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ABSTRACT: Time-dependent scattering functions have been numerically calculated from a 
rigorous version of the Rouse-Zimm theory for different values of the scattering variable, the chain 
length and the hydrodynamic interaction. These functions can be directly related to measurements 
of quasielastic light scattering from flexible polymers in solution. The results are analysed and fitted 
to simple functions commonly employed in the treatment of experimental data. Changes in the 
values of the fitting parameters with chosen time ranges are studied. A description of the scattering 
functions from the theoretical values of their first, second, and third derivatives at short times is 
considered and discussed. Also, a simple approximate formula is derived. This formula gives a 
reasonably good description of the exact results for many realistic cases. 
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Polarized quasielastic light scattering measure- relations 
ments from flexible polymers in solution are now 

g(2>(t) =I+ [g(l >(t)F 

g(1>(t)rxP(q, t). 

(2) 

(3) 

frequently made since they provide useful infor-
mation on the translational motion and the internal 
dynamics of polymer chains.1 - 5 For small values of 
the scattering variable, q= I q I, this technique yields 
a direct estimation of the translational diffusion 
coefficient. However, the internal motions intervene 
for higher values of q and presentation of the infor
mation takes on a somewhat more complicated 
form. 1 In order to compare the experimental time
correlation function of the polarized scattered light 
intensity from a chain composed of N + I identical 
isotropic scattering centers with theoretical calcu
lations, the "intermediate scattering function" is 
defined as 

where r;0 and r/ are the positions of the scattering 
centers i andj at times zero and t with respect to an 
external frame. 

In a typical homodyne experiment with a digital 
autocorrelator, the normalized intensity corre
lation, g(2l(t), is related with P(q, t) through the 

* To whom correspondence should be addressed. 

The traditional treatment for the functions P(q, t) 
obtained from the experiments has been to fit them 
to the sum of a few exponentials. These fittings 
provide a set of parameters that can be interpreted 
in terms of molecular motions. 

From a theoretical point of view, the most usual 
representation of the dynamics of a flexible polymer 
is provided by the Rouse-Zimm model6 applicable 
to the low frequency behaviour of Gaussian chains. 
This model considers hydrodynamic interactions 
between statistical units and predicts a multiexpo
nential form for scattering functions. Due to the 
complexity of the calculations only a few numerical 
results for P(q, t) have been obtained.1 •7 - 10 Some of 
these results are restricted to small values of N 8 or 
small values of x?, the reduced scattering parameter, 
defined by, 

(4) 

where (?') is the mean quadratic radius of 
gyration of the chain. Other calculations/·9 •10 
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though more extensive, are biased by several 
approximations. 

Here, we perform a series of exact calculations for 
the intermediate scattering functions of Rouse
Zimm chains, over a wide range of values for x and 
N. Furthermore, we study several types of fitting for 
these functions over different time intervals to ascer
tain the reproducibility of fitting parameters. 

Our calculations are also useful in testing an 
alternative approach based on the study of the 
short-time first derivatives of P(q, t) that can be 
obtained from the initial slopes in representations of 
In P(q, t) vs. time.U As previously shown, 11 •12 these 
slopes describe the whole function for x-->0 or 
x/ N > 20. However, in the intermediate cases, cor
responding to the highest accessible values of x in 
light scattering experiments with long flexible 
chains, the initial slopes can only describe a limited 
region of the experimental time interval. With our 
numerical results we study the length of this region 
and discuss the applicability of the method to 
different cases. 

We also discuss the possibility of inferring the 
actual shape of the scattering function from four 
parameters related to the theoretical values of its 
first three derivatives for short times. Our approach 
is somewhat parallel, though formally simpler, to 
the study of memory effects in the projection oper
ator formalism for the scattering function, proposed 
recently by Dahler and coworkers, 13•14 yielding 
similar results. 

Finally, we derive an approximate formula which 
gives accurate results for the scattering function 
when sufficiently large values of the combined vari
able xjt are considered. 

I. THEORETICAL EXPRESSIONS 

The aim of this Section is to review or establish 
the different expressions needed for the numerical 
calculation described in Sections II and III. 

