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ABSTRACT: Lebwohl-Lasher nematogenic model and Flory-Huggins theory of mixtures have 
been combined to describe the phase equilibria in mixtures of thermotropic small molecular liquid 
crystals and flexible polymers. Monte Carlo simulations on the same model have also been carried 
out in order to confirm the theoretical predictions. A comparison between theory and Monte Carlo 
simulation gives very good agreement. The findings include a widening of the nematic (N)/isotropic 
(/) two phase region with increasing polymer chain length and the isotropic force between polymer 
subunit and nematogen, exclusion of the polymer coils from the nematic phase and the appearance 
of an// /biphasic region when the isotropic interaction exceeds the critical Flory-Huggins interaction 
parameter Xe· A comparison with a real experimental system is also made and the agreement is 
quite good considering the simplicity of the theoretical model. A discrepancy between theory and 
experiment is imputed to the existence of an anisotropic interaction between polymer subunit and 
nematogen according to the existing 2H NMR results, which has not been taken into account 
in the present stage of theoretical approach. All of these findings are in accord with the present 
model and lend support to the general validity of Flory-Huggins treatment of mixtures and the 
Lebwohl-Lasher model for the thermotropic nematic behavior. 

KEY WORDS Liquid Crystal / Flexible Polymer / Statistical Thermo-
dynamics / Phase Equilibrium / Lattice Model / Monte Carlo Simulation / 

Thin films composed of small molecular 
liquid crystalline micro-droplets dispersed in 
solid polymeric matrices are promising mate
rial for electro-optic applications, including 
information displays and privacy windows_ 1- 4 

These materials are formed by incorporation 
of small molecular liquid crystals in a cross
linked epoxy binder or in a UV cured polymer 
matrix. 4 - 6 This kind of polymer dispersed 
liquid crystalline (PDLC) material is also 
formed using thermoplastics which offer a great 
variety of usable polymers, methods of forming 
the PDLC materials, and techniques of forming 
films. In this case, one wants to know the 
boundaries of various phases, isotropic and 
nematic, and their transitions depend on the 
properties of the polymers and small molecular 

liquid crystals, such as the polymerization 
indices of polymer and the interaction between 
polymer and liquid crystalline molecules, etc. 
Therefore, it stimulates many theoretical and 
experimental studies on the mixtures of 
thermotropic small molecular liquid crystals 
and polymers. 7 - 9 The present work is also 
directly motivated by the technical importance 
of this understanding. 

Many statistical theories of the nematic 
phase have been presented. Among the best 
known are those of Onsager, 10 Maier and 
Saupe, 11 •12 and Flory. 13 The Onsager treat
ment has proven successful in the description 
of rigid molecules with high aspect ratio which 
display lyotropic behavior, while the Maier
Saupe treatment has found applications to 
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Figure 1. The rod with an angle of inclination from the 
local domain axis 0 is represented as discretized steps in 
order to fit into the lattice in Flory's approximation. 

molecules with lower aspect ratio displaying 
thermotropic behavior. 14 The extension of the 
original Flory lattice model for rod-like 
molecules to a variety of mixtures including 
the binary mixtures of random polymer coils 
and nematogens has been made by Ballauff. 15 

Comparison between the theory without the 
isotropic energetic term and experimental data 
for a relatively large range of polymer mo
lecular weight has been made and found to 
give very good agreement for polymers with 
sufficiently high molecular weight. 16 However, 
in Flory's treatment, the rod with an angle of 
inclination from the local domain axis 0 has 
to be broken and the angle of rotation about 
the domain axis should be in discretized steps 
in order to fit into the lattice, cf Figure 1. It 
is not difficult to understand that this kind of 
discretization will be a bad approximation for 
short rods (rods with lower aspect ratios) and 
results in underestimation of the entropy 
resulting from the orientational distribution of 
liquid crystals. 17 •18 

Furthermore, mixing between liquid crystal 
and polymer is generally not athermal, even 
when the temperature is higher than that the 
nematic to isotropic transition temperature of 
the liquid crystal which indicates a nonzero 
isotropic interaction energy. 

