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Abstract: Mass transport through thermally activated molecular 

dispersal (diffusion) in multicomponent mixtures comprising 

membrane systems can exhibit complexities which require 

different levels of physical and theoretical descriptions of 

which we give examples. At the simplest level mean field level 

component flows are derived from gradients of chemical 

potential. We will focus primarily in our talk on the mean 

field description in homogeneous or inhomogeneous polymer 

systems. Penetrant diffusion in homogeneous "rubbery" polymer 

films or membranes can be relatively successfully described by 

a simple "free volume" theory. Inhomogeneities due to e.g. 

polymer crystallinity are a further complication and are an 

essential aspect in diffusion in very porous systems such as 

rigid polymer foams. Further complications arise in 

mechanically relaxing polymer films with memory which are not 

in mechanical equilibrium. Such effects as well as penetrant 

stress driven diffusion and dual mode sorption can arise in 

polymer penetrant systems below their glass transition 

temperature. 
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Mass transport through thermally activated molecular dispersal 
(diffusion) in multicomponent mixtures comprising membrane systems can 
exhibit complexities which require different levels of physical and 
theoretical description. If not only the average number density of 
diffusing particle species but also their local fluctuations (in space 
and time) play a significant role in specifying the dynamics of diffusion 
then the system has to be described at least at the level of a 
statistical mechanical master equation1 . We give two examples of such 
situations: First this occurs in the diffusion of molecules along the 
contours of a few membrane macromolecules whose hopping is aided by 
rapidly fluctuating cofactors with which the molecules have to 
cooperatively bind at saturating sites of the macromolecules. A second 
much recently studied2-3, example is afforded by diffusion-limited 
reaction processes. Fluctuations play an important role because fast 
reactions imply that particles react mostly with their immediate 
neighbors.2,3 As a result "mean field" hydrodynamic equations 
specifying the local mean concentration changes expressed as a sum of one 
term describing changes due to diffusion and another due to the chemical 
reactions fail to apply. Under certain initial and boundary conditions 
this failure is difficult to see (as numerical simulations show) if one 
follows a single macroscopic parameter-such as the total flow up to time 
t of the membrane of reactants - for permeation in a membrane subject to 
strongly diffusion controlled non-linear reaction kinetics4 . In 
particular entities, satisfying particle conservation, like the time lag, 
L, to achieve steady state permeation are universal4 (i.e. depend only 
on initial and boundary conditions but not on details of the progress of 
the chemical reaction). 

The simplest level of a "mean field" description fortunately suffices 
in many instances.5 When the systems are in mechanical equilibrium as 
a wholes the various component flows can be derived from the gradients 
of chemical potentials (in electrically charged systems the gradients of 
the electrochemical potentials) which can also reflect temperature, 
pressure, etc. gradients if these are present. Interface effects can be 
relegated at this level to suitable boundary conditions. "Faciliated 
diffusion" requires a multiplicity of vectorial flows of species and 
carrier species in a membrane6. Care must be exercised in specifying 
the various coupled flows and fluxes taking-proper account of the frame 
of reference particularly in systems which swell and exhibit significant 
volume changes on mixing.5,7 Coupling of diffusive flows with 
sufficiently "slow" chemical kinetics can occur and can sometimes be 
treated adequately phenomenologically at a mean field, "hydrodynamical" 
level as in theories of "active transport".6 

To review the whole "mean field" theory of diffusion in all membranes 
is outside the scope of a single paper but we will highlight many 
concepts and theories of the diffusive transport of small molecules 
(which we call penetrants) in homogeneous (and to a lesser extent 
inhomogeneous) polymer membranes and films. In the next section we will 
briefly classify the varietiesB-11 of penetrant diffusion behavior in 
polymers within the context of their almost ubiquitous experimental 
measurement. 8 Succeeding sections deal with specialized topics such as 
certain diffusion anomalies and their description at or below the glass 
transition temperature, Tg, of the polymer-penetrant system and the 
outline of "free volume" theoryB,9,12,13 of diffusion which 
semi-quantitatively correlates diffusion behavior in systems above Tg. 
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We will also briefly describe limiting situations when the very singular 
geometry of some heterogeneities produce new diffusion effects. 