Pecora15 obtained an exact expression for the 
scattering function from eq 1 by solving the dif
fusion (Fokker-Planck) equation of the chain. It 
can be written as 

(5) 
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where b is the length of the model statistical unit. 
Other quantities in eq 5 are defined by Zimm's 
matrix equation6 

(6) 

Thus, Q is a transform matrix whose columns are 
the eigenvectors a;k· The eigenvalues are the non-null 
elements of the diagonal matrix A, 

(7) 

while J.lk represents the non-null elements of the 
diagonal matrix6 M, 

(8) 

tk is the relaxation time related to the eigenvalue Jck 
by 

(9) 

where f is the friction constant of the statistical unit 
and K 8 T is the Boltzmann factor. Matrices Hand A 
in eq 6 are defined in the Rouse-Zimm theory.6 The 
elements of A are 

for i=j=O or N 

Aii 
2 for i=j#-0 or N 

(10) 
-1 for I i-JI= 1 

0 for Ji-JJ>l, 

while the elements of H, H;i, depend on the hy
drodynamic interaction parameter h*, 

for i=j (lla) 

(11 b) 

where (R;./ > is the mean reciprocal distance be
tween units i and j. For a Gaussian chain, eq 11 b 
can be written as 

(llc) 

Therefore, the scattering function depends on the 
variables t and q, and several other parameters. For 
our convenience, we reduce the function P so that it 
depends only on two experimental variables and two 
theoretical parameters. With this purpose in mind, 
we introduce 

(12) 

where Dz is the theoretical translational diffusion 
coefficient of the Rouse-Zimm theory/ 6 
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Dz=(N+ l)- 1 (K8 T/f)v0 , (13) 

v0 is the (0, 0) term of the diagonal matrix6 N, 

(14) 

Noticing that Q;0 =(N+1)- 112 for any i, we get 

Dz=(KsTif{tojto (H-')ijJ' (15) 

which is consistent with the result obtained 
from the Kirkwood theory (version 1948)17 with 
a preaveraged Ossen tensor. Therefore, if Hij 
is calculated from eq 11 a and 11 b, eq 15 is valid 
for any chain statistics. 

We also use the known formula for the mean 
quadratic radius of gyration of a Gaussian chain, 

(16) 

where 

Then, with eq 4, 9, 12, and 16 and a previous 
evaluation of the k = 0 term11 of eq 5, the scattering 
function can be expressed as 

N N 

P(x, t/TR)=(N + l)- 2e-<rihl I I 
i = 0 j= 0 

x exp [ -(x/NG)ktl Jlk -I {Qfk+QJk 

-2Q;kQjkexp [ -A.k(t/TR)NG/2xD*]} J 
(18) 

with 

(19) 

Equation 18 allows us to obtain numerical results 
for P for any set of values of N, x, t/TR and h*. 

On the other hand, from eq 5 and the well known 
result that 

N 

I h 2J1k -l(Qik-Qjd2 =b 21 i-j I, (20) 
k=O 

we can obtain11 the short-time first derivative of P, 

I. dP(q, t) 
Im---
r-o dt 
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N N 

= -(N +l)-2(q2KsT/f) I I e-<I16Jq'b'li-jiHij, 
i=Oj=O 

(21) 

or, in terms of our practical variables, 

N N 

=-(N+l)- 2(1/D*JI I e-xli-ji/NaHij, (22) 
i = 0 j= 0 

Also, we introduce here the magnitude DavviDz 
defined by 

Dapp/Dz= -r 1(x)D1 , (23) 

where P(x) is the value of the scattering function at 
time zero, or the form factor, that can be evaluated 
from 

N N 

P(x)=P(q, O)=(N + W 2 I I e-li-MNa. (24) 
i=Oj=O 

When experiments are performed with the homo
dyne detection technique, eq 2 shows that we 

should deal with squared scattering functions. 
Particularly, representations2 of In [P(x, t/TR)/ 
P(x)]2 vs. t/TR have an initial slope, P0 , directly 

related10 to D•vvfD" 

(25) 

Short-time higher derivatives of P(x, t/TR) should 
be difficult to measure. However, as explained in the 
Introduction, we are interested in theoretical values 
of these derivatives in order to analyze the range of 
times for which the derivatives describe the form of 
the function. Equations 5 and 20 lead to the follow
ing results, 