The aim of the present paper is to develop 
a simple theory for the mixtures of small 
molecular liquid crystals and flexible polymers, 
and to confirm the theory by Monte Carlo 
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simulation. We model the flexible polymer 
chain as a lattice chain and use the Lebwohl
Lasher lattice nematogen model19•20 rather 
than discretization model15 •21 for small mo
lecular liquid crystals. The Lebwohl-Lasher 
model for the small molecular liquid crystal 
can be considered as a lattice version of the 
Maier-Saupe treatment which will be more 
consistent with the lattice model of flexible 
chains. Another advantage of the Lebwohl
Lasher model is that it can be easily extended 
to deal with a surface anchored liquid crystal
line system, 22 as well as the interface between 
small molecular liquid crystals and flexible 
polymers.23 Furthermore, the model system is 
especially suitable for Monte Carlo simula
tion. 24,2s 

The paper is organized as follows. In section 
of THEORY, we develop a simple theory for 
mixtures of small molecular liquid crystals and 
flexible polymers based on the model men
tioned above, and phase diagrams are calcu
lated according to the theory. In section of 
.MONTE CARLO SIMULATION, we com
pare the results of section of THEORY with those 
of the Monte Carlo simulation obtained for 
the same model system. In section of 
COMPARISON WITH REAL SYSTEM, we make the 
primary comparison between the theoretical 
calculations and experimental data. Finally, we 
summarize the results in section of CONCLU
SION. 

THEORY 

The Model 
Considering a binary system consisting of a 

flexible polymer and a rod-like nematogen, 
the sizes of the polymer subunit and nemato
gen are assumed to be equal to the size of lat
tice cell. Therefore, the contour length of the 
coiled lattice chain is Xp and each nematogen 
with an angle of inclination from the local 
domain axis 0 occupies only one site. Ob
viously, this kind of model, as schematically 
shown in Figure 2, is only suitable for mixtures 
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Figure 2. The schematic representation of the model 
system. 

of small molecular liquid crystals and flexible 
polymers. In spite of the loss of some gen
eralities, we gain the advantages of simplicity 
and obtain a continuous orientational distri
bution which we believe important for the 
calculation of the entropy resulting from 
the orientational distribution. 

In the Lebwohl-Lasher nematogen mod
el, 19 •20 a system of uniaxial particles placed at 
the sites of a cubic lattice interacts through a 
nearest neighbor pair potential of the form 

(I) 

where E\j is a positive constant, eb, for the 
nearest neighbor particles i and j, P z(x) is a 
second Legendre polynomial and 0;j is the angle 
between the axes of the two molecules. From 
a formal point of view, eq I is a simplified 
version of the attractive anisotropic interac
tion put forward by Maier and Saupe. 11 • 12 

Therefore, the Lebwohl-Lasher model can be 
consisered to be a discretization version of 
Maier-Saupe model. The potential under the 
mean field approximation is obtained by 
standard means. 24 Upon averaging the pair 
potential in eq I, we find 

V= -ebPi(cos0)(P2 ) 0 (2) 

where 0 is the angle between the long axes of 
molecule and the director, and (P2 ) 0 is defined 
by a self-consistent equation, 
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(P2 ) 0 = \ + (3 cos2 0-1)) 
0 

= f Pz(cos0)f(cos0)sin0d0 (3) 

with the orientational distribution function 
/(cos 0), 

exp{ ( :e; )P2 (cos 0)(P2 ) 0 } 

f(cos0)=-------- (4) 
Zo 

where z is the coordination number (z = 6 for 
the cubic lattice), and the subscript "O" 
represents pure liquid crystal; Z 0 is the 
orientational partition function, 

Z 0 = f exp{(:e; )Pz(cos0)(P2 ) 0 }sin0d0 

(5) 

from which the orientational entropy can be 
calculated through Boltzmann's relation, 

S= -k f /ln(4nf)sin0d0 (6) 

In a mixture of the flexible lattice chain and 
the Lebwohl-Lasher nematogen, the z neigh
boring sites are not all occupied by a Lebwohl
Lasher nematogen. Therefore, the potential 
energy term in eq 3-5 should be modified when 
the volume fraction of the Lebwohl-Lasher 
nematogen is <PL ( = I - <pp, with <pp the volume 
fraction of polymer segments), e.g., the cor
responding partition function is rewritten as 

Z(cpd= f exp{ (:e; )<pLPz(cos 0)(P2(cpd)} 

x sin 0d0 (7) 

Free Energy of the Mixture 
To calculate the free energy of the mixture, 

we assume that (i) the interaction between 
the polymer segments, Epp, is isotropic, (ii) 
the interaction between polymer subunit and 
nematogen, eLP, is purely isotr~pic, i.e., the 
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Figure 3. Mixing free energy as a function of volume 
fraction of nematogens for xp = 5 and XLr = 0. The 
discontinuities and the highly unsymmetry can clearly be 
seen when XLL>4.541. The numbers on the curves are the 
values of XLL· The lower figure is the enlargement for high 
concentration of liquid crystal. 

polymer chain is completely flexible. We choose 
the pure liquid crystal at a given temperature 
as the reference state ofliquid crystal. Although 
the choice of reference state is not important 
for calculating the phase diagrams, it makes a 
plot of free energy vs. concentration (Figure 3) 
easier to understand. Following the Flory
Huggins26 and Lebwohl-Lasher19 •20 theories, 
the enthalpy of mixing reads, 