Measurement and classification of diffusion in polymer membranes 
a. Ideal diffusion 

Permeation of simple gases through thin polymer membranes (natural 
rubber), of thickness i, was already studied by Graham14 a hundred 
and twenty-five years ago. Gases such as nitrogen at one atmosphere or 
less of partial pressure at room temperature dissolve or more correctly 
are sorbed, forming a very dilute penetrant polymer solution at the high 
pressure reservoir side (at partial pressure pin Figure 1) of the 
membrane, diffuse molecularly to the low pressure side (partial pressure 
p=O, for convenience at x=i) and evaporate at that surface into the 
adjacent reservoir. Also shown in Figure 1 is the total flow up to time 
t of gas per unit membrane area out of the membrane as a function oft. 
The rate of total flow increases steadily until a constant steady-state 
value, Js, (the derivative of the linear portion of the curve in Figure 
1) is achieved. Js is the steady state flux (amount of gas per unit 
area and time) out of the membrane at x=i. 

C 

Co 
Q( t) 

p p=O 

steady state 
slope = Js 

X 0 L t 

Figure 1. Permeation cell experiment 

The quantitative relationships underlying such a permeability-cell 
measurement were formulated over a hundred years ago by Von 
Wroblewski.ls Polymers in the rubbery state respond very rapidly to 
changes in their condition, hence mechanical equilibrium is maintained, 
and sorption equilibrium is achieved almost instantaneously as in a low 
molecular weight liquids. Von Wroblewski realized first that the 
solubility of the gas is proportional to the partial pressure above the 
polymer membrane (a consequence of Henry's Law) 

c(x=O,t) = c0 = k0p ; c(x=i,t) = O (1) 

with ko the constant Henry's Law solubility coefficient and secondly 
that at steady state Fick's First Law of diffusion7 (flux is the 
product of the diffusion coefficient times the negative concentration 
gradient) implied the linear law 

(2) 
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This could be combined with eq. (1) to obtain the well-known 
permeability equation8 

Js = D0 kD (pit)= P (pit), 

with P the permeability constant. 

(3) 

Eq. (2) is the basis of the definition of one of the fundamental 
diffusion coefficients obtainable from steady-state diffusive transport, 
the effective diffusion coefficient Deff 

(4) 

which in our special case of ideal or Case I diffusion is given by the 
constant D0 . Since in the usual permeability cell measurement c0 is 
not known one can use the asymptote to the time axis of the flow, the 
time lag, L, shown in Figure 1 as a measure of the time taken to achieve 
a steady state of permeation. From dimensional analysis alone it is 
clear that (for ideal diffusion) L must be proportional to t 2 /D0 

and Daynesl6 showed (for our boundary conditions) that 

(5) 

In the hands of Barrerl7 and his successors this became an important 
method of defining another diffusion coefficient, the time lag diffusion 
coefficient, DL 

(6) 

which for ideal or Case I systems has the constant value, D0 , just like 
Deff· 

Diffusion coefficients can also be defined by sorption studies7 , 8 

into thin membranes of thickness t and fixed area. Even lower 
molecular weight vapors, at room temperature, but sufficiently low 
partial pressure will be sorbed into initially degassed rubbery polymer 
membranes to form after sufficiently long times very dilute 
penetrant-polymer solutions. In that case the relative weight uptake 
Mt/Mm (Mt weight change up to time t, Ha, that after infinite 
time) when plotted versus t 112tt is a curve saturating in time shown 
in Figure 2 with a considerable initial portion whose slope Ra also 
defines a diffusion coefficient, Da 

Da = (1!'/16) R&_. (7) 

Another diffusion coefficient can be defined by the equivalent initial 
slope for the desorption of such a membrane into vacuum, Rs, via 

Ds = (1!'/16) R~. (8) 
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For ideal or Case I diffusion of course Figure 2 also gives the 
desorption relative weight loss and so as expected Da = Ds = D0 • 

Mt/M«> 

1 

0 

initial slope 
Ra, Rd 

Figure 2. Sorption-desorption weight uptake curve 

Concentration distance curves7 ,8 at fixed time t of a penetrant 
diffusing essentially one dimensionally into a sufficiently thick slab of 
polymer whose surface at x=O is maintained at the fixed penetrant 
concentration c0 provides another diffusion coefficient. Choosing an 
experimentally convenient concentration c', c0 >c'>O, Dx(c'), is found 
by introducing Boltzmann's transformation7 into Fick's Second Law of 
Diffusion and solving for the diffusion coefficient 

c' 
Dx(c') = -(l/2t)(dx/dc)c• I xdc 

0 

(9) 

and yields again for ideal diffusion the same constant, Dx(c') = D0 • 

b. Fickian concentration dependent diffusion and effects due to 
heterogeneity. 