N N 

=(N + l)-2(q2Ks T lf)2 I I e-<l!6Jq'b'li-jl 
i=Oj=O 

X [ Ct/K -lQiKQjKAK y 
+ 3(qb)-2 ktO JlK -lQiKQjKA_K2 J (26) 
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and 

N N 

= -(N + 1)2(q2KBT/f)3 I I e-<1!6Jq'b'li-n 

i = 0 j= 0 

+9(qb)-4JOJ1K-1QiKQjKAK3J. (27) 

In previous work11 we derived the relation 

N 

I J1K- 1Q;KQjKAK=Hij (28) 
k=O 

which can be easily generalized since for any integer 
n, 

N 

I J1K- 1Q;KQjKA.K"=CCQAQ- 1r 1QNQTlj· (29) 
k=O 

Then, eq 7, 14, and 29 give 

N 

I IlK - 1QiKQjKA"=[(HA)"- 1H]ij (30) 
k=O 

Considering also eq 4, 12, 16, and 19, we obtain the 
following expressions for the derivatives as func
tions of the practical variables, 

and 
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d 2 P(x, t /TR) 

d(t/TR)2 

N N 

=(N +1)-2(1/D*)2 I I e-xli-ji/NG 

i=Oj=O 

x [H?J+(NG/2x)(HAH)ij] 

N N 

=-(N+l)-2(1/D*)3I I e-xli-ji/NG 

i = 0 j= 0 

(31) 

(32) 

A similar procedure would easily provide corres
ponding expressions for higher derivatives. 

II. THE SCATTERING FUNCTION 

In this section we report the numerical results 
obtained for the scattering function and the values 
of the parameters obtained from their fittings to 
simple functions of different forms. 

In order to evaluate the scattering function from 
eq 18, the eigenvalues and eigenvectors of eq 6 must 
be calculated. Methods for solving eq 6 have been 
extensively reported by several authors8 •18 •19 in 
recent years (see ref 20 for a detailed discussion of 
those methods). We have found, however, that 
results can be obtained more directly by using a 
standard FORTRAN subroutine, developed some 
time ago. This method allows determination of 
eigenvalues and eigenvectors of the product 
M1 - 1· M2, where M 1 and M2 are two symmetric 
matrices, following a procedure similar to that 
proposed by Lin and Schurr,8 but including the 
calculation of n- 1 . This is not inconvenient, since 
we also use H- 1 to obtain Dz and D* from eq 15 in a 
rigorous evaluation of the scattering function with 
our practical variables. 

The accuracy of our numerical resolution of eq 6 
was tested in several ways. First, we compared the 
eigenvalues and eigenvectors obtained in the free 
draining limit (i.e. with h* =0) with those calculated 
from the following analytical formulas developed in 
this particular case,5•8 

k=O, ···, N 

Qij=N0 cos [n(i+ 1/2))/(N + 1)], 

with 

i,j=O, · · ·, N 

No=(N+ 1)-1/2 

No=[2/(N+ 1)]112 

if )=0 

if J=F-0. 

(33) 

(34) 

(35a) 

(35b) 

The numerical results obtained with the diagonal
ization subroutine are consistent with the results 
obtained from these equations. Moreover, we also 
reproduced the eigenvalues and eigenvectors calcu-
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lated by Perico et a/. 18 for N = 100 and several 
values of h*. 

From the eigenvalues and eigenvectors and eq 15, 
17, 18, and 19, we obtained the scattering functions 
for different sets of the variables. 

Figures 1 and 2 show the results for r P = 

[In P(t/TR)I P(x)]Z vs. tfTR corresponding to N = 10 
and 50, h*=0.25 (the most adequate value11 for a 
non-draining Gaussian chain) and several values of 
x. For small x these functions show a weak de
pendence on N. However, when x'$>N, the de
pendence is strong, and r P undergoes a noticeable 
decrease as N increases. In fact, we obtained a large 
set of results with different values of N and x. The 
corresponding tables are too lengthly to be repro
duced here, but are available upon request.22 We 
compared these results with those obtained pre
viously by one of us10 for N > 20, using approximate 
expressions for the eigenvalues and eigenvectors 
valid for high values of N. Though differences 
between both kinds of results are smaller than 3% in 
all cases, we think that it is worth performing an 

a: 
I---x· 

0. 
L..-1 

c 
- -4 

0.5 

exact diagonalization since in many cases its perfor
mance is faster than that of the triple sum over N 
involved in eq 18. 

