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ABSTRACT: The applicability of six equations of state, one of which was newly proposed by 
us, to n-alkane liquids was examined with respect to the corresponding states principle. Among the 
equations of state for hard spheres combined with the attractive energy of the van der Waals type, 
our new equation (the FHN equation) reproduced fairly well the observed thermodynamic 
relations, and the reduction parameters calculated by this equation were least dependent on 
temperature. The Flory equation also gave equally good results. When the equations of state for 
hard spheres were combined with the Lennard-Jones (m, n) potential, the Thiele equation gave 
better results than other equations. Furthermore, the Flory and FHN equations with the van der 
Waals attractive energy were compared with each other for pure polymer liquids and some small 
molecules except for n-alkanes. The FHN equation gave better agreement with the experimental 
values of the specific volume and the thermal expansivity than did the Flory equation. Also, the 
FHN equation was more satisfactory for the pressure dependence of polymer liquid volumes. 
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The Flory theory' ·2 which takes the equation of 
state into account has been applied to various non­
polar mixtures including polymer solutions. 3 -? This 
theory is formulated on the corresponding states 
principle and evaluates the reduction parameters, 
p*, v* and T*, from thermodynamic properties of 
the liquid such as the molar volume V, the thermal 
expansivities a, and the thermal pressure coefficient 
y. This method of evaluation of reduction param­
eters may be better than other methods (which 
use, e.g., data for the second virial coefficient of the 
gas and the critical constants) when the dense fluids 
at low temperature (far from the gas-liquid critical 
temperature) and specially polymer liquids are 
treated. However, reduction parameters, which 
should be independent of temperature, obtained by 
Flory's method vary with temperature. This leads 
to the conclusion that the theory is incapable of re­
presenting the P-V- T relation well. 

Longuet-Higgins and Widom8 obtained an equa-

* To whom correspondence should be addressed. 

tion of state by combining the hard-sphere re­
pulsion with the van der Waals attraction and 
showed that its use gave a good representation of 
the melting point of argon. We refer to this equation 
as the van der Waals-like equation of state. The 
Flory equation can be regarded as one of the van 
der Waals-like equations of state. Many kinds of 
van der Waals-like equations have been proposed 
up to the present.9 It is interesting to transform 
these equations to the reduced form as done by 
Flory and discuss their applicability to normal 
dense fluids. 

In this paper, we deal with six van der Waals-like 
equations of state: the van der Waals, 
Guggenheim,10 Frisch,'' Thiele, 12 and Flory equa­
tions, and the new equation proposed by us. First, 
the applicability of these equations to n-alkanes, 
which are suitable for a valid test of the correspond­
ing states principle, is examined, and secondly, the 
liquids of other small molecules and polymer liquids 
are treated. Further, the volume dependence of the 
configurational energy is examined. 
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THEORETICAL 

If a pair potential u(r) is specified by, 13 

u(r)= + oo (r<o) 

(1) 

(r;=;:a), 

the configurational energy E(n) of the system is 
given by, 

E(n)= -( fnNa)n (2) 

where r, a, N, n, and a are the distance between two 
molecules, the diameter of the hard sphere, the 
number of molecules, the number density NjV, and 
a positive constant characterizing the energy of 
interaction for a pair of hard spheres with an 
attractive energy, respectively.'3·14 

The equation of state derived from eq 2 is, 

pjnkT=h(n)-anjkT, 
2 

a=-na 
3 

(3) 

The function h(n) is the integration constant and 
may be identified with the equation of state for the 
system of hard spheres of diameter a. The second 
term anjkT is the attractive energy term. Equation 3 
is called the generalized van der Waals equation of 
state. 15 For a system of chain molecules, eq 3 may 
be extended to, 

pjn,kT=h(n,)c-an,jkT (4) 

where n,=NrjV, r, the number of segments, c, a 
scaling parameter related to the entropy of the 
system/6 and 3c, the external degree of freedom 
used by Flory. 