!iHM = nLXLP<pP 

1 2 2) - 2 nLXLL(cpL(Pz(cpL)) -(P2)0 (8) 

Obviously, the first term of eq 8 represents 
the isotropic interaction between polymer seg
ments and liquid crystalline molecules which 
has been ignored in ref 15. The second term in 
eq 8 denotes the orientational enthalpy change 
caused by introducing the polymer segments. 
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The apperance of (P2)6, the order parameter 
of reference state of pure liquid crystal, is 
resulted from the choice of the reference state. 
Similarly, the entropy of mixing is as follows, 

/iSM = /iSconf. + /iSorient. 

= -k(nL ln <pL + np In <pp) 

-nLk{XLL<pL (P z< cpd )2 

-lnZ(cpd+xLL<P2>l-lnZo} (9) 

Where eq 6 has been used to obtain the results 
of eq 9. Finally, the free energy of mixing can 
be readily written as, 

/iGM 
NkT = XLP<pL<pP 

1 2 2 +2XLL<pL(cpL(Pz(cpd) -<P2)0) 

+ <pL ln <pL + _!i,_ ln <pp - <pL In _Z( <pL) ( 10) 
Xp Z 0 

where XLP = z!is/kT, !is= sLP- Spp/2, and XLL = 
zsb/kT are the interaction parameters for pairs 
ofpolymer-nematogen and nematogen-nema
togen, respectively; (P2) is the order parameter 
of the liquid crystals in the mixture which can 
be calculated by the self-consistent equation, 
eq 3, with potential energy given in eq 7. 

Typical calculated compositional dependen
cies of the free energy are presented in Figures 
3 and 4. The general features are: (i) the free 
energy curve has a discontinuity where the 
order parameter (P2) starts to be nonzero, i.e., 
zsb<pL/kT>4.541; (ii) the free energy curves are 
highly unsymmetry when (P2)#0, which is 
the indication oflow solubility offlexible chain 
in the ordered solvents. 

Given the free energy of eq 10, the chemical 
potentials of polymer and liquid crystal can be 
obtained by partial differentiation with respect 
to the numbers of nematogens and polymer 
molecules nL and nv, leading to 

/iµL 2 

NkT=XLP<pP 
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Figure 4. The isotropic potential dependence of the free 
energy for xu=6 and Xp=5. The numbers in the figure 
are the values of XLr· It is clear that I/ N biphasic region 
is widened when XLP has larger positive value. The lower 
figure is the enlargment for high concentration of liquid 
crystal. 

(11) 

and 

for the reduced chemical potentials of the 
respective compounds at orientational equi
librium. 

The calculated chemical potentials of the 
nematogen and polymers versus the volume 
fraction of polymer segments <pp are shown in 
Figure 5. It is not surprising that the chemical, 
potentials have sudden jumps at the nematic 
to isotropic transition. 

The chemical potentials for the isotropic 
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Figure 5. The composition dependence of the chemical 
potentials for polymer (a) andnematogen(b). (1: XLP= 1.05, 

XLL=5; 2: XLP=0.8, xu=O; 3: XLr=0.5, XLL=0). 

phase of the two components are obtained by 
setting (P 2 ) = 0: 

tiµL = XLP<pi + In ({)1. + ( l _ _!_)<pp 
NkT Xp 

I 2 
--xu(P2 ) 0 +lnZ0 (13) 

2 

and 

(14) 

which are the same as the standard Flory
Huggins model. 

Phase Diagrams 
We have three types of biphasic equilibria, 

isotropic/isotropic (// /), isotropic/nematic (// 
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N) and nematic/nematic (N/N). The require
ment for these biphasic equilibria is Aµ 1 = Aµ 2 

for all components present in the system, with 
the chemical potentials given by eq 11-14. 
Once xp, XLr, and XLL are known, the 
equilibrium conditions may be solved numeric
ally from the following equations, 

XLi ({)[1 - (f)[z)- 2XLr( (f)Ll - <pLZ) + In (f)Ll 
(f)L2 

1 2 2 +2XLL<Pz(<pL1)) (f)Ll 

-ln f exp[Xu(f)LlPz(x)<Pz(<pLl))]dx=0 

(15) 

and 

where the relations, 

(f)Ll + (f)p1 = 1 , (f)L2 + (f)P2 = 1 (17) 

have been used. Equations 15 and 16 include 
the situations of isotropic/isotropic (///) and 
isotropic/nematic (I/N). The/// biphasic equi
librium condition is obtained when the equi
librium value of <P2 ) equals to zero and the 
isotropic interaction parameter exceeds the 
critical value Xe· Equations 10, 15, and 16 are 
reduced to the situation of monomer and 
nematogen mixture considered by Hashima et 

al.,27 when Xr= 1. 
For the monomer/nematogen mixture, eq 

15 and 16 can be solved analytically. 2 7 

However, the phase equilibrium condition for 
the mixture of polymer and nematogen can 