The fact that these different methods of measuring the diffusion 
coefficient yield the same number D0 is a consequence of the very 
dilute (Henry's Law limit) penetrant-rubbery polymer solution which is 
being studied. Thus returning to our previous example of nitrogen 
diffusing at room temperature in natural rubber at an applied partial 
pressure p - if that pressure is raised from about one atmosphere to 
several hundred atmospheres the resulting solution is no longer very 
dilute. As a consequence the solubility coefficient kD becomes a 
function of p and the diffusion coefficient D(c) becomes a function of 
the local concentration which varies with position in the membrane. 
There can be several causes8 for this concentration dependence of D: 
In protein membranes in which acidic penetrants diffuse (particularly in 
the presence of some little water vapor) the diffusion occurs from sites 
at which the penetrants are relatively strongly bound. Thus at small 
concentrations where the sites are saturated by previously diffused 
penetrant the diffusion coefficient can, at least initially, decrease 
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with concentration. Also, particularly with organic penetrants, in 
organic, rubbery polymers (even at partial pressures below one 
atmosphere) non-dilute solutions are formed in which the segmental 
mobility of the polymer is enhanced by "plasticization" due to the 
organic penetrant. This produces strikingly large increases in D(c) with 
increasing c which we will further discuss later under the context of 
"free volume" theories of diffusion. For partial pressures of only a few 
atmospheres, a rough engineering measure of whether or not a limiting 
very dilute penetrant-polymer solution is formed is given by the critical 
temperature, Tc, of the penetrant. Thus if Tis the ambient 
temperature at which the transport process is carried out a value T>Tc, 
suggests that a very dilute solution is attained in which Case I or ideal 
diffusion is observed. If on the other hand T~Tc then significant 
departures from ideal diffusion are generally observed. 

Another set of complications arises because real polymer membranes 
are accidentally or with intention inhomogeneous. 7 , 8 These 
inhomogeneities arise due to domains of phase separation in polymer 
blends or block copolymers, crystalline regions (with highly restricted 
access of the penetrant) in crystalline polymers and fillers which might 
be added to strengthen the membrane, etc. Providing the differential 
geometry of these domains is sufficiently smooth and we are dealing with 
systems above their glass transition temperature under conditions of 
mechanical equilibrium and under experimental circumstances in which 
there are no gradients in temperature or pressure (i.e. T and pare 
fixed) we can often describe diffusive transport with two functions of 
position iand concentration c. These are the penetrant component 
mobility relative to the polymer component, md (~c), and the 
thermodynamic partition coefficient, k(f";c), which is the reciprocal of 
the local activity coefficient, i.e. activity= a= c/k. Both are also 
functions of T and p. Under these conditions relaxation effects and 
their memory, penetrant stress effects, flow, and inertial effects are 
negligible. The local chemical potential of the (uncharged) penetrant, 
µ, can be given by its instantaneous value at each location 7, (R gas 
constant) 

\J = µ0 (T) + RT R.n [c/k(°t,c)], (10) 

with µ0 (T) determined only by the reference standard state. The 
vectorial flux of penetrant 7 at--, and time t is given by nonequilibrium 
thermodynamics5 by the generalization of Fick's First Law ... .... 