The expressions for h(y) of the van der Waals, 
Guggenheim, 10 Frisch/ 1 Thiele, 12 and Floryl·2 

equations of state are as follows: 

h(y)=(l-y)-1 (vdW) (5) 

h(y)=(l-y)-4 (Guggenheim) (6) 

h(y)=(l +y+y2)j(l-y)3 (Frisch) (7) 

h(y) =(I +2y+ 3y2)j(1- y)2 (Thiele) "(8) 

h(y)=(l-yl/3)-l (Flory) (9) 

where y is defined by, 

y=(NrjV)b0 (10) 
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where b0 is the volume of a hard sphere. The 
original van der Waals equation of state is repre­
sented by, 

h(y)=(1-4y)-l (II) 

But in this study we use eq 5, since if eq II is 
adopted, the volume of the system at T=O is four 
times the core volume of the system. 

Now let us consider the equation of state, 

h(y)=(l-y)-d (12) 

Equation 12 coincides with eq 5 ford= I and with 
eq 6 for d=4. Here, we take d to be 2, and call eq 12 
for this d the FHN equation, i.e., 

h(y)=(l- y)-2 (13) 

If each eq 5-9 and 13 is substituted into eq 4 and 
transformed to the reduced form, we obtain the 
reduced van der Waals-like equation of state, 

Jlv/T=H(v)-1/vf (14) 

Expressions for H (V) are given as, 

H(v)=v/(v-1) (vdW) (15) 

H(v)=v4f(v-1)4 (Guggenheim) (16) 

H(v)= v(v2 + v+ 1)/(v- !)3 (Frisch) (17) 

H(v) = (v2 + 2v+ 3)/(v-1)2 (Thiele) (18) 

H(v) = vl/3 /(vl/3- I) (Flory) (19) 

H(v)=v2/(v-1)2 (FHN) (20) 

The reduced variables v, p and fare defined by, 

v=vjv* 

T=T/T* 

p=pjp* 

(21) 

(22) 

(23) 

where v*, T*, and p* are the characteristic volume 
per segment, temperature and pressure, respectively, 
and given by, 

v*=b0 

T*=ajckv* 

p*=ajv*2 

(24) 

(25) 

(26) 

with v* the core volume of segment. In this study, 
we evaluate these parameters from the volume v, the 
thermal expansivity a and the thermal pressure 
coefficient y using the following equations at zero 
pressure: 
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H(v)= 1/vf 

(aT)- 1 = 

p*=yTv2 

VERIFICATION OF EQUATIONS 
OF STATE FOR n-ALKANES 

(27) 

(28) 

(29) 

Temperature Dependence of Thermal Expansivities 
The plot of the quantity against 

aT provides a sensitive test of the corresponding 
states principle. This quantity is dimensionless and 
needs no characteristic parameter such as v*, T*, 
and p*. 17 Figure I shows plotted 

aT for n-alkanes and polyethylene. The solid 
lines represent the curves observed by Flory et aC It 
is seen that the experimental curves approximately 
fall on a single curve, thus supporting the validity of 
the corresponding states principle for n-alkanes. 

...... -
-----­...... ----

0.2 

------

0.6 
o<T 

---
... --c_ .......... ---
_j __ 

------

0.8 1.0 

Figure 1. plotted against rxT for n­
alkanes. The solid lines are experimental7 The dashed 
curves are theoretical: a, FHN equation; b, Flory equa­
tion; c, van der Waals equation; d, Thiele equation; e, 
Frische equation; f, Guggenheim equation. 

