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The kinetic crystallization model of A vrami is the 
generally accepted starting point for the analysis of 
isothermal nucleation and crystallization of poly­
mers.1 - 3 It will be shown in this communication that, 
in the case of non-isothermal crystallization experiments 
performed with constant heating or cooling rates and 
analyzed by using differential scanning calorimetry 
(DSC), even an apparent m-order reaction model, being 
defined for every real, positive reaction-order m, is 
appropriate to describe the corresponding crystalliza­
tion curves in the vicinity of the inflexion points. The 
latter approach will be shown to be approximately 
equivalent to the isokinetic nucleation and growth 
model of Nakamura4 as well as to the non-isothermal 
crystallization kinetics theory applied to DSC-curves of 
Ozawa. 5 The apparent m-order reaction model is given 
by the following equation, 6 if constant heating or cooling 
rates are maintained during the DSC-experiments: 

aa(T) Ko (-ER) --=-exp -- (1-a(T)r 
aT q RT 

(1) 

k,(T)=K0exp( ~~R) (2) 

aka(T) =k (T)(__!i_) 
aT " RT2 

(3) 

whereby a(T) represents the conversion factor at the 
absolute temperature T (varying from O to 1), K 0 the 
frequency factor, R the gas constant, ER the activation 
energy, q the heating or cooling rate, k,(T) the tem­
perature-dependent rate constant and m the apparent 
reaction-order. The inflexion point of the function a(T) 
is denoted by a(Tin). It is found by solving the equa­
tion 

a2a(T) I =0 
aT2 T=T,n 

(4) 

This has already been done in a previous publication. 6 

The following result has been obtained: 

(5) 

In deriving eq 5 some approaches have been made 
assuming that the investigated chemical reactions, cur­
ing reactions, phase transformations or crystallization 
processes occur over a relatively narrow temperature 
range around Tin in comparison with the absolute 
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temperature T. This assumption is justified in most 
practical cases. Thus, a( Tin) has been found to be ap­
proximately independent of the temperature, the tem­
perature-dependent rate constant and the heating (or 
cooling) rate q. a(Tin) is only dependent on the apparent 
reaction-order m. Because m is approximately in­
dependent of q, if an inflexion point exists, eq 5 is valid 
for a wide range of q-values, although not for q = 0. 6 On 
the other side, the isothermal crystallization model of 
A vrami, being based on the nucleation and growth 
characteristics of crystalline phases, also shows an 
inflexion point for n > 1 as well as for the formal cases 
with n < 0. The three-parameter Avrami equation func­
tion, 7 •8 being the result of the isothermal nucleation 
and growth theory, is given by 

8(t)= 1-exp[ -k(t-r)"] (6) 

whereby 8(t) is the relative crystallinity at time t, k the 
crystallization rate constant containing the nucleation 
and growth rates, r the induction period and n the Avrami 
index. Moreover, the value of B(tin) at the inflexion point 
is given by 7 

B(tin)= I-exp[ (1 :n)] (7) 

If a(Tin) is formally set equal to 8(tin), the following 
relation between the Avrami index n and the apparent 
reaction-order m is found 6 : 

1 
n;:::;-------

ln[m11<1-ml] + I (8) 

Equation 8 implies that, with the exception of the 
singularity at m = 1, every real, positive value of an 
apparent reaction-order m corresponds exactly to one 
real value of n, being larger than one or smaller than 
zero. 6 Thus, Avrami's microscopic, isothermal crystalli­
zation model of nucleation and growth is on the mac­
roscopic scale, with respect to the crystallization 
process in the vicinity of the inflexion point, nearly 
equivalent to an apparent, non-isothermal m-order 
reaction model; however, the formal reaction-order m 
must be defined for every positive, real value. 6 Thus, the 
reaction-order m can also be considered as an atomic 
parameter, which determines the dimensionality of the 
growing solid phase-domains of any chemical reaction 
during the time-period characterized by the maximum 
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reaction rate. Besides, the inflexion point region of the 
Avramic curve denotes the period of maximum reac­
tion rate. Moreover, according to eq 8, m is related to 
the dimensionality of the growing domains in a highly 
non-linear manner. 

