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ABSTRACT: In the present paper, considering oriented polymers interacting with a background 
tangent field u, the Flory exponent vis self-consistently calculated to be v=3/(d+2) for d:5,4 and 
v = I /2 for d;:,: 4 using the renormalization theory for turbulent transport. The results of this paper 
agree with that of Kamien [J. Phys. (Paris) I, 3, 1663 (1993)] by the dynamical renormalization
group method. 
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The problem of understanding the con
formation of polymers is of both fundamental 
and practical importance. Flory1 predicted 
the wandering exponent v defined by (I r(L)
r(O) 12)- L 2 v with the dimensional analysis. 
From the point of view that the polymer acts 
as a random walk in random environment, the 
Flory exponent can be interpreted as the 
exponent determined the long time behavior 
of the random walk. 2 Considering oriented 
polymers interacting with a background tan
gent field u, the Boltzmann weight Zu is 

Jr(s)=r 

Zu=N [dr] 
r(0)=0 

[ 1 1· ( dr(s') ) 2
] x exp -- ds' ---u(r(s'), s') 

4D O ds' 
(1) 

in which N is the normalization constant, D is 
the diffusion constant and the tangent field 
u(r, s) is a function of both space and the 
monomer labels. The partition function Z(r, s) 
is 

Z(r, s) = f [du]Zu(u, s)P[u] 

It is easy to find out that the probability 
distribution for r is just 

P(r, s) = Z(r, s) / f drZ(r, s) 

Viewing the Boltzmann weight Zu as a 
quantum mechanical propagate in imaginary 
time, it can be shown that the Fokker-Planck 
equation for Zu is just the advection-diffusion 
equation if the polymers have no ends. 3 By 
the dynamical renormalization-group (RNG) 
analysis of the equation, Kamien has self
consistently calculated the wandering ex
ponent v=3/(d+2) for d~4 and v=l/2 for 
d?:. 4, which is exactly the Flory results. 

The renormalization theory for eddy diffu
sivity in turbulent transport has been develop
ed by Avellaneda and Majda.4 - 7 For the two 
dimensional anisotropic stratified flows, they 
have derived an exact represent formulas for 
the solution of the advection-diffusion equation 
through Fourier analysis and the Feynman
Kac formula. 4 •5 It has been established that 
the renormalization problem for turbulent 
transport by isotropic homogeneous random 
fields in d-space dimension has exact the same 
phase diagram as that of the 2D anisotropic 
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stratified flows. 7 It is interesting to point out 
that the rigorous renormalization theory may 
provide an important nontrivial test problem 
for the capability of the RNG and renormalized 
perturbation theory method. The dynamical 
RNG analysis in an approximate method, 
which is to mimic the Wilson's first 0 order £

expansion from critical phenomena to predict 
the anomalous scaling exponents. The renor
malization theory for turbulent transport is an 
exact mathematical method based upon the 
Faurier analysis and Feynman-Kac formula. 
Comparing with the results of the exact re
normalization theory, Avellaneda and Majda6 

have shown that the dynamical RNG analy
sis can predict the correct scaling exponents 
in some cases and in other cases it fails. 

In this paper, with the renormalization the
ory, the Flory exponent is calculated and the 
same results as that of Kamien are obtained. 
It can be shown that the renormalization theory 
is useful for understanding the conformation 
of polymers. 

MODEL AND ANALYSIS 

If the polymers have no ends, the Fokker

Planck equation for Zu is3 

az (r, s) 
u +u(r, s)·VZu(r, s)=DV2Zu(r, s) (2) 
as 

where the Gaussian random field u is specified 
by the two-point correlation: 

, ')) 1 Ao ( ) (u;(k, w)u;(k, w = d/ 2 Pii k 
(2n) a0 

x k 2 -d- ,-a<P(___())_)b(k + k')b(w + w') (3) 
GoKa 

in which k is the wave number which is the 
Fourier conjugate of r, d is the dimension of 
space, Ao, a0 , l, and a are constants, and Pu(k) 
and </J(x) are given by 

k-k- 1 
Pu(k)=bii- ~/ , </J(x) n(l +x2 ) 
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Table I. The five regions in the(£, a) plane with different 
behavior for the renormalization theory 

Scaling 
Region Regime for £ and a exponents z 

for time 

I £<max (0, 2-a) 2 
II 2-a<£:c:;4-2a 4-£-0( 
III 4-2a:c:;£<4 for a:c:;l 2-E/2 

and 2<E<4 for a?: I 
IV 4- 2a :c:; E < 2 for I :c:; a< 2 2a/(H2a-2) 
V 0<E<2 and a?:2 2/(1 +E/2) 

Avellaneda and Majda4 - 7 have studied the 
problem of turbulent transport described by 
the eq 2 and 3. They have rigorously analyzed 
the renormalization problem for 2D aniso
tropic stratified flows with the statistics of the 
form u(x, t) = [u(x2 , t), OJ with x = (x1 , x2 ). 