Polym. J., Vol. 26, No. 8, 1994 

only be solved numerically as follows: A 
provisional value of <pLl serves for the 
numerical evaluation of Z(<pLl) and the 
equilibrium value of <Pz(<pLl)) (eq 7 and 3) 
which are substituted into eq 16 to evaluate 
<pL2. The calculation is repeated by varying (f)Ll 

until self-consistency is achieved. For large Xp, 
the nematogen-rich phase tends to complete 
exclude of the flexible random coil. This leads 
to a numerical difficulty for higher Xp values. 
This difficulty was overcome through the use 
of higher digital precision, and approximate 
solutions can be obtained by setting (f)Ll < 1 
when <pp1 < 10- 16 for Xp>40. 

Figure 6 shows the effect of the isotropic 
interaction energy between polymer and nem
atogen on the phase behavior. As expected, 
a negative interaction parameter narrows the 
biphasic region while a positive value widens 
this region. The upper phase boundary 
becomes more severely curved for a positive 
value of isotropic interaction parameter. As the 
interaction parameter zAr./kT= XLP is further 
increased, i.e., XLP > Xe ( = 1.045 for Xp = 5), we 
can see an /// biphasic area together with a 
large // N biphasic region, Figure 6d. Figure 7 
shows the effect of chain length on the lower 
phase boundary line. We can see that the 
nematic phase region decreases with increasing 
the polymer chain length. 

MONTE CARLO SIMULATION 

We should note that the theoretical results 
given in Section of THEORY are obtained un
der the meanfield approximation both for the 
polymer chain and the nematogen which is 
inherent in Flory-Huggins model and Maier
Saupe potential. Therefore, the general validity 
of the meanfield approximation for our sys
tem is better to be confirmed by the Monte 
Carlo simulation for the same model with
out meanfield approximation under the same 
microscopic interaction parameter r.: = r.b/kT 
and Ar.*= Ar./ kT. The comparison between 
theoretical results and the real system by fitting 
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Figure 6. Phase diagrams for nematogen and polymer coil demonstrating the effect of the isotropic 
interaction parameter !i.e. As discussed in the text, a negative interaction parameter narrows the biphasic 
region (c) while a positive-value widens this region (b). When XLr exceeds the critical value ( = 1.045, for 
Xr= 5), I/I demixing occurs prior to 1/N demixing (d). The corresponding parameters are: (a) Xr= 5, i'i.e =0; 
(b) Xr=5, i'i.e/eb=0.15; (c) Xp=5, i'i.e/eb= -0.15; (d) Xr=5, i'i.e/eh=0.26, respectively. 

the phenomenological Flory-Huggins interac
tion parameter X1.P and X1.1. will be given in 
Section of COMPARISON WITH REAL 
SYSTEM. 

The Simulation Procedure 
The model used for the Monte Carlo 

simulation is the same as that depicted in Figure 
2. The simulation is done in a 10 x 10 x 10 cubic 
lattice with periodic boundary condition as a 
Monte Carlo unit cell. To simulate the <fJ1. in 
the polymer-rich phase, simulations are carried 
on in a 10 x 10 x 55 lattice with the periodic 
boundary condition in x and y directions. In 
z direction, there are two impenetrable walls 
located at z equals to O and 56, respectively. 
Besides the <fJ1. in polymer-rich phase, the 
results obtained include the interfacial prop
erties such as concentration profile, surface 
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Figure 7. Polymer chain length Xp dependences of the 
nematicus line. The nematic phase region decreases with 
increasing the chain length. 

tension and layer dependence of the order 
parameters, which will be presented in a future 
publication. 23 In the unit cell, there are np cubic 
lattice model chains of length xp and np is 
properly adjusted to fit the desired volume 
fraction of polymer segments, <pp. The rest of 
lattices ( <fJ1. = 1- <pp) are filled with model 
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Figure 8. Micro-relaxation modes used in Mote Carlo 
simulation of cubic lattice chain system. (a) single-bond 
motion; (b) two-bond motion; and (c) three-bond motion. 

