), as they stand, but the values obtained by
Huang et al. are somewhat smaller. In any case, the experimental
values are definitely smaller than the MC values, and, therefore, we
tried to guess possible causes for the difference.

We first measured the effect of contamination by linear residues in
the ring a-PS samples synthesized by Roovers and Toporowski,10 who
remarked that the ingredients of the sample with Mw¼5.50�105, for
which A2 was not determined, were 76 wt% ring polymer with
molecular weight Mring¼6.05�105, 7 wt% residual linear parent
polymer with molecular weight Mring, and 17 wt% residual linear
polymer with molecular weight Mring/2. Applying the LS theory for a
solution of heterogeneous polymers,29,39,40 with the proper assump-
tion that intermolecular interaction vanishes between the linear chains
and also between the linear and ring chains, Mring and the second
virial coefficient A2,ring for a solution only of ring a-PS may be related
to observed Mw and A2 by Mring¼1.09Mw and A2,ring¼1.45A2,
respectively (see Appendix). If the ingredients of all the samples
shown in Figure 8 are assumed to be the same as those mentioned
above, the data points represented by the open circles in Figure 8 may
be replaced by the closed circles. For the samples synthesized by
Takano et al.,12 the weight fraction w of residual linear polymer having
the same Mw as that of the corresponding ring polymer was evaluated
to be 1.0, 3.4, 1.0 and 2.0 wt% for samples with Mw¼1.6�104,
4.17�104, 1.09�105 and 5.73�105, respectively. For the solutions of
such samples, A2,ring may be related to observed A2 by A2,ring¼w�2 A2,
and Mw remains unchanged (see Appendix). The closed triangles in
Figure 8 represent the corrected values. As for the samples synthesized
by Huang et al.,11 no information was given about residual linear
polymers. As seen from Figure 8, the corrected data points seem rather
dispersed. Some experimental problems remain to be resolved.

Theoretically, on the other hand, it should be remarked that the
present MC model takes account of only the TI between a pair of rings
but not of the interaction between the segments constituting the real
ring polymers (that is, the ordinary excluded-volume effect). The
residual contribution of three-segment interactions41 on A2 remains
even at Y, where the effective binary-cluster integral and, therefore, A2

for linear polymer with very large M vanish;29 A2 remains slightly
negative (up to order 10�5 cm3 mol g–2) at Y if M is not very
large.38,42,43 The residual contribution must, to some extent, decrease
the theoretical value of A2. Furthermore, there is no information
about knot types of ring polymers included in a given test sample
(that is, about whether or not the configurations of the ring polymers
in the sample are of all kinds of knots with the Boltzmann weight). If
rather complicated knots happen to be preferred, /S2S and, therefore,
A2 may become smaller than the respective values for the mixed
ensemble.

Apart from the unresolved discrepancy in the A2 value of order
10�5 cm3 mol g–2, the present MC results in Figure 8 combined with
the values of the KP model parameters previously determined may
qualitatively explain the behavior of the experimental data. The most
important implication of Figures 6–8 is that the ring a-PS in the range
of 1�104tMwt6�105 is still far from the random-coil limit.

CONCLUSION

The second virial coefficient A2 of the KP ring without excluded
volume, resulting only from the TI, was evaluated based on the present
MC results; also, its behavior was examined as a function of
the reduced total contour length lL in the range of the crossover
from the rigid ring to the random coil. The reduced quantity lVE/L2
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proportional to A2 was shown to be a function only of lL, which first
increases along the values of the rigid ring (pL) and then decreases
after passing through a maximum at lLC5 as lL is increased.
Although lVE/L2 was considered to become proportional to (lL)�1/

2 for a mixed ensemble of configurations of all kinds of knots with the
Boltzmann weight and to (lL)�0.2 for the trivial-knot ensemble, in the
random-coil limit of lL-N, the range of lLp103 (where MC
simulations were actually carried out) does not yet enter in the limit
and cannot directly confirm the asymptotic relations. The present
results with the values of the KP model parameters determined
previously allow for a qualitative explanation of the behavior of the
available literature data for ring a-PS in cyclohexane at Y, and clearly
show that the range of Mwt6�105 (where the experiments were
actually carried out) is still far from the random-coil limit. Quantita-
tively, however, there is a discrepancy in the A2 value of order
10�5 cm3 mol g–2, causes of which seem to lie on both the theoretical
and the experimental sides.
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APPENDIX

Effects of residual linear polymers on A2 at H
Consider a solution of heterogeneous polymers in a single solvent, and
let Mi be the molecular weight of polymer species i (i¼1, 2, ?, r), wi

be its weight fraction in the whole polymer, and c be the whole
concentration. The excess scattering Ry determined from LS measure-
ments for the solution may then be expanded in powers of c as
follows,29,39,40

Kc=Ry ¼ M�1
w +2A2;LSc+ � � � ; ðA:1Þ

where K is the optical constant and A2,LS is the second virial coefficient
determined from LS defined by

A2; LS ¼ M�2
w

Xr
i¼1

Xr
j¼1

MiMjAijwiwj: ðA:2Þ

In Equation (A.2), the coefficient Aij (¼Aij) may be related to the
effective volume excluded to a polymer chain of species i by the
presence of another of species j and is defined by

Aij ¼ � NA

2VMiMj

Z
½F2ði; jÞ � F1ðiÞF1ðjÞ�dði; jÞ; ðA:3Þ

where F2(i, j) is the two-body distribution function of a pair of
polymer chains of species i and j, and F1(i) is the one-body distribu-
tion function of a polymer chain of species i. We note that Aii is
identical with A2,LS for a solution only of polymer species i. We also
note that Mw is explicitly given by

Mw ¼
Xr
i¼1

wiMi: ðA:4Þ
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For a solution of a ring polymer (species 1) and linear polymers
(species 2, 3, ?) composed of identical repeat units, all the coeffi-
cients Aij except A11¼A2,ring, vanish at Y for the solution of only the
linear polymers. For the solution of the sample synthesized by Roovers
and Toporowski,10 we set r¼3, M1¼M2¼Mring, M3¼Mring/2, w1¼0.76,

w2¼0.07 and w3¼0.17 in Equations (A.2) and (A.4) to obtain
A2,ring¼1.45A2,LS and Mring¼1.09Mw, respectively. As for the solutions
of the samples synthesized by Takano et al.,12 we set r¼2,
M1¼M2¼Mring, w1¼w and w2¼1–w in Equations (A.2) and (A.4)
to obtain A2,ring¼w�2A2,ring and Mring¼Mw, respectively.
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