J = -~(r,c) c gradµ, (11) 

where the coefficient of grad \J is the single Onsager coefficientS 
necessary to specify the flow in this "two component" penetrant polymer 
system. In a region devoid of sources or sinks of penetrant we also have 
penetrant mass conservation (essentially Fick's Second Law) 

ac d' -,. at,= - 1V J . (12) 

Combining eqs. (10)-(12) yields a diffusion equation, which has actually 
the form of a Fokker-Planck equation1 (k being given by equilibrium 
statistical mechanics and is such that microscopic reversibility is 
maintained) 
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!~= div {DT etc) k(i,c)grad[c/k(r':'c) 1} 

with the thermodynamic diffusion coefficient9 

(13) 

(14) 

Two simplifications of eq. (13) arise in the absence of explicit 
inhomogeneities but in more concentrated systems with concentration 
dependence when k = k(c), md=md(c), DT = DT(c) (grad c/k(c) = 
d(c/k)/dc grad c) and (13) becomes in thin films or membranes where 
diffusion is one dimensional (say along the x axis, O<x<i) 

ac 
;Jo(c) ~1 n:= ax 

with 

D(c) = DT(c) ll - ~1 dR.nc · (15) 

Such systems are called "Fickian" if sorption equilibrium is attained at 
the boundaries, 9 ,18 e.g. in a permeation cell c(x=O,t) = c0 , 

c(x=R.,t) = o and c(x,O) = O. Under these conditions if one measures 
various diffusion coefficients using eqs. (4), (6)-(9) one obtains 
different functionals of the concentration dependent diffusion 
coefficient D(c), all functions of c0 • Thus as shown by Barrerl7 the 
effective diffusion coefficient is obtained by direct quadrature of the 
steady state version of eq. (15) yields the mean diffusion coefficient 
D(c0 ), (cf. eq. (4)) 

C 
Deff(c0 ) = Js/(c0 /R.) = D(c0 ) I 0 o(c)dc/c0 . (16) 

0 
The time lag diffusion coefficient is (obtainedl9 from a conservation 
condition involving only the steady state concentration and D(c)) 

l/6 [I D(c)dc]3 

C., C:.o 
I dw wD(w) I D(u)du 

(17) 

0 "'V,f' 

Even for physically realistic but highly restricted D(c) these two 
diffusion coefficients can be significantly different - e.g. if D(c) is a 
given by power series with positive coefficients or in I D(u)du is a 
convex function of c0 then 

From extensive numerical simulations, Crank7 recommends the empirical 
"weighted mean" expressions for Da(c0 ) and Dx(c0 ) 

Co 
Da(c0 ) = (~/16)R&(c0 ) = pc0P I cP-l D(c) de (19) 

• 
with l.62<p<l. 75 and "best" p = 1.67 (=5/3) 
and 
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with 1. 72<q< L 89 and "best" q = 1. 85. The concentration-distance 

diffusion coefficient7 is e' 
Dx(c') = -(l/2t)(dx/dc)c• I xdc = D(c'). (21) 

Clearly different methods of m:asuring diffusion coefficients yield now 
different values - just as in analogy-different ways of measuring the 
mean molecular weight of polydisperse polymers define different 
molecular weight averages. We have not commented on frame of reference 
corrections. In swelling thin polymer membranes in the x direction 
(measured from the edge of the sample) the concentration c should be 
chosen to be the volume fraction of the polymer and D(c) is then the 
polymer fixed binary diffusion coefficient.7,8,12,13,17 

For explicitly inftomogeneous polymer membranes without concentration 
dependence (ideal diffusion) can be described by functions of location, 
r, k=k(r) and DT(r) = D(r). These are really stochastic variables 
whose distribution is rarely known with any confidence. In many standard 
crystalline polymers the simplest statistical parameter the volume 
fraction of crystalline polymer, ~c can differ easily by more than 5% 
when determined by different methods - density, X-ray or infra-red. In 
any case eq. (13) now reduces to 

... ... .. 
= div{D(r)k(r)grad[c/k(r)]}. (22) 

Even the steady-state solution of this equation has resisted all efforts 
except for specialized cases7,8,4 of regular periodic arrays, very 
dilute dispersions of one convex shape or lamellar media where k=k(x) and 
D=D(x), etc. Thus Deff is only known in these special cases more 
generally there are strict bounds and various variational 
approximations20,21 for Deff and the time lag Lis a known functional 
of the steady state concentration22. Using a short time eikonal 
asympototic development of the Laplace transform of the solution of eq. 
(22) one finds 23 that for initial sorption into a slab of volume v with 
plane faces at x = o,t one obtains instead of (7} or (19) 

Da = {.l 1 <kl/2c~o-114(i:·")>o + 
2 L<co3/4cr')k112c1>>-1>0 

<k(r)>v 

(23) 

where< . .. > 0 ,t is the surface average over the surface X=O or t and 
<.-->vis the volume average. Numerous results in special 
heterogeneous model media have been obtained7 , 8 by Barrer, Ash, Barrie, 
Petropoulos, Roussis, Grzywna, Crank, etc. The main point is that in 
heterogeneous media different experimental diffusion coefficient 
measurements can result in widely different values. 