nematogens whose orientations are described 
by their directional cosines. The micro-relaxa
tion modes of polymer chain include the con
ventional single-bond move for the chain ends, 
two-bond and three-bond moves for the inner 
chain segments, 28 which are depicted in Figure 
8. The orientation of Lebwohl-Lasher nemato
gen is sampled by the algorithm described in 
ref 20. The pair potential of nematogens is 
given by eq 1 with single parameter ab, and 
the interaction between polymer segment and 
nematogen is purely isotropic and measured by 
a single energetic parameter Aa. The simulation 
procedure can be summarized as following 
steps: 

Step 1. Randomly choose a lattice site; 
Step 2. If the chosen lattice is occupied by 

a nematogen, a new orientation of the 
nematogen is generated by using the random 
unit vector which is uniformly distributed on 
the surface of unit sphere. The energy difference 
due to the change of orientation, Aao,ient, is 
calculated and the acceptability of the new 
orientation is determined by use of the Metro
polis sampling rule,29 i.e., the new orientation 
is accepted when a generated random number 
r E (0, I) satisfies r-.::;, e -/',_eorieut.!kT_ Here, we 
should note that even if the new orientation is 
not accepted, the original state should be 
counted once again in order to avoid the biase. 
Then return to Step 1. 

If the chosen lattice site is occupied by a 
chain segment and the local environment (in
trachain and interchain) allows for certain 
micro-relaxation mode, Figure 8, the segments 
related to certain micro-relaxation mode ex
change their positions with the neighboring 
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nematogens while the orientations of these 
nematogens keep unchanged. The local energy 
difference due to the exchange of positions 
is calculated and used for the Metropolis sam
pling. Whether the move is accepted or not, 
the simulation continues by turning back to 
Step 1. 

If the chosen segment is not movable, the 
original state is kept and used once more for 
calculating the averages. Then return to Step 
1. 

Step 3. The properties of the system, such 
as (P2), are calculated according to the 
procedure described in next subsection and 
averaged for each Monte Carlo Cycle (10 x 
10 x 10 times of trial moves). 

In every simulation a minimum of 3.0 x 105 

cycles are used for equilibrium and thus 
rejected when calculating averages. The sample 
size for calculating the averages is larger than 
25000 cycles. 

It is worth of noting that a much better 
coarse-grained lattice chain model and Monte 
Carlo algorithm, four-site model and bond
fluctuation algorithm, have been proposed by 
Carmesin and Kremer30 and deeply studied by 
Baschnagel and Binder et al. 31 •32 The reason 
of using the widely used cubic lattice model 
and relative algorithm is to gain the simplicity. 

Calculation of the Order Parameter 
There is no external field in our simulation, 

thus the director of the model system is fluc
tuating during the simulation and this causes 
some difficulties for calculating the order pa
rameter (Pz(<pL)). Possibly, the simplest way 
of calculating (Pz(<pL)) is the use of order 
matrix, 33 •34 

(x;2) 

(yixi) 

<zixi) 

where X;, Y;, and z; are the directional cosines 
of i-th nematogen in the lab frame and < · · ·) 
denotes the ensemble average. Three values J1 , 

A- 2 , and J3 obtained by diagonalizing matrix 
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Figure 9. Monte Carlo results of the temperature dependence of the order parameter. The volume 
fraction of nematogens are shown in the figures. The isotropic interaction energy ~a has been assigned 
to be zero in the simulation. 

(Q) satisfy the relation, 

{ 21+22+23=1 (l9) 
A2=A3, 21 =2max=max(21, 22, A-3) 

The order parameter P 2 is evaluated by using 
the following equation, 

(20) 

and then averaged over Monte Carlo Cycles 
to obtain (P2). P(P2 ), the distribution of P 2 , 

is easily obtained by proper statistics. 
We must mention that the director of the 

system is loose defined for the disordered state. 
Therefore, the order matrix method can not be 
used for the disordered system. Practically, it 
will give nonzero order parameter, (P2), even 
if the system is exactly isotropic. 25 ·34 However, 
this will not change any conclusion in this 
simulation. The detailed discussions can be 
found in ref 35. In any case, eq 20 does give 
the proper description of the ordered state and 
the N/I transition. 

The N/ I transition temperatures are de
termined by differentiating the spline fitted 
curve of Monte Carlo simulated data of (P2) 
vs. T* as shown in Figure 9. Simulation for 
the pure Lebwohl~Lasher nematogen system 
gives the reduced N/J transition temperature 
T{S1=kTN1/eb= 1.116)±0.005.24·25 The mean-
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field calculation results in higher T{S1 ( = 1.321) 
due to the neglect of fluctuations. 24 Luckhurst24 

suggested that the scaled dimensionless tem
perature, T* ( = T/TN1), should be used for the 
comparison between the meanfleld calculation 
and Monte Carlo data or experimental data. 
This suggestion is followed in this paper. 