The dashed curves represent the theoretical 
curves. From eq 28, the relation between 

and aT can be represented as, 

2 v2 [In H (V)]" + v[In H (V)]' 
(1/a ------­

-vln H (V)-l 

+vinH(V)+ 1 (30) 

Equations 28 and 30 give the following expressions 
for the Flory, van der Waals, Guggenheim and 
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FHN equations, 

(Flory) (31) 

= 3 +2aT (vdW) (32) 

(l/a2 )(aa(aT)p=o =(1/4)(- 3/aT +6+ SaT) 

(Guggenheim) (33) 

(l(a2 )(aa(aT)p=o = (1/2)( -I faT +4+ 3aT) 

(FHN) (34) 

respectively, while no corresponding explicit form 
can be obtained from the Frisch and Thiele equa­
tions. The curve calculated from the FHN equation 
comes closer to the experimental curves than do the 
curves from other equations. The values of 
(l(a2 )(aa(aT)p=o calculated according to the Flory 
and van der Waals equations are larger than the 
experimental data; these equations of state give 
linear relations between (I/a2 )(aa(aT)p=o and aT, 
contrary to the experimental results. The differ­
ence between the theoretical and experimental val­
ues becomes smaller at larger values of aT. On 
the other hand, the curves of (1(a2 )(aa(aT)p=o 
calculated according to the Frisch, Thiele and 
Guggenheim equations appear below the observed 
values, but their second derivatives are negative, 
which is consistent with the experimental results. 

Temperature Dependence ofv* and T* 
The characteristic parameters v*, T*, and p* 

should be independent of temperature if the reduced 
equation of state represents exactly the behavior of 
real systems. Before discussing the temperature 
dependence of these parameters, we examine how 
the reduced volume v given by eq 28 depends on aT. 
For the van der Waals, Guggenheim and FHN 
equations, eq 28 gives 

v= I +daT/(1 +aT) (35) 

The dashed curves in Figure 2 have been calculated 
according to these equations of state. The solid 
curves were calculated using the experimental val­
ues for the specific volume v,P and the reduction 
parameter v:P per gram was chosen arbitrarily. (The 
absolute values of v:P doesn't matter in the corre­
sponding states principle.) The Guggenheim, Frisch 
and Thiele equations of state overestimate the de­
pendence of von aT, while the van der Waals and 
Flory equations underestimate it. The FHN equa­
tion reproduces the aT dependence of i5 very closely. 
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Figure 2. v plotted against for n-alkanes. The solid 
curves are experimental. 7 The dashed curves are theoreti­
cal: a, FHN equation; b, Flory equation; c, van der 
Waals equation; d, Thiele equation; e, Frisch equation; f, 
Guggenheim equation. 

Although the Frisch and Thiele equations are more 
rigorous for the system of hard spheres than the 
FHN equation, the results show that these two 
equations, when combined with the van der Waals 
attractive energy, are not appropriate for n-alkanes. 

Using the six equations of state, the average 
temperature dependences of v;P and T* at intervals 
of 10°C are compared in Tables I and II. The FHN 
equation gives the least temperature dependence of 
either of these parameters. The Flory equation also 
gives good results. The results obtained from four 
equations of state except for the Flory and van der 
Waals equations show that the temperature de­
pendence decreases with increasing the chain length 
of n-alkane molecules. 

The temperature variation in v;P and T* pre­
dicted by the FHN and Flory equations is also 
shown in Figure 3. 

Table I. Temperature dependence of volume reduction parameter v* 

x 102 ' 

Alkane 
FHN Flory vdW Guggenheim Thiele Frisch 

c6 -0.2 +0.2 +0.4 -0.9 -1.0 -1.0 
Cs -0.2 +0.2 +0.4 -0.9 -1.0 -0.9 
c,6 -0.1 +0.2 +0.3 -0.6 -0.6 -0.6 
c22 -0.04 +0.2 +0.3 -0.5 -0.5 -0.5 

c36 -0.03 +0.2 +0.3 -0.4 -0.5 -0.5 
Marlex 50 +0.0, +0.2 +0.3 -0.3 -0.3 -0.4 
Marlex 6050 +0.1 +0.3 +0.3 -0.3 -0.3 -0.3 

' The results are shown as average values of relative deviation at intervals of !OoC. 