The temperature dependence of diffusion of gases and vapors in 
rubbery polymers at temperatures far from Tg satisfies8 an apparent 
Arrhenius dependence for Case I diffusion but in more concentrated 
penetrant-polymer solutions one sees often departures from the constancy 
of the diffusion activation energy as the glass transition temperature is 
approached9. 

Table I summarizes the diffusion behavior of penetrants in polymer 
membranes? ,8,ll. 
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Table I 
Diffusion Behavior of Penetrants in Homogeneous Polymer Membranes 

T>Tg 

Ideal or Case I diffusion 
kD independent of p 
D=Do independent of 
concentration. 
For T>>Tg, Arrhenius 
temperature dependence 
of D 

Concentration dependent 
diffusion D=D(c) 
ko can depend on p. 
Sorption equilibrium 
generally attained 
at boundaries. 
Fickian diffusion 
Free volume behavior 

c. Diffusion in glassy polymers 

T<Tg 

Dual Mode Sorption 

Non-Fickian Diffusion 

Memory effects and 
"time dependent" diffusion. 
Diffusion anomalies in 
sorption and permeation 
Concentration dependent 
dual mode sorption 
Crazing and mechanical 
failure of polymers in 
which diffusion occurs. 

Diffusion in glassy polymers involves complex phenomena which are 
incompletely understood7-9.ll,12,13,24 . Just below the glass 
transition for a penetrant-polymer system (whose Tg differs at least 
somewhat from that of the pure polymer and depends on concentration) the 
segmental micro-Brownian motion of at least some small fraction of the 
polymer chains is drastically slowed down. As the temperature is further 
reduced an increasing fraction of the chains in the sample have backbone 
micro-Brownian motion which is "frozen" out. This has at least two 
consequences for the sorption of another penetrant molecule and its 
molecular dispersal below the Tg of the system. The penetrant molecule 
can be sorbed into a volume region, large enough to accommodate it, 
surrounded relatively intimately, primarily by chain segments of chains 
whose micro-Brownian motion is not frozen out or it can be surrounded by 
segments of a majority of chains whose backbone motion is frozen out. 
The absence of a classical isotope effect for penetrants even as small as 
the hydrogen isotopes25 suggests that no free penetrant center of mass 
motion occurs even above Tg but that penetrant motion is mechanically 
coupled directly to that of the chain segments surrounding the 
penetrant.13 The penetrant surrounded and moved along by segments of 
chains whose backbone micro-Brownian motion is not frozen out is by 
virtue of the considerable segment mobility of these chains much more 
mobile than the penetrant molecules surrounded by segments stemming from 
chains whose backbone is frozen out. We can speak of a "rubber" segment 
environment and one (or more) "glassy" segment environments of a 
penetrant. Probably finer future experimental techniques will reveal a 
multiplicity of "glassy" segment environments depending on the fraction 
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of more or less immobilized segments surrounding a penetrant in such an 
environment. But for the present simplifying to only one such "glassy" 
environment we have the basis of seeing different sorption behavior -
dual mode sorption. 13 ,24 , 26 In one case we have sorption involving 
relatively rapidly moving sites (Henry's Law sorption in a dilute system) 
due to the large unfrozen chain segment mobility surrounding the 
penetrant. In the other case we have sorption into relatively immobile 
sites, which can saturate, and can thus be approximately described by a 
Langmuir isotherm. The situation is complicated by the second 
consequence that restricted mobility of both chain segments and penetrant 
motion prevents rapid establishment of equilibrium chain configurations 
throughout the sample. Thus the observation of dual mode sorption below 
Tg can be mitigated by the thermo-mechanical history of the sample. 
Further observed complications require augmentation of the diffusion 
equations by terms arising from mechanical relaxation effects or 
penetrant stress driven effects27-29, These questions will be more 
fully considered in my talk. Not only new physical techniques but our 
ability to numerically simulate diffusion in polymers30 will help 
elucidate this field. 
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