From the view of the renormalization theory, 
l and a should satisfied l < 4 and a> 0. The 
values of the scaling exponent z of time varying 
in the ranges - oo < £ < 4 and a> 0 is shown in 
the phase diagram, which involves five regions 
with different scaling exponent z of time (see 
Table I). Avellaneda and Majda have studied 
the problem of turbulent transport by isotopic 
homogeneous random fields in d-dimension 
with the regime O <a< l of the phase diagram. 
In the present work, we utilize the phase 
diagram to calculate the Flory exponent. 

In the renormalization-group analysis of the 
eq 2 and 3, Kamien choose 

l=A+2-d, a=A 

so that 

b- · -k-k-/k2 

(u;(k, w)u/k', w')) = '1 
2 ' 1 

2 ,1 

Aw +Bk 

x b(k+k')b(w+w') 

(4) 

(5) 

Considering that the polymers acts as the 
random walk, there is the scaling relation for 
the position2 : 

(lr(L)-r(0)1 2)~L2 /z (6) 
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Calculating Flory Exponent by Renormalization 

In order to obtain the self-consistent results, 
the scaling exponent z for time should satisfy3 

z=A (7) 

In the present work, we will evaluate the 
exponent z and LI with the help of the phase 
diagram and eq 4 and 7. The detail analysis is 
given as follows: 

(i) If the parameters (£, IX) are located in 
region I (£<max (0, 2-IX)), in which the mean 
field behavior occurs, the scaling exponent z is 

z=2 (8) 

With the constraints of the eq 4 and 7, we have 

d+2 
z=A= --

3 
(15) 

From the discussion (ii), we have the conse
quence that the parameters (£, IX) have to be 
located on the boundary between the regions 
II, III, and IV for d= 1 under the constraints 
of the eq 4 and 7. 

(iv) If the parameters (£, IX) are located in 
region IV (4-21X<£<2 for 1 <z<2), the 
scaling exponent z satisfies 

21X 
z=----

£+21X-2 
(16) 

€=4-d, IX=2 (9) With the constraints of the eq 4 and 7, we have 

From eq 9, it is easy to see that the parameters 
(£, IX) are in region I only if 

d~4 (10) 

(ii) If the parameters (£, IX) are located in 
region II (2- IX< c 4- IX), the scaling exponent 
z satisfies 

z=4-£-IX (11) 

With the constraints of the eq 4 and 7, we have 

8-2d d+2 
€= --- IX=--

3 ' 3 
(12) 

That is to say 

d+2 
z=A=--

3 
(13) 

From eq 12 we can find out that the parameters 
(£, IX) have to be located on the boundary line 
£+21X=4 for d~4. 

(iii) If the parameters (£, IX) are located in 
region III (4-21X~£<4 for 2<1X and 2<£<4 
for IX~ 2), the scaling exponent z satisfies 

l 
z=2--

2 
(14) 

With the constraints of the eq 4 and 7, we 
have 
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8-2d 
l=---

3 ' 

d+2 
IX=Ll=--

3 
(17) 

From eq 17, we have the consequence that the 
parameters (£, IX) have to be located on the 
boundary between the regions II and IV for 
d~4 under the constraints of the eq 4 and 7. 

(v) If the parameters (£, IX) are locat.ed in 
region V (0 < c < 2 and IX~ 2), the scaling 
exponent z satisfies 

z 
2 

(18) 

With the constraints of the eq 4 and 7, £ has 
to satisfy the relation: 

c<O (19) 

So it is impossible that the parameters (£, IX) 
are located in region V under the constrainst 
of the eq 4 and 7. 

From the above discussions, we can find out 
that z= A= (d+ 2)/3 for d~4 and z= A= 2 for 
d~ 4, and d =de= 4 is the critical dimension, 
which has recently been obtained using the 
dynamical renormalization-group method by 
Kamien. 3 From eq 7, we can calculated the 
Flory exponent v: v = 3/(d + 2) for d < 4, and 
v = l /2 for d~ 4, which is exactly the Flory's 
result. 
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CONCLUSION 

In this paper, we utilize the renormalization 
theory to obtain the same results as that of 
Kamien, which will strengthen the reliability 
of his work. It is very interesting to find out 
that in the case of ds4 the parameters (t, a) 
have to be located on the line f + 2a = 4, which 
is the boundary between the regions II, III, and 
IV. In the problem for turbulence, the Kolmo
grov spectrum also sits at this boundary line 
with the values f = 8/3, a= 2/3. Avellaneda 
and Mijda4 •6 •7 have shown that the boundary 
line f + 2a = 4 has some remarkable crossover 
properties. These properties might shed light 
on the problem why the RNG method and 
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renormalization theory give the same results 
for calculating the Flory exponent. 
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