Table II. Temperature dependence of temperature reduction parameter T* 

(Ti+!O- T,*)/T,* X 102 a 

Alkane 
FHN Flory vdW Guggenheim Frisch Thiele 

c6 -0.4 +0.6 +1.1 -1.8 -2.0 -2.0 

Cs -0.4 +0.4 +0.8 -1.7 -1.8 -1.9 
c,6 -0.2 +0.8 +1.1 -1.6 -1.7 -1.6 

C22 -0.1 +0.7 + 1.0 -1.4 -1.5 -1.4 

c36 -0.1 +0.7 + 1.0 -1.2 -1.3 -1.2 
Marlex 50 +0.04 +0.8 + 1.0 -1.1 -1.2 -0.7 
Marlex 6050 +0.2 +0.9 + 1.1 -0.8 -0.9 -0.5 

a The results are shown as average values of relative deviation at intervals of 10°C. 
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Flory's eq F.H.N.eq. 
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Figure 3. Temperature dependencies of v:" and T* 
calculated from the FHN and Flory equations. 

Thermal Pressure Coefficients and Temperature 
Dependence of p* 

The internal pressure, i.e., the thermal pressure 
coefficient y multiplied by temperature T, is directly 
related to the shape of the configurational energy­
volume curve by, 

= !: (36) 

Consider the curves of yT against rxT for alkanes of 
different chain length. If the corresponding states 
principle holds, these curves should fall on a single 
master curve when shifted by PR * jp* where PR * is 
the reduction pressure parameter for n-alkane ref­
erence. In Figure 4, the experimental values (shown 
by circles) of Flory et aC for C6 , C8 , C16 , C22 , C36, 

and Marlex 50 are plotted against rxT. In this case, 
no shifting was necessary to obtain a single curve 
within experimental error. This suggests that the 
corresponding states principle nearly holds for n­
alkanes and that the end group (the methyl group) 
and the internal group (the methylene group) may 
be quite similar with respect to the intermolecular 
contact energy, as was demonstrated by 
Patterson.17 

Each equation of state gives yT as a function of 
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Figure 4. yT plotted against rxT for n-alkanes. The 
points are experimental. 7 The dashed curves are theoreti­
cal: a, FHN equation; b, Flory equation; c, van der 
Waals equation; d, Thiele equation; e, Frisch equation; f, 
Guggenheim equation. 

rxT if p* is known, as shown in eq 29, i.e., 

yT=p*e-z (37) 

where v is a function of rxT as shown in eq 28. In 
Figure 4, the values of yT calculated from eq 37 
according to each equation are represented by a 
broken curve. In calculating these yT-rxT curves, 
p* was taken to be independent of temperature and 
chosen so as to give yT=285Jcm- 3 at rxT=0.3. The 
FHN equation gives a good representation of the 
experimental results. 

If p* is calculated from the experimental values of 
yT and rxT by eq 37 or 29, the value of p* increases 
by 5% in the FHN equation and decreases by 20 
and 25% in the Flory and van der Waals equations, 
respectively, and increases by 15, 20, and 20% in the 
Guggenheim, Thiele and Frisch equations, respec­
tively, over an rxT range from 0.25 to 0.7. 

Consideration of Volume Dependence of Con­
figurational Energy 

In the preceding sections, some equations of state 
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with the van der Waals attractive energy were 
treated. It is interesting to combine an equation of 
state for hard spheres with the Lennard-lones type 
potential. Simha and Havlik18 showed that the 
equation of state derived from the cell theory of 
Prigogine et a!. is valid in the range of a compara­
tively small reduced volume iJ, and that the cor­
responding states principle holds throughout the 
whole range of v. 