The broken straight lines in Figures 1 and 2 have 
been plotted with a slope equal to the theoretical 
values for p 0 calculated from eq 22 to 25. According 
to eq 25 these straight lines should represent the 
initial single exponential behaviour of the scattering 
functions, as apparent from the figures. It can be 
observed that this behaviour extends to the whole 
time range over the limits x 0, xj N '$> 1 (or l b2 '$> 1) 
as was pointed out earlier.8 •11 

For the intermediate values of x, however, the 
initial behavior continues only within a very small 
time range. Nevertheless, one can extract the initial 
slopes from the theoretical curves in Figures 1 and 2 
with reasonable accuracy. This confirms the pro
cedure utilized in previous work for obtaining 
slopes from the experimental data. 10•11 

In order to ascertain the correctness of the usual 
treatment of the experimental scattering functions, 
we carried out several least-squares fittings for our 

+ X =5 

X =20 

X= 5000 

1.0 
t/TR 

Figure 1. Logarithmic plots of normalized scattering functions versus the reduced time variable for N = 
10 and h*=0.25. (-)exact results;(---) initial slope single exponentials;(-·-·-) results from eq 47; ( +) 
results obtained from the first three theoretical initial derivatives. 
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N 

r::::-' 
X 

a. .... 

--X 

a. ........... 
c 
- -4 

\ 
\ 
\ 
I 
\ 

X:5000 

0.5 1.0 

Figure 2. As Figure I but with N =50. 

theoretical functions, considering different intervals 
of t/TR defined from tfTR =0 to t/TR = 11(t/TR). The 
deviations of these fittings are evaluated as 

(36) 

where Y; is the value of the function to be fitted at 
point (tfTR);, [y(t/TR)]; is the value obtained with the 
fitting function at the same point, m is the number 
of points involved in the fitting, which uses mP 
parameters. We have considered the following poi
nts: (t/TR)=l0- 5 , 0.01, 0.05, 0.1, 0.3, 0.6, 0.9, 1.2, 
and 1.5, taking for each value of 11(t/TR) those of the 
points included within the corresponding interval. 
First we fitted the scattering functions to single 
exponentials, 

(37) 

The parameter K corresponds to Dapp/Dz for 
sufficiently small values of t/TR. The results are 
given in Table I, and Table II shows the correspond
ing deviations. 

It should be considered that, though deviations 
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are small and, in general, could be acceptable from 
an experimental point of view, the chosen range of 
time influences strongly the value of K for in
termediate x. Thus, in order to assert the reliability 
of any parameter fitted from experimental data of 
the scattering function, one must be sure of the 
constancy of its value throughout different realistic 
intervals of time, even when small deviations are 
found. 
A fitting function of the type, 

y=ln [P(x, t/TR)/P(x)]= -K'(tfTR) (38) 

has been also investigated. We obtained numerical 
values of K' which, in general, are close to those of 
K. In any case, the results are much more sensitive 
to the selected time interval than to the choice of the 
fitting method for these two types. We also con
sidered a double exponential fitting of the form 

y=P(x, tfTR)jP(x)=P1e-KMTRJ 

(39) 

whose results are presented in Table III. It is shown 
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Table I. Results for K (parameter of the single 
exponential fitting). The values for !'J.(t/TR)=O 
were obtained from the short-time theoretical 