Results and Comparison between Theory and 
Simulation 
Figure 10 shows the distribution of the order 

parameter in the vicinity of N/ I transition 
temperature (TJ1= 1.0836 for Xp= 10 and 
<pp= 0.10). The bimodal character of the 
distribution reveals that the N / I transition is 
first order even in the mixture. 25 Snapshot 
pictures of the model system at different 
temperatures are given in Figure 11, and the 
aggregation of the polymer chains due to the 
exclusion of polymer coil from ordered liquid 
crystalline phase can be clearly observed. 

Figure 12 shows the effect of chain length 
on the upper phase boundary for the model 
system where isotropic interaction potential Ae 
is taken to be zero. The agreement between the 
meanfield calculations and Monte Carlo data 
is relatively good. It is shown that the biphasic 
region widens with increasing chain length, Xp
The effect of the isotropic potential on the 
upper critical phase boundary is shown in 
Figure 13. The magnitudes of Ae/eb used in 
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Figure 10. The distribution of the order parameter in the vicinity of the N/1 transition temperature 
(T~1 = 1.0836, Xp = 10, 'PL= 0.9 and de= 0). The sample size for the statistics is 25000. The bimodal 
distribution reveals that the N/ I transition is first order. 

T-; 1.481 

T*=0.185 

Figure 11. Snapshot pictures for the mixture of polymer 
and nematogen at different reduced temperatures T* 
( = T/TN1). For clarity, the nematogens are not shown in 
the figure. The simulation parameters are the same as those 
in Figure 8. 

these calculations and simulations are - 0.15 
and 0.15. Under these conditions there is no 
possibility of/// demixing prior to" I/N demix
ing. Obviously, the meanfield calculations 
agree with the Monte Carlo data fairly well. 
Similar behavior is also obtained by Dorgan's 
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Figure 12. Comparison between Monte Carlo data and 
mean-field calculations for the upper phase boundary line 
changes with increasing the chain length. The numbers in 
the figure are the values of Xp. Symbols are Monte Carlo 
data and lines are mean-field calculations. 

calculation16 using Ballauff's theory. 15 Ac
tually, this behavior already reveals that the 
isotropic potential contribution to the free 
energy is important. Trail calculations show 
that this is also true for very large Xp. There
fore, the statement given in ref 15 that for 
increasing Xp the free energy is mainly de
termined by its entropic part is not consistent 
with our findings and Dorgan's calculation. 16 

As predicted by theory, the polymer chains 
is almost completely excluded by the ordered 
nematic phase for a longer chain, thus <pp in 
the nematogen-rich phase can not be obtained 
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Figure 13. The effect of the isotropic potential energy on 
the upper phase boundary line. The symbols are the Monte 
Carlo data; (lo.) /J.a/eb= -0.15; (D) /J.e/eb=O; (0) 
/J.e/eb=0.15. The lines are corresponding mean-field 
calculations. 

from the Monte Carlo simulation when a finite 
sized unit cell is used. On the other hand, <pL 
in the polymer-rich phase (isotropic) can be 
obtained from the simulation with two im
penetrable walls. Figures 14 and 15 show the 
chain length, Xp, and the isotropic interaction 
term XLP dependencies of <pL in the polymer-rich 
phase. The comparison between theory and 
simulation shows that the theoretical curves are 
systematically higher than the Monte Carlo 
results. In any case, the agreement is reasonably 
good. The discrepancy may result from the 
finite size effect of the Monte Carlo unit cell. 

A rather interesting result is that <pL in the 
polymer-rich phase tends quickly to become 
constant with increasing Xp, as predicted both 
by theory and simulation. Therefore, <pL in 
polymer-rich phase is more sensitive to the 
temperature. This is technically quite impor
tant in the preparation of a PDLC film, where 
<pL in the polymer-rich phase affects the 
refractive index of the matrix. 

COMPARISON WITH REAL SYSTEM 

Now we turn to the comparison of model 
predictions with actually observed phase 
behavior. To compare with the experimental 
data, we first need to define a reduced aniso
tropic interaction potential, UL, through the 

890 

~80 

& 60 

100r---------~ 
X1,r=O 

t t 
40 

20 \1-_ __;T;..:.IT-'..'..'.:ni:_=0:::::·:::::5:::::25::,..__ . "---t- iji iji 

0o 4 8 12 16 20 24 
Xp 

Figure 14. The chain length dependence of nematogen 
volume fraction in the polymer-rich phase. The symbols 
are the Monte Carlo data and the lines are the mean-field 
calculations. 

100 
,o T /Tni=0.891 80 
& ! ! 60 

40 ! ! 
20 

Xp=10 

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 
XLP 

Figure 15. The effect of isotropic interaction parameter 
on the volume fraction of nematogen in the polymer-rich 
phase. The symbols are the Monte Carlo data and the 
solid line is the mean-field calculation. 