In this section, we examine the Thiele equation, 
which is more rigorous for hard sphere systems, 
combined with the Lennard-lones type potential. 
Using the intermolecular potential of the Lennard­
lones (m, n) type, we can express the reduced con­
figurational energy as, 

E- _ 1 ( --m/3 --n/3) ---- nv -mv (v;;;; 1) 
n-m 

=+oo (v < 1) 

or 

E= __ 1_(nv-ml3_mv-nl3) (v;;;;(n/m)3f<m-n)) 
n-m 

=+oo (v<(n/m)3f<m-n)) 

(38) 

(39) 

In eq 39, the reduction parameter v* is expressed by, 

v* =+n ( Y (40) 

where R* is the distance at which the Lennard­
lones (m, n) potential becomes minimum. On the 
other hand, in eq 38, v* is given by (4/3)n(a/2)3 as in 
the previous sections. For the case of (m, oo ), R * 
coincides with a and the results calculated from the 
two potentials described above with each other. The 
schematic representations of eq 38 and 39 for cer­
tain combinations of m and n are shown in Figure 5. 

The reduced equation of state corresponding to 
eq 14 is given by, 

pv mn -;;;-=H(v) _ (v-m!3_ij-nf3) 
T 3(n-m)T 

(41) 

and at zero pressure, 

T= mn (v-ml3_ij-n13) (42) 
3(n-·m)H(V) 

The term H(i5) of the Thiele equation combined 
with eq 38 is expressed by eq 18, but when it is 
combined with eq 39, H(i5) should be modified to, 

998 

-f---+1L....,.!.--.-"2...,. v 

-1 

(A) (B) 

Figure 5. Schematic diagrams of reduced configu­
rational energy E plotted against reduced volume v. (A): 
The equation 38 with the combination of the following 
(m, n): a, (3, oo); b, (3, 12); c, (6, oo); d, (6, 12); e, (9, oo). 
(B): The equation 39 with the following combination of 
(m, n): f, (3, 27); g, (6, 12). 

(43) 

where B is given by, 

(44) 

From eq 4!2, the dependence of rxT on iJ at zero 
pressure is, 

(rxT)- 1 = -iJ[InH(i5)]' -J(i5) (45) 

where J(i5), the term related to the configurational 
energy, is expressed by, 

J (if)= [(m/3)v-ml3- (n/3)v- n/3]/(iJ-m/3- iJ-n/3) ( 46) 

The relation of (Ijrx2)(orxjoT)p=o to iJ is given by, 

(1/rx 2 )(orxjoT)p=o 

v2 [In H (V)]" + v[In H (V)]' + v[J(V)]' 

-v!nH(iJ)-J(V) 

+ v[In H (V)]' + J(V) 

The quantity yT is represented by, 

1 mn 
yT =---p*v-1 (v-m/3 _ 5-n/3) 

3 .n-m 

(4'7) 

(48) 

Figures 6 and 7 show the relationship between 
(ljrx2 )(orxjoT)p=o and ci.T and that between yT and 
rxT, respectively. In these figures, the dashed curves 
(a, b, c, d, e) were calculated by eq 18 and 38. The 
(6, 12) choice among five (m, n) gives good results 
for both (ljrx2)(orxjoT)- rxT and yT -exT. Although 
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the ( 6, oo) choice gives a good representation of the 
relation between (ljrJ.Z)(orxjoT) and rxT, it gives yT 
which decreases rapidly with an increase in rxT. 

0 

..it. 
I-

N 

2 

0.6 0.8 1.0 
o<.T 

Figure 6. (ljrx2 )(i3rxji3T)p=o plotted against rxT for n­
alkanes. The full curves are experimental. 7 The dashed 
curves (a, b, c, d, e) are calculated by combination of the 
Thiele equation and eq 38 with the following (m, n): a, 
(3, oo ); b, (3, 6); c, (6, oo ); d, (6, 12); e, (9, oo ). The 
dashed curves (f, g) are calculated by combination of the 
Thiele equation and eq 39 with the following (m, n): f, 
(3, 27); g, (6, 12). 