first derivatives 

N X 

2 
2 
2 
2 

10 
10 
10 
10 

50 
50 
50 
50 

10 
20 

100 

10 
20 

1000 

I 
10 
20 

1000 

0 

1.154 
1.799 
1.835 
1.836 

1.151 
2.268 
2.979 
3.580 

1.153 
2.254 
3.110 
7.727 

0.1 

1.125 
1.787 
1.829 
1.836 

1.105 
2.142 
2.862 
3.577 

1.104 
2.060 
2.794 
7.675 

0.9 

1.058 
1.730 
1.804 
1.835 

1.043 
1.846 
2.560 
3.572 

1.041 
1.779 
2.402 
7.630 

1.5 

1.045 
1.709 
1.795 
1.835 

1.032 
1.786 
2.518 
3.572 

1.031 
1.722 
2.354 
7.630 

N 

2 
2 
2 
2 

10 
10 
10 
10 

50 
50 
50 
50 

Table II. Values of d (deviations) for 
single exponential fittings 

X 

10 
20 

1000 

10 
20 

1000 

10 
20 

1000 

0.1 

1.9 x 10-4 

8.6 X 10-S 
3.9 X 10-S 
7.6 x 10- 7 

2.5 x 10-4 

8.o x 10-4 

7.6 x 10-4 

1.5 X 10-S 

2.5 x 10-4 

1.0 x 10- 3 

u x 10- 3 

2.8 x 10-4 

0.9 

1.8 x 10- 3 

1.8 x 10- 3 

8.1 x 10-4 

1.7x 10- 5 

1.5 x 10- 3 

7.1 x 10- 3 

1.2 x 10- 3 

1.3 x 10-4 

u x 10- 3 

6.6 x 10- 3 

8.2 x 10- 3 

6.1 x w-4 

1.5 

1.8 x 10- 3 

2.3 x 10- 3 

1.0 x 10- 3 

2.1 X 10-S 

1.5 x 10- 3 

7.6 x 10- 3 

1.2 x 10- 3 

1.2 x 10-4 

u x 10- 3 

7.2 x 10- 3 

8.0 x 10- 3 

4.8 x 10-4 

Table III. Results of fittings to the sum of two exponentials 

N X 

2 
2 10 
2 20 
2 1000 

10 I 
10 10 
10 20 
10 1000 

50 
50 10 
50 20 
50 1000 

0.3 

0.974 
0.596 
0.589 
0.889 

0.986 
0.859 
0.707 
0.522 

0.986 
0.918 
0.885 
0.503 

1.5 

0.967 
0.512 
0.502 
0.511 

0.977 
0.730 
0.573 
0.523 

0.979 
0.744 
0.705 
0.557 

0.3 

0.026 
0.404 
0.411 
0.111 

0.014 
0.141 
0.293 
0.478 

0.014 
0.082 
0.114 
0.497 

that for x::::::O, one of the exponentials is clearly 
predominant, while for xjN>p I, the two exponen
tials tend to be similar in weight and shape. 
Behaviour of this kind was predicted by Dahler and 
coworkers through the projection operator for
malism for a free-draining limit. 13 Our fittings 
indicate that this behaviour is also followed for h*= 
0.25, though those authors predict a predominant 
exponential for any value of x in the non-draining 
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1.5 

0.032 
0.488 
0.498 
0.488 

0.023 
0.270 
0.426 
0.477 

0.021 
0.255 
0.294 
0.443 

cases.14 

0.3 

1.012 
1.362 
1.536 
1.694 

1.018 
1.549 
1.901 
3.356 

1.018 
1.610 
2.096 
8.846 

1.5 

1.002 
1.271 
1.485 
1.786 

1.000 
1.334 
1.656 
3.336 

1.000 
1.312 
1.708 
8.714 

0.3 

6.481 
2.444 
2.262 
1.853 

9.554 
6.621 
5.569 
3.824 

10.21 
8.804 

10.33 
6.594 

1.5 

5.541 
2.300 
2.186 
1.887 

6.480 
4.543 
4.668 
3.802 

7.035 
4.370 
5.686 
6.479 

Table IV shows the deviations obtained with this 
fitting. As expected, they are in general significantly 
smaller than those obtained in the single exponen
tial fitting, though variations in the value of the 
parameters with the time range were found, as can 
be observed from the results presented in Table III. 
It should be pointed out that these variations with 
time range for all the different types of fittings 
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Table IV. Deviations of the fittings to the 
sum of two exponentials 