N/ I transition temperature of pure liquid 
crystal, T Nh 

zsb = UL =4.541 
kTN, TN, 

(21) 

For 4-( 4-ethoxybenzylidine )-4-butylaniline 
(EBBA) (TN1 = 352.26 K), we obtain UL= 
wb/k= 1599.6K. Here we should note that UL 
is just a parameter which measures the strength 
of the interaction resulting from the Van der 
Waal's force and spatial exclusion and it should 
be temperature dependent. 36 However, in the 
present work, UL is simply considered as a 
constant and with the same order approxima
tion as Flory-Huggins interaction parame
ter. 26 Similarly, the isotropic interaction be
tween polymer segment and nematogen 1s 
defined by a single parameter Ur 
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Figure 16. The comparison of the experimental data and 
the mean-field calculations for the upper phase boundary 
line. The experimental data are taken from ref 16 and 38 
(eb=266.6, Ae=27.5). The symbols are the experimental 
data and the lines are the mean-field calculation. ( •) 
boundary of the isotropic region and the two-phase region; 
( O) boundary of the nematic region and the two-phase 
region . 

zile Up 
---~ 
kT T 

(22) 

which we leave as an adjustable parameter in 
fitting the experimental data. 

The number of polymer segments, Xp, is 
calculated through the data used in ref 15 and 
16, i.e., 

Xe 
Xp=-

Xr 
(23) 

where xr is the aspect ratio of the nematogen 
(xr = 3. 7 for EBBA) and Xe is the number of 
the polymer segments measured by the di
ameter of the rodlike nematogen. For poly
styrene with Mw=2100, xe=27.8. 15 Equation 
23 is due to the fact that one nematogen 
occupies one lattice site in the model used in 
the present work. Although it is not quite 
sophisticated, the trial calculation demon
strates that the error introduced 1s nearly 
inconsequential for the resulting phase dia
grams. 
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In Figure 16, the experimental points were 
taken from the corresponding graphs in ref 16 
and 38 for the mixtures of EBBA and poly
styrene. The theoretical calculations take Ur= 
165°K which corresponds to a Flory interac
tion parameter XLP with an absolute value of 
approximately 0.47 which is quite reasonable 
for this system. Therefore, there is no I/I 
demixing prior to // N demixing as shown 
experimentally. As is obvious from Figure 16 
the agreement is adequate for the upper phase 
boundary where experimental scatter seems to 
be more severe. The discrepancy may be caused 
by the effect of the residual nonuniformity of 
the polymer sample especially for the sample 
of high molecular weight. However, the 
nematic region predicted by the theory is much 
too small and it can not be seen in Figure 16. 
The discrepancy of theoretical and measured 
nematicus line, especially in the case of shorter 
chains may originate from the difficulties in 
measuring the nematicus line38 and the neglect 
of the volume change when mixing two com
ponents. Another possibility is that the phenyl 
ring of polystyrene molecules takes part in the 
ordering process which would lead to stabiliz
ing the nematic phase. The present results 
indicate that this kind of short-range interac
tion changes considerably while the chain goes 
from the isotropic to nematic phase. The 
alignment of the benzene rings on polystyrene 
chain in the immediate neighborhood of the 
rodlike nematogen while the globally isotropic 
coil conformation is kept, which might be quite 
general in the mixtures of polymers and liquid 
crystals, is a kind of anisotropic interaction 
between chain subunit and nematogen. This 
feature has not been taken into account in the 
present approach. It is not difficult to imagine 
that this kind of interaction will tend toward 
zero when going from the nematic to isotropic 
phase. Dubault et al. 37 have found by 2H NMR 
technique that the orientational distribution of 
the para-axis of the benzene rings on poly
styrene chain becomes anisotropic when the 
solvent undergoes nematic ordering, and the 
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order parameter of this axis has the same 
temperature dependence as the order parame
ter of the nematogens although the global coil 
is not aligned by the nematic field as revealed 
by neutron scattering experiment. Therefore, the 
upper phase boundary will not be affected 
appreciably by a weak anisotropic interaction, 
but the lower phase boundary (nematicus line) 
will show a wider nematic phase region caused 
by stabilizing effect just discussed. However, 
Dubault et al. 37 imputed the results of 2H 
NMR to the fact that the nematic order is 
destroyed by the polymer coil. Obviously, this 
interpretation does not coincide with the fact 
of the widened nematic phase region. 

