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Polymer Molecular Weight from Loss Modulus 
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ABSTRACT: The method for the determination of polymer molecular weight and molecular 
weight distribution from transient and dynamic viscoelastic properties of a narrow molecular weight 
distribution linear amorphous polymer with Mw>M, has been discussed in our previous work. 
In the present work, we discussed the method to calculate the polymer molecular weight and 
molecular weight distribution from terminal zone of Joss modulus G"(w). The terminal zone of 
loss modulus G"(w) is separated from the plateau modulus G. 0 and the normalized relaxation time 
spectrum H(r) is then calculated by using the first approximation formulas ofTschoegl. The polymer 
molecular weight and molecular weight distribution are then obtained from H(r) by using the same 
numerical method as was developed in the previous work. The results calculated by this method 
are in good agreement with those measured from membrane osmometry, light scattering and GPC 
experiments etc. 
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The viscoelastic property of polymers is 
closely related to the molecular weight, 
molecular weight distribution and branches. 1 •2 

Thus, it plays an essential role in linking 
polymer structure and processing. Despite the 
importance of viscoelasticity, a completely good 
understanding of its relation with molecular 
weight and molecular weight distribution has 
been lacking. The dynamic elastic modulus 
G'(w) and transient modulus G(t), in the 
terminal zone, can be transformed to the 
cumulative weight fraction as a function of 
molecular weight. 3 •4 In our previous work, 5 •6 

we have developed a method to determine the 
molecular weight and molecular weight dis
tribution from terminal zone of storage 
modulus G'(w) and stress relaxation modulus 
G(t) for a linear amorphous polymer with a 
molecular weight higher than critical molecular 
weight Me. In the present study, we demon
strate another method to determine the linear 

* To whom correspondence should be addressed. 

amorphous polymer molecular weight and 
molecular weight distribution from terminal 
zone of loss modulus G"(w). 

THEORETICAL BACKGROUND 

The terminal zone of loss modulus G"(w) 
of a polymer melt contains a spectrum of mo
lecular relaxation times. The relaxation time 
spectrum is closely related to the polymer mo
lecular weight and molecular weight distribu
tion. The terminal zone of linear viscoelastic 
dynamic loss modulus G"(w) of a polydisperse 
polymer is given by 1 : 

G"(w)=Gn°f
00 H(r) wr2 2 dlnr (1) 

_ 00 l+w r 

where G"(w) is the dynamic loss modulus at 
frequency w. H(r) is the relaxation time 
spectrum, r the relaxation time for a mono
disperse species is the polydisperse blend, 
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and G" 0 the plateau modulus. 
For a blend of N monodisperse species with 

the longest relaxation times decreasing from T 1 

to TN, each species contributes to the relaxation 
process of the polydisperse blend through 
binary contacts. According to Montfort's 
prediction, 7 the weight contribution to visco
elastic property in the relaxation interval Tj 
and Tj_ 1 is equal to the difference between 
all binaries for T>Tj and those for T>Tj_ 1 , 

i.e., 

j 

L W(Tk) 
k=1 

(2) 

where W(T) is the weight-fraction of polymer 
species - j. Hence, 

(3) 

x dTkdTj (4) 

let h(T)= W(T)T, we obtain 

Compare eq 1 with eq 5, we obtain the same 
H(T) as that we derived from G(t), 5 i.e., 

H(Tj)=2h(Tj) J:<h(Tk)dlnTk (6) 
) 

Since the terminal zone of loss modulus 
G 11(w) can be expressed by eq 1, thus the 
experimental data ofG 11(W) in the terminal zone 
could be accurately expressed by: 
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G11(w) 
Gno(WToY 

l+(wTo)2c 
(7) 

In eq 7, To is the characteristic relaxation time 
which characterizes the polymer molecular 
weight. And 0 < c < 1 is the distribution 
parameter which characterize the polymer 
molecular weight distribution. The parameter 
c decreases as the polymer molecular weight 
distribution getting broader and c increases as 
the polymer molecular weight distribution 
getting narrower. Both To and care numerical 
parameters to be determined, they can be 
obtained from a nonlinear regression method. 
To and c can also be obtained from the 
maximum of G 11 ( w) and the slope of log G II ( w) 
vs. log w in the terminal zone respectively. By 
taking derivative of G 11(w) of eq 7 and putting 
it equal to zero, we obtain 

(8) 

where wm is the corresponding frequency at the 
maximum of G11(w). Substituting eq 8 into eq 
7, we obtain: 

(9) 