/l(t/TR) 
N X 

0.9 1.5 

2 2.1 X 10- 5 2.6 x 10- 5 

2 10 4.4xl0- 6 1.5 X 10- 5 

2 20 3.9 X 10-6 1.1 X 10- 6 

2 1000 2.8 X 10- 8 2.1 X 10- 8 

10 4.6 X 10- 5 5.9 X 10- 5 

10 10 2.2 X 10-4 3.6 X 10-4 

10 20 1.3 X 10-4 2.3 X 10-4 

10 1000 1.1 X 10- 7 2.0 X 10- 7 

50 5.4 X 10- 5 5.2 X 10- 5 

50 10 3.6 X 10-4 5.1 X 10-4 

50 20 5.4 X 10-4 6.8 X 10-4 

50 1000 3.2 X 10-6 6.4xl0- 6 

analysed here decrease with decreasing N (for N=2 
little change with time range is observed). 

III. APPROXIMATE APPROACHES 

As shown in Section II, it becomes apparent that 
the sum of two exponentials corresponds to a 
reasonable representation of the scattering func
tions for realistic time ranges. Our purpose in this 
section is to investigate the possibility of obtaining 
theoretical parameters for this representation from 
the short-time values of the first three derivatives, 
avoiding this way the calculation of eigenvalues and 
eigenvectors. An approximate formula is also de
rived and investigated. 

Actually, the definitions given in eq 22, 24, 31, 
and 32, together with eq 39 lead to the equations 

P,o+p2o= 1 

-P,oK,o -P2oK2o=D, 

P, o(K,o)2 +P2o(K2o)2 =D2 

- P, o(K, o?- p2 o(K2 o)3 =D3 

(40) 

(41) 

(42) 

(43) 

where P1°, P2°, K1°, and K2° symbolize the values of 
the parameters P1 , P2 , K1, and K2 obtained from the 
scattering function in the short-time limit. 
Therefore, our approach consists in calculating 
theoretical values of D1 , D2 , and D3 from eq22, 31, 
and 32, and also solving the non-linear system 
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Table V. Values of the parameters P 1°, P2°, 
K, 0 , and K2 ° obtained from the theoretical 

first three derivatives of the scattering 
functions for short times 

N X pO 
I p20 K,o Kzo 

2 0.980 0.020 1.028 7.406 
2 10 0.633 0.367 1.394 2.498 
2 20 0.618 0.382 1.554 2.290 
2 1000 0.502 0.498 1.786 1.886 

10 0.998 0.002 1.096 36.802 
10 10 0.908 0.092 1.685 8.018 
10 20 0.769 0.231 2.048 6.076 
10 1000 0.534 0.466 3.361 3.830 

50 1.000 1.139 234.40 
50 10 0.994 0.006 2.035 40.25 
50 20 0.979 0.021 2.603 26.65 
50 1000 0.429 0.571 9.035 6.742 

represented by eq 40--43 (whose numerical treat
ment is very simple), and comparing the theoretical 
parameters so obtained with those calculated by 
fitting the scattering functions over different time 
ranges. Table V summarizes the results for the 
theoretical parameters. 

A comparison between Tables III and V shows 
that the short-time parameters are dramatically 
different from those obtained with larger time 
ranges for high values of N. Figures 1 and 2 shows 
how these differences are propagated to the values 
of the scattering functions obtained from P 1°, P 2 °, 
K1 °, and K2 ° with respect to those calculated di
rectly. It is observed that differences are large in the 
intermediate region of values for x. In fact, the 
approximate results obtained with the theoretical 
parameters are comparable in accuracy to those 
predicted from the initial slope (i.e., just considering 
the first derivative), for some of the intermediate 
instances. 

We think that the method outlined in this Section 
is somewhat equivalent to that of Dahler and 
coworkers13 •14 who use the technique of calculating 
memory effects in a projection operator procedure 
previously proposed by Akcasu et a/.23 The latter 
method needs more intricate mathematical treat
ment, involving complicated expressions. As an 
advantage Dahler's method is susceptible to general 
application to detailed polymer structures so that 
the Rouse-Zimm model corresponds to the simplest 
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possible case. In order to analyze the results ob
tained by both procedures, we calculated some 
values of our theoretical parameters directly com
parable with those plotted in Figures 1 and 2 of ref 
14. The comparison, shown in Figures 3 and 4, 

shows that both sets of results are consistent for 
small values of the hydrodynamic interaction pa
rameters, though some very remarkable differences 
are found at higher values of h*, except for K2°. 
From the analysis of the results, it may be con-