& Marie"' 50 

200 

£XT 
Figure 7. yT plotted against rxT for n-alkanes. The 
points are experimenta1.7 The dashed curves are theoreti­
cal; the meaning for a-f is the same as that in Figure 6. 
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The calculation according to eq 39 and 43 was 
carried out for two cases: f, (3, 27) and g, (6, 12). 
The (3, 27) choice leads to the configurational energy 
suggested by Hildebrand19•20 to account for the 
values of (oEjoVh at high densityifor low molec­
ular weight substances. As shown in Figure 7, the 
relation yT- rxT is fairly well expressed by the 
(3, 27) choice. But this choice cannot reproduce the 
observed (1jrx2 )(orxjoT), as shown in Figure 6. The 
choice (6, 12) is not good for representing the 
yT -rxT relation, contrary to the results obtained 
from eq 18 and 38. 

These results show that the Thiele equation 
gives a good representation of the experimental data 
for n-alkanes when combined not with the van der 
Waals energy inversely proportional to volume but 
with the Lennard-Jones (6, 12) potential given by 
eq 39. The results also show that the parameter p* 
calculated according to this equation is almost 
independent of either chain length or temperature 
within experimental error. 

APPLICATION TO OTHER SMALL 
MOLECULES AND POLYMERS 

As shown in the previous sections, when the hard­
sphere repulsive part is combined with the van der 
Waals attractive part, the FHN and Flory equations 
are more suitable for n-alkanes than are the other 
four equations. In this section, we examine the 
applicability of these two equations to other pure 
liquids including polymer liquids. 

It is seen in Figure 8 that the observed relations 
between (1/rx2)(orxjoT)p=o and rxT approximately 

3 

(0 

/"" 
6---/ 

0-1 0-2 0-3 0-4 0·5 
a.T 

Figure 8. The full curves are experimental: I, methyl 
ethyl ketone\ 2, C6 H1220; 3, C6 H5Cl6 ; 4, CCI/0 ; 5, 
C6 H622 ; 6, PIB3 ; 7, PS\ 8, PDMS6 • The dashed curves 
theoretical. 
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Table III. Comparison of v,P, tX, and y calculated from the Flory 
and FHN equations with the experimental values 

V splcrri g- I tXX 103/deg- 1 yjbardeg- 1 

Liquid Temp;oc 
Calcd Calcd Calcd 

Exptl Exptl Exptl 
FHN Flory FHN Flory FHN Flory 

C6H12 25 1.2922• 1.2920 1.2923 1.217• 1.235 1.200 10.67b 10.66 10.66 
70 1.3679• 1.3688 1.3704 1.365• 1.339 1.422 8.08b 8.25 8.23 

C6H6 25 1.1444' 1.1444 1.1447 1.223' 1.227 1.192 12.64b 12.55 12.51 
70 1.2122' 1.2119 1.2133 1.346' 1.328 1.411 9.54b 9.70 9.67 

C6H 5Cl 25 0.909ld 0.9090 0.9092 0.967d 0.984 0.957 13.08d 13.11 13.11 
70 0.9514d 0.9510 0.9518 1.054d 1.026 1.087 10.35d 10.41 10.39 

MEK 25 1.2502' 1.2502 1.2505 1.308' 1.319 1.281 11.42' 11.43 11.42 
70 1.3309' 1.3303 1.3320 1.467' 1.451 1.542 9.91' 8.77 8.75 

CC14 25 0.6311" 0.6311 0.6312 1.229• 1.236 1.201 11.42b 11.32 11.32 
70 0.6688· 0.6686 0.6694 1.363• 1.340 1.423 8.58b 8.7_7 8.74 

PDMS 50 1.0549d 1.0551 1.0558 0.914d 0.902 0.858 6.57d 6.36 6.35 
100 1.1046d 1.1048 1.1051 0.929d 0.940 0.973 4.90d 5.02 5.02 

PIB 50 1.1059' 1.1056 1.1068 0.560' 0.572 0.529 10.19' 10.06 10.04 
150 1.1706' 1.1704 1.1716 0.577' 0.570 0.614 6.78' 6.86 6.84 

• Reference 21. b Reference 22. 'Reference 23. d Reference 6. 'Reference 5. 'Reference 3. 

fall on a single curve, though the tendency of curves 
for polymers is somewhat different from that for 
small molecules. The curve calculated from the 
FHN equation agrees better with the experimental 
value's than that calculated from the Flory equation. 