At terminal zone, we may assume that 
(wfwm?c« 1. If w<wmflO, the (wfwm) 2c term 
of denominator at right hand side of eq 9 can 
be neglected. Take logarithm of both side ofeq 
9, we obtain: 

log G 11(w) =log Gn ° + c log(wfwm) (10) 

for frequency w<wm/10. 
By plotting logG 11(w) vs. logw for the 

corresponding data of frequency w < wm/10 at 
terminal zone, c can be obtained from the slope 
of the plot. Once the parameters c and To are 
determined, the normalized relaxation spec
trum can be obtained by using the first-order 
approximation formulas eq 11 and 12 of 
Tschoegl8 : 
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H(r)=-2-[G"(w)+ dG"(w)J/ 
nGN° dlnw 1/w=J3r 

(11) 

for the positive slope of H(r) vs. In r, and 

2 [ , dG"(w)J/ H(r)=-- G (w)-- --
nGN0 dlnw 1/w=r/}3 

(12) 

for the negative slope of H(r) vs. In r. The 
calculated value of H(r) corresponds to 
1/w=-/3 r for positive slope of H(r), and 
1/w=r/-/3 for negative slope of H(r). 

Substituting eq 7 into eq 11 and eq 12, we 
obtain: 

w3c+1,03c-1 J 

[1 + (wro)2c]2 

for positive slope of H(r) vs. In r. And, 

2 [ (wroY we+ 1'oc-1 
H(r)=--; 1 +(wro)2c -c 1 +(wro)2c 

H(T) 

J J-1 

LnT 

(13) 

(14) 

for negative slope of H(r) vs. lnr. 
To construct a weight-fraction differential 

molecular weight distribution curve W(r) from 
H(r) by using eq 6, the following computer 
iteration procedure is used. 

(1) The In r axes of H(r) vs. In r and h(r) 
vs. In r are divided into N intervals as shown 
in Figure 1 with the longest relaxation times 
decreasing from In r 1 to In rN, and each interval 
equalling to .d. 

(2) The integration part of eq 6 is calculated 
by using the trapezoid rule. Suppose the integer 
N is large, then we may set 

then 

let 

then 

J J-1 
LnT 

(15) 

(16) 

(17) 

(18) 

Figure 1. The graph method of the calculation of h(r) from eq 6. 
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1 -2:1 [L1h(r1) + 2A 1] (20) 

W(r2)=h(r2)/r2 (21) 

L1 
Az=A1 +l[h(r1)+h(r2)] (22) 

Similarly 

1 
h( rk) = 2:1 [(L1h(rk_ 1) + 2Ak _1)2 + 4L1H(rk)r12 

1 
- 2,1 [L1h(rk-1)+2Ak_ 1] (23) 

W(rk)=h(rk)/rk (24) 

L1 
Ak=Ak-1 +l[h(rk)+h(rk_ 1)] (25) 

(3) The relaxation time-r can be converted 
to the molecular weight scale by using the 
relation 

T;=KMt (26) 

where a=3.4 for 1 <Mw/Mc<50, known 
empirically, and K can be obtained from the 
following equation, 

(27) 

where M wr is the relative weight average 
molecular weight which will be discussed later 
Mw is the weight average molecular 
obtained from other measurements such as gel 
permeation chromatography (GPC) and light 
scattering etc. Since 

I W(-r)d-r=Ka I W(r)Ma- 1dM= I W(M)dM 

(28) 

hence, 

W(M)=KaMa-l W(-r) (29) 

The weight average and number average 
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molecular weight can be obtained from eq 30 
and eq 31 respectively. 

I W(M)MdM 

I W(M)dM 

I W(M)dM 

I W(M)/MdM 

I W(M)M 2d In M 

I W(M)MdlnM 

(30) 

I W(M)MdlnM 

I W(M)dlnM 

(31) 

In order to calculate M w" we may set K = 1 
in eq 26 to calculate the relative molecular 
weight M;r of polymer species-i with a 
relaxation time T;, the relative weight average 
molecular weight M wr can then be obtained 
from eq 30. 

APPLICATION TO EXPERIMENTAL 
DATA 

Schaus berger et al. 9 measured the loss 
modulus G"(w) of a series of standard 
polystyrenes of narrow molecular weight 
distributions. The data were all reduced to a 
temperature of 180°C. We shall use the data 
of Schausberger et a!. to do data analysis and 
calculate weight average molecular weight M w• 

number average molecular weight Mn and 
Mw/Mm and compare the calculated results 
with those obtained from membrane osmom
etry, light scattering and gel permeation chro
matography. 