* 0 
0 

::.::: 

01 
_g 

0 
log (qb) 

Figure 3. Logarithmic plots of the reduced exponential parameters K 0 = K1 ° (below) and K 0 = K 2 ° 
(above) vs .. qb. The curves represent the results from ref 14 with h*=O (solid curves), h*=O.l (dotted 
curves), and h* =0.5 (broken curves). Our results from the three first derivatives are also represented for 
h*=O ( + ); h*=O.I ( x) and h*=0.5 (e). See text for details. 
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Figure 4. Logarithmic plots of the pre-exponential parameters P'=P1° (above) and P'=P2° (below). 
See text for details and Figure 3 for other notations. 

Polymer J., Vol. 14, No. 4, 1982 285 



J. A. EscuDERO and J. J. FREIRE 

eluded that our theoretical parameters are closer to 
the general trend of the fitted parameters cor
responding to the exact scattering functions than 
those obtained from the projection operator pro
cedure. The most important conclusion is, however, 
that both methods fail to predict the correct be
haviour of the actual functions for realistic time 
ranges. It seems that both procedures are biased by 
the short-time approach as is apparent from our 
numerical calculations reported in Section II, i.e., 
that the scattering functions exhibit early devia
tion from the short-time form for most of the inter
mediate values of x. 

Very recently, Ou and Dahler,24 have proposed a 
new projection operator procedure based on the use 
of a set of collective variables which at least in the 
free draining limit, is able to approximate properly 
the form of the scattering function. 

Their method is promising, since it avoids the 
triple sum involved in Pecora's expression, eq 5, 
though it includes the inversion of (N + 1, N + 1) 
matrices which, from a computational point of 
view, is equivalent to calculating the eigenvalues 
and eigenvectors with eq 6 and hinder the derivation 
of simpler, analytical formulas. In any case, we feel 
that more effort should be directed toward estab
lishing a simple theoretical calculation of the scat
tering function, either from a few theoretical pa
rameters easily computed or deriving a direct 
double sum expression that can be reduced to an 
analytical approximate form. 

With this goal in mind, we have obtained an 
approximate theoretical expression for the scatter
ing function. The derivation of this expression starts 
with eq 18 rearranged in the form 

=(N + 1)-2itOjto e-x/i-j/!Na exp {2(x/No) 

x kt/K - 1Q;kQjk exp [ -JckN0/2xD*)(t/TR)]}. 

(44) 
Noticing that 

N 

I flk - 1Q;kQjk exp [ -JckN0/2xD*)(t/TR)] 

={Q exp [ -(N0/2xD*)(t/TR)A]M- 1QT}ij (45) 

and with the help of eq 7 and 8, eq 44 can be 
expressed as 
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N N 

P(x, t/TR)=(N+l)-2I I e-x/i-j//Na 

i = 0 j= 0 

xexp {2(x/N0 )} 

x {exp [ -(N0 /2xD*)(t/TR)HA]A- 1-A -l }ij. 

(46) 

The series represented by the last exponential on the 
right side of eq 46 is only convergent for small 
values of (N0 /x)(t/TR). Thus, the equation can be 
simplified to, 

N N 

P(x, t/TR)=(N + l)-2 I I e-x/i- j//Nae-<H,;fD')(tfTR). 

i=Oj=O 

(47) 
The accuracy of this simple formula is satisfactory 
for most of the realistic range of values of (N0 /x) 
(t/TR) as can be seen from Figures 1 and 2. In 
certain cases, employing more terms in the series 
can be useful. However, these additional terms 
imply the introduction of positive exponents which 
in most cases represent a serious disturbance in the 
convergence, unless a sufficiently high number of 
terms is considered. 

Moreover, it should be remarked that the ap
proximate function would not be adequate in the 
unrealistic free draining case, for which eq 47 gives a 
single exponential plus a constant. For the realistic 
cases studied through this work, the expression is 
only a poor approximation in the case x= 1, for the 
highest values of (t/TR). Therefore, we think that 
eq 47 can be useful in estimating the scattering 
function for intermediate values of x/N0 which 
cannot be studied in any other simple way. 
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