On the basis of isokinetic conditions (identical time­
dependence of nucleation rate and growth rate), the ne­
glection of induction periods and the assumption that 
the number of activated nuclei is constant, Nakamura et 
al. 4 developed the following equation from the A vrami 
theory 1 - 3 : 

fJ(t)= I-exp[ -(t K(T)dr)"] (9) 

In the case of a constant cooling or heating rate q, eq 9 
can be reformulated as a function of T: 

fJ(T)=l-exp[-+.(Lr K(T)dr)"] (10) 

whereby n represents the Avrami index obtained from 
isothermal crystallization experiments, and K(T) denotes 
the non-isothermal crystallization rate constant. K(T) is 
related to the isothermal crystallization rate constant 
k(T) by4 

K(T) = [k(T)] 11" (11) 

Differentiation and rearrangement of eq 9 provide the 
differential form of the isokinetic Nakamura equation 9: 

afJ(t) =nK(T)(l -0)[ -ln(l -fJ)]<"- 1l/n (12) 
at 

In the case of constant cooling or heating rates q, eq 12 
can be reformulated as follows: 

afJ(T) =_'!__ K(T)(I-0)[ -ln(l -fJ)J"-l)/n (13) 
ar q 

Another expansion of the A vrami theory to non­
isothermal experiments, being based on the assumption 
of a Poisson probability distribution of the crystalliza­
tion events, but neglecting induction periods and being 
restricted to experiments with constant heating or cooling 
rates, has been suggested by Ozawa. 5 The non-isothermal 
Ozawa equation function is given by 

fJ(T)= I -exp[ -::T)] (14) 

whereby x(T) represents the heating or cooling function. 
Besides, the neglection of the induction periods r is 
usually not a critical point, if merely non-isothermal 
crystallization experiments are studied. In the case of 
constant cooling or heating rates, there exists the fol­
lowing relation between the Ozawa and Nakamura 
equations: 

x(T)=[ f: K(T)dT J (15) 

If the modified Nakamura eq 13 is applied and if it is 
assumed that the absolute value of the first derivative 
I 8k/8TI of the isothermal crystallization rate constant k, 
being related to eq 6, is merely of the same magnitude 
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in the vicinity of the isothermal inflexion point like 8ka/ a T 
given by eq 3, eq 7 and 8 may also be applied to the 
case of non-isothermal crystallization experiments per­
formed with constant heating or cooling rates q. More­
over, since k is also a kind of reaction rate like k, in the 
case of cold-crystallization, and since the value of the 
first derivative of the isothermal crystallization rate con­
stant 8k/8T is, in the case of melt-crystallization, ap­
proximately equivalent to the negative value of the 
first derivative of the isothermal crystallization rate 
constant k received by performing cold-crystallization 
experiments with the corresponding q-rates, 6 the as­
sumption stated above is reasonable at least for experi­
mentally relevant values of n. 10•11 Thus, every continu­
ous, non-isothermal crystallization curve fJ(T), obtained 
by applying a constant rate q and showing one sig­
nificant inflexion point with a distinct slope 80(T)/ 
8Tlr=r,n, can be approached in the vicinity of the inflex­
ion points by an apparent m-order reaction function of 
the type given by eq 1, whereby m is calculated by eq 
7 and 8, and the temperature-dependent rate constant 
k, is obtained by fitting 8oc(T)/8Tlr=T,n to the experi­
mental slope 8fJ(T)/8Tlr=r,n· Since fJ(ti 0 ) is approx­
imately independent of q, fJ(ti 0 ) can be simply set 
equal to fJ(Ti 0 ). Therefore, Avrami's isothermal 1 - 3 

model and Nakamura's and Ozawa's non-isother­
mal crystallization models of nucleation and growth4 •5 

are, on the macroscopic scale and with respect to the 
crystallization process in the vicinity of the inflexion 
point, nearly equivalent to the non-isothermal m-order 
reaction model and vice versa. However, this equivalence 
requires that the formal reaction-order m is defined for 
any positive, real value, and that the corresponding 
Avrami index n is larger than one or smaller than zero. 
As a matter of fact, n < 0 in the Avrami equation charac­
terizes a kind of dissolution process of a fully crystal­
lized material, whereas n > 0 defines the dimensionality 
of the growing crystallites starting from a melt or a 
glassy state. 

If experiments with constant cooling or heating rates 
are considered, eq 7 and 13 can be combined providing 
an expression for K(T; 0 ): 

= CJ__ [(~)<" -1 l/n exp (__l_-=--'1__)]- 1 80( T) I 
n n n 8T T=T,n 

(16) 

Furthermore, a comparison of eq 7 and 9 provides: 

It,n ( n-1 )1/n 
K(T)dr= --

o n 
(17) 

Finally, the combination of eq 7, 14, and 15 leads to the 
heating (or cooling) function of the Ozawa equation at 
the inflexion point: 

( J T,n )" ( n I ) x(Ti0 )= 
0 

K(T)dT = --~~ q" (18) 

By performing DSC-measurements with varying q, the 
temperature Tin can also be changed considerably thus 
providing the basis for the determination of the 
temperature dependent functions K(T) and x(T). Chan 
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Table I. DSC-data obtained by non-isothermal cold-crystallization of PET9 and evaluated 
by the inflexion point method 