Table I summarizes the molecular weight 
data from membrane osmometry, light scatter
ing and GPC which were measured by 
Schaus berger et a!. 9 

Figure 2 shows the plot of logG"(w) vs. 
log w at terminal zone together with the 
nonlinear least squares fit of eq 7. The plateau 
modulus GN° which is used in the calculation 
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Table I. Polystyrene molecular weight data from Schausberger et a/. 9 " 

Sample 

PSI 
PS2 
PS3 
PS4 
PS5 
PS6 

Mp X 103 

34.5 
61.2 

115 
260 
670 

MwfM. (GPC) 

1.05 
1.06 
1.05 
1.07 
1.07 
1.05 

M. X 103 

33.6 
60.6 

112 
271 
670 

Mwx 103 

34 

125 

750 

39 
70 

128 
275 
770 

3000 

• MP, peak of molecular weight distribution of GPC; M., molecular weight measured from membrane osmometry; 
Mw, molecular weight measured from light scattering; Mw!M., data measured from GPC; M, molecular weight 
data provided from manufacture---Polymer Laboratories Ltd. 
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Figure 2. The plot of log G"(w) vs. logw at terminal zone 
for 6 polystyrene samples. -, theoretical fit of eq 7. 

of nonlinear least squares fit of eq 7 is 
1Q5 ·3 Nm- 2 • The plateau modulus G/ is 
obtained from G'(w) by assuming that GN° is 
equal to the corresponding G'(w) at which the 
variation of logG'(w) value vs. logw is 
minimum. 6 As was shown in the previous 
work, 6 the plateau modulus GN ° is molecular 
weight independent. The r 0 and c for 6 
polystyrene samples extracted from the plot of 
Figure 2 are shown in Table II. Figure 3 is a 
plot of logG"(w) vs. lofw of eq 10 for the 6 
polystyrene samples together with the linear 
least squares fit. The parameters r 0 and c 
calculated from eq 7, 1/wm calculated from eq 
8, and c calculated from the plot of eq 10 are 
listed in Table II. 

Figure 4 shows the normalized relaxation 
spectra H(r) of the 6 polystyrene samples 
calculated from eq 13 and eq 14. The full lines 
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Table II. The parameters To and c 

Eq 7 Eq 8 Eq 10 
Sample 

T 0 js C c 

PS-I 6.23 x 10- 4 0.909 3.98 x 10- 4 0.975 
PS-2 4.62 x 10- 3 0.980 6.31 x 10- 3 1.000 
PS-3 4.75x 10- 2 0.991 3.98x10- 2 1.000 
PS-4 7.8lx10- 1 0.972 1.00 0.990 
PS-5 2.02 X 102 0.968 2.12+ J01 0.965 
PS-6 1.35 X 103 0.970 1.59 X 103 0.995 

.. .... -.--------------, 
N 

{-
4.0 
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(J> 

.3 
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3.0 
Logc.J s-1 

Figure 3. The plot of logG"(w) vs. logw for w<wm/10 
of 6 polystyrene samples.-, theoretical fit of eq 10. 

in Figure 4 are the H( r) calculated by using 
the r 0 and c values obtained from eq 7, and 
the dashed lines are the H( r) calculated by using 
the r0 and c values obtained from eq 8 and eq 
10 respectively. 

Since PS-3 sample has one of the narrowest 
molecular weight distribution, we use it as a 
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0.5-.------------------, 

PS 1 PS2 PSJ PS4 PS5 PS6 

Figure 4. The normalized relaxation spectra H(T) of 6 
polystyrene samples calculated from eq 13 and 14. (--) 
To and c calculated from eq 7; (---) To and c calculated 
from eq 8 and 10, respectively. 

reference sample for the molecular weight 
calculation. By rearranging eq 26, we obtain 

(32) 

We put K =I in eq 32 to calculate the relative 
molecular weight M;, for polymer species-i, the 
weight fraction of the polymer chain with 
relaxation time r; is computed by using the 
computer iteration procedure described in the 
preceding section and the corresponding 
W(M;,) is then calculated from eq 29. Figure 
5 shows the weight fraction distribution curve 
W(M,) vs. log M, for polystyrene sample PS-3, 
where M, is the relative molecular weight. The 
relative weight average molecular weight M wr 

was then calculated from eq 30. In Figure 5, 
the full line is the weight fraction distribution 
curve of PS-3 calculated by using r 0 and c 
obtained from eq 7, and the dashed line is the 
weight fraction distribution curve of PS-3 
calculated by using r 0 and c obtained from eq 
8 and eq 10 respectively. The constant "K" can 
then be obtained from eq 27. Our data analysis 
of sample PS-3 shows that Mw,=0.52 and 
IogK= -18.294 for parameters r 0 =0.0475 
and c=0.991 obtained from eq 7; and 
Mw, = 0.48 and log K = -18.413 for parameters 
r 0 = 0.0398 and c = 1.00 obtained from eq 8 and 
eq 10 respectively. 

Figure 6 is a plot of the weight fraction 
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Figure 5. Plot of W(M,) vs. log M, for sample PS-3. 
(--) T0 and c calculated from eq 7; (---) To and c 
calculated from eq 8 and 10, respectively. 