Another interesting physical parameter ob
tained from the experiment data is AG (trans), 
the free energy necessary to transfer a poly
meric chain from the isotropic phase to the 
nematic phase. From eq 12 and 14, when at a 
low polymer concentration (i.e., near T~11) a 
first order approximation leads to the following 
relation: 

AG(trans) 

kT 

(24) 

Where cpi, cp; are the polymer concentrations 
in the isotropic and nematic phases at the 
temperature very close to T~1, respectively; k 
is the Boltzmann constant. Equation 24 shows 
that AG (trans) is proportional to the number 
of chain segments and independent on the 
istropic interaction between the polymer 
subunit and nematogen. In fact, the experi
mental results38 •39 do show that AG (trans) 
depends more on the size of polymeric solute 
than on its chemical nature (cf Figure 17). At 
T-T~1, XLL and (P2 ) have their universal 
values 4.541 and 0.429. Therefore, the plot of 
AG (trans)/kT vs. Xp will be a straight line with 
the slope of 0.418. However, the experiment 
data shown in Figure 17 give the slope of 
-0.125 which is much lower than 0.418. The 
discrepancy is partly due to the improper 
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Figure 17. The free energy of transfer vs. the chain length. 
The experimental data are taken from ref 38 and 39. The 
slope of the fitted line is -0.125. The theoretical line is 
calculated from eq 24 the slope is 0.418. (0) is the 
experimental data for EBBA/PS system from ref 38; ( •) 
is the experimental data for EBBA/PS system from ref 39; 
and ( x) represents the experimental data from ref 39 for 
the system of EBBA/PEO. 

selection of the polymeric subunit volume, as 
well as the uncertainty of the experiment data. 
Especially for polymers with high molecular 
weight, the nematicus line is very steep and the 
slope of the upper phase boundary line is very 
low which makes it impossible to determine <p~ 

accurately. Another more important reason is 
the anisotropic interaction between polymer 
subunit and nematogen. Brochard et al.40 have 
shown theoretically that when one component 
is a polymer with nematogenic side groups, 
11G (trans)/kT can be written as 

11G(trans) 

kT 

<pn 
-ln-P 

<p~ 

(25) 

where x{p is the anisotropic interaction 
parameter between nematogenic polymer sub
unit and nematogen; <P2 )p is the order 
parameter of nematogenic polymer subunit. 
Therefore, the lower slope of the experiment 
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data reveals the existence of an anisotropic 
interaction between polymer subunit and 
nematogen which coincides with the 2H NMR 
observations.37 Certainly, the interpretation 
should be verified with more experimental and 
theoretical work. 

CONCLUSIONS 

We have combined the Lebwohl-Lasher 
theory of nematic-isotropic transition and the 
Flory-Huggins theory of mixtures to describe 
the phase equilibria in mixtures of thermo
tropic small molecular liquid crystals and 
flexible polymers. The model is tested against 
Monte Carlo simulation and found it predicts 
many of the salient features of the system, 
which include a widening of the biphasic region 
with increasing molecular weight of polymer 
and isotropic interaction parameter between 
polymer subunit and nematogen, exclusion of 
the polymer coil from nematic phase. Very 
good agreement between theory and Monte 
Carlo simulation is achieved. The comparison 
with the experimental system is also made and 
the agreement is also quite good considering 
the simplicity of the theoretical model. The 
discrepancy between the theory and experiment 
is imputed to the existence of anisotropic inter
action between polymer subunit and nematogen 
which has not been taken into account in the 
present model. this interpretation gains the 
support from 2H NMR observations37 and 
theoretical results40 for a system in which one 
component is a polymer with nematogenic side 
group. 

We have shown the importance of the 
isotropic interaction potential, it can widen the 
N/ I biphasic region and even result in/// phase 
separation, in accord with the observation of 
EBBA/PEO, 39 7CB/PMMA and 7CB/PS sys
tems. 41 Figure 5 in ref 16 also shows that the 
calculated N/ I biphasic region will be widened 
considerably when incorporating the isotropic 
energetic term into Ballauff's theory, even in 
the case of high molecular weight polymeric 
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solute. Therefore, the agreement between 
Ballauff's theory (without the isotropic en
ergetic term) and experiment15 •16 must be re
garded as fortuitous. Hence, from these re
sults, it appears that the statement given in 
ref 15 that for increasing Xp the free energy 
is mainly determined by its entropic part is 
questionable. We can conclude that the pos
itive isotropic force is not only important for 
the apparance of // I biphasic region, but also 
promotes the ordering transition by exclud
ing the polymeric coil more strongly from the 
nematic phase. 

This work also lends support to the general 
validity of the Flory-Huggins treatment of 
mixtures and the Lebwohl-Lasher model for 
the thermotropic nematic behavior. A further 
extension of this work will deal with the 
interface between phase separated small 
molecular liquid crystals and the flexible 
polymers system. 
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