Scan o0(Ti.) 
rate q Tin oT Apparent 

K(Ti 0 ) k(Ti.) x(Ti.) 
0(Tin) Avrami 

reaction-order 

C~) 
oc 

C~) 
index n (+) (~) c~·) m 

0.042 0.45 131 0.079 2.4 2.65 3.34xl0- 3 l.14xl0-6 2.90 X 10- 4 

0.083 0.45 138 0.093 2.4 2.65 7.89 X 10- 3 8.98 X 10- 6 J.48 X 10- 3 

0.167 0.45 148 0.112 2.4 2.65 J.9J X 10- 2 7.51 X 10-s 7.95 X 10- 3 

0.333 0.45 162 0.168 2.4 2.65 5.72 X J0- 2 1.04xl0- 3 4.17 X 10- 2 

Table II. DSC-data obtained by non-isothermal melt-crystallization of PET9 and evaluated 
by the inflexion point method 

Scan o0(Ti0 ) 

rate q Tin oT 
0(Ti0 ) Avrami 

C~) 
oc 

C~) 
index n 

0.042 0.45 206 0.087 2.4 
0.083 0.45 198 0.114 2.4 
0.167 0.45 189 0.136 2.4 
0.333 0.45 177 0.189 2.4 

and Isayev9 have reported non-isothermal cold- and 
melt-crystallization data of Polyethylene Terephthalate 
(PET) 7352 resin manufactured by Eastman Chemical 
Company. DSC-experiments with constant heating and 
cooling rates q have been performed. Their data have 
been analyzed graphically and with the help of eq 7, 8, 
11, 16, and 18 using the inflexion point method presented 
above. The results of these evaluations are tabulated in 
Tables I and II. It is observed that 0(Tin) is only dependent 
on n, i.e., independent of heating and cooling rates q, as 
it is expected following the theory presented in the 
previous sections. Moreover, every experimental, non­
isothermal crystallization curve 0(T) shows only one 
inflexion point independent of the cooling or heating rate 
q,9 facilitating the application of the theory based on 
apparent m-order reaction functions of the type given 
by eq 1. The highest precision in determining the A vrami 
index n graphically is achieved for small slopes 
80(T)/8Tlr=T,n• i.e., a low Tin for melt crystallization 
and a high Tin for cold-crystallization. Small slopes are 
technically accomplished by performing DSC-measure­
ments with relatively high cooling or heating rates q.9 

Then-values, which have been evaluated graphically with 
the inflexion-point method, are equal for cold- and 
melt-crystallization (n 2.4). 6 •9 The isokinetic approach 
of Nakamura et al. 4 is experimentally clearly supported 
by the results displayed in Tables I and II, since a 
approximately symmetrical distribution of k(Tin) is ob­
tained for cold- resp. melt-crystallization with respect 
to the temperature-mark at about l 70°C. 6 Moreover, 
the results for k(Tin) and x(Tin) are in qualitative 
agreement with data reported elsewhere for isothermal 
and non-isothermal melt-crystallization of PET. 12•13 

It is concluded that the kinetics of polymer crys­
tallizations, being characterized by a single A vrami 
index n, can be described in the vicinity of the inflexion 
point as well with a nucleation and crystal-growth model 
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Apparent 
K(Ti0 ) k(Ti.) x(Ti.) 

reaction-order 

(+) c.) c~·) m 

2.65 3.74xl0- 3 J.49 X 10- 6 2.90x 10- 4 

2.65 9.67 X 10- 3 1.46x 10-s J.48 X 10- 3 

2.65 2.32 X 10- 2 J.20 X J0- 4 7.95 X 10- 3 

2.65 6.44xl0- 2 J.38 X 10- 3 4.17 X 10- 2 

as, formally, with an apparent m-order reaction model. 
However, this is only possible, if the corresponding 
A vrami index n is larger than one or smaller than zero. 
On the other side, any type of chemical process, whose 
kinetics can be described by an apparent m-order reaction 
equation of the type given by eq 1, can also be interpreted 
in terms of the Nakamura4 or Ozawa5 theory in the 
vicinity of the inflexion points. However, the crystallites 
might, sometimes, be imaginary belonging to virtual 
spaces of dimensions d > 3 or d < 0, depending on the 
value of the A vrami index n. 5 The A vrami index n is 
non-ambiguously related to the dimension of the grow­
ing crystallites. Nevertheless, the exact relation is also 
influenced by the type of growth control (diffusion- or 
interface-controlled) and by the type of nucleation (in­
stantaneous nucleation or constant nucleation rate), 5 •14 

but, in any case, d- 1.5 :s; n :s; d + I is valid. 14 Thus, 
according to eq 8, d> 3 can result easily for apparent 
reaction orders I < m < 2, whereas d < 0 are possible 
values for O < m < I. 
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