W(M) 

J.5 7. 

Figure 6. Plot of W(M) vs.iog M for samples PS-I, PS-2, 
PS-4, PS-5, and PS-6. (--) To and c calculated from eq 
7; (---) T 0 and c calculated from eq 8 and 10, respectively. 

distribution curves W(M) vs. log M for 
polystyrene samples PS-1, PS-2, PS-4, PS-5, 
and PS-6. In Figure 6, the full lines are weight 
fraction distribution curves calculated by using 
r 0 and c obtained from eq 7, and the dashed 
lines are the weight fraction distribution curves 
calculated by using r0 and c obtained from eq 
8 and eq 10 respectively. The numerical values 
M w• Mn and M wl Mn calculated from the 
terminal zone ofG"(w) are also shown in Table 
III. Good agreement between the results 
calculated from G"(w) and those measured by 
light scattering, membrane osmometry and 
GPC are found. 

In our previous work, we had calculated the 
relaxation time spectrum H(r) from the 
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Table III. Polystyrene molecular weight calculated from G"(w)a 

From eq 7 From eq 8 and eq 10 

Sample 
Mw X 103 M. X 103 Mw/M. Mw X 103 M. x 103 Mw/M. 

PS-1 40.68 31.83 1.28 34.59 29.78 1.16 
PS-2 62.83 56.26 1.12 72.43 66.33 1.09 
PS-3 Reference Reference 1.12 Reference Reference 1.09 
PS-4 279.3 254 1.11 323.08 294.89 1.10 
PS-5 743.4 664.5 1.12 853.07 734.07 1.16 
PS-6 2570 2290 1.12 2854.68 2580.53 1.10 

----- ----------

a PS-3 reference I eq 71: Mw,=0.520; M.,=0.464; log K = -18.294. PS-3 reference I eq 8 and eq 111: Mw,=0.480; 
Mn,=0.438; logK= -18.413. 

Table IV. Polystyrene molecular weight 
calculated from G'(w)6 a 

Sample Mw X 103 M. X 103 Mw/M. 

PS-1 29.5 27.2 1.08 
PS-2 52.8 49.8 1.08 
PS-3 Reference Reference 1.08 
PS-4 266 245 1.09 
PS-5 692 626 1.10 
PS-6 2500 2281 1.09 

a PS-3 reference: Mw,=0.6l; M.,=0.56; logK= 
-18.07. 

terminal zone of storage modulus G'(w). The 
details of the calculating method is described 
elsewhere. 6 The molecular weight distribution 
was then calculated from H(T) by using the 
same numerical method as discussed in this 
paper. Table IV lists the molecular weight and 
molecular weight distribution data obtained 
from the terminal zone of storage modulus 
G'(w). Comparing the data shown in Table III 
and Table IV, we find that the molecular weight 
and molecular weight distribution calculated 
from G'(w) and G"(w) are close. 

CONCLUSIONS 

In the present work, we demonstrate two 
methods to estimate the characteristics relaxa
tion time To and distribution parameter c from 
the loss modulus G'(w). The characteristic 
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relaxation time To is closely related to the 
polymer molecular weight and c is related to 
molecular weight distribution. The parameters 
To and c can be obtained either from a nonlinear 
least squares fit of eq 7 or from the maximum 
of G"(w) and the slope of logG"(w) vs. logw 
in the terminal zone respectively. The first 
approximation formulas of Tschoegl8 is then 
used to calculate H(T) in our method, and the 
polymer MW and molecular weight distribu
tion and then obtained from H(T) by using the 
numerical method we developed in previous 
work. 5 •6 

This method is applicable to linear amor
phous polymers with molecular weight M w > 
Me. In the present work, we discuss the 
application of this method to narrow molecular 
weight distribution polymers. In principle, the 
relaxation time which governs the relaxation 
process of a molecule in the flow and rubber 
transition region is dependent on the length of 
the molecule and also on the mobility of 
neighboring molecules. In the blend, the longer 
molecules behave as if they were shorter than 
in their own surrounding; and the shorter 
molecules, as if they were longer. As the 
molecular weight distribution becomes broad
er, a shift factor A;,m = T;,m/T; (where T; is the 
relaxation time of the component i in its own 
surrounding; and T;,m the relaxation time of the 
i component in the surrounding which is a 
mixture of i components with other compo-
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nents) should be considered. 10 

For traditional methods such as light 
scattering, membrane osmometry, and gel 
permeation chromatography require that a 
polymer be soluble in a suitable solvent. The 
advantage for the determination of polymer 
molecular weight from terminal zone of 
viscoelastic properties is that we don't need a 
solvent to dissolve the sample. Hence, this 
method is suitable for polymers such as fluoro 
polymers and polyimides etc. which are not 
able to be dissolved in a solvent. 
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