In Table III, the values of v,P, rx and y calculated 
from eq21 and 27-29 are compared with the 
experimental values.5 •6 •21 - 23 These calculations 
were carried out using the characteristic parameters 
v:P' p* and T* selected at 40°C for the small 
molecules, and at 80, 150, and I oooc for 
poly(dimethylsiloxane) (PDMS), polystyrene (PS), 
and polyisobutylene (PIB), respectively. The values 
calculated for the small molecules from the FHN 
equation are as a whole in better agreement with the 
experimental values than those from the Flory 
equation. Especially, the FHN equation is satisfac­
tory for rx of the liquids examined except for chlo­
robenzene and cyclohexane. For these two liquids, 
the values of rx calculated by the FHN equation 
deviate from the observed values as much as those 
calculated by the Flory equation; the experimental 
values of (ljrx2)(8rxj8T)p=o appear between the val­
ues calculated from the two equations, as seen in 
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Figure 8. It is also noted that the FHN equation can 
reproduce the experimental values of v,P and rx for 
the polymers better than the Flory equation can. 

The values of y calculated from the FHN equa­
tion are nearly the same as those obtained from the 
Flory equation. This arises from the fact that the 
same type of attractive energy, i.e., the van der 
Waals type, is used in both equations. 

Figure 9 shows the pressure dependence of the 
volume of the polymers. Calculations were made 
using the characteristic parameters obtained from 
the data at atmospheric pressure and at the re­
spective temperatures. The results suggest that the 
FHN equation is better than the Flory equation for 
predicting the densities of the polymers at high 
pressure. 

DISCUSSION 

Hildebrand18 •19 and Frank25 maintain that the 
configurational energy E is expressed by 
E= -const.jVm, where m is nearly equal to unity. 
Gee et a/. 26 have estimated m from internal pressure 
data Pi and I!.Hv and obtained m values for C5 , C6 , 

Polymer J., Vol. 13, No. 11, 1981 



Van der Waals-like Equation of State 

.,-----,-------.--.----.---,1 -00 

1-00 

0-99 

0-98 
> 

"' 0-97 
.!!l 

0-96 

0-95 ··--, 

0-99 

0-98 

0 200 400 600 800 1000 
bar 

Figure 9. The full .and dashed curves were calculated 
from the FHN and Flory equations, respectively. The 
dotted curves are experimental. 24 

C7, C8 , C9 , C10 and polyethylene as 1.09, 1.06, 1.09, 
1.10, 1.11, 1.11 and 1.11, respectively. These results 
show that the configurational energy for n-alkanes 
can be expressed fairly well by van der Waals inverse 
volume dependence. The Thiele and Frisch equa­
tions are excellent for application to hard spheres, 
but when combined with the van der Waals energy, 
these do not give a good representation of experi­
mental data. On the contrary, though it is an em­
pirical one and has no theoretical meaning, but 
when combined with the van der Waals energy, 
the FHN equation gives a good representation of 
experimental data for n-alkanes. The fact that 
satisfactory results were obtained by the FHN 
equation may be due to the deviation of n-alkanes 
from a hard sphere model. We again note that the 
equation of state by Flory gives an equally good 
representation of experimental data for n-alkanes. 

The Thiele equation combined with the Lennard­
lones (6, 12) potential in the form of eq 38 gives a 
good representation for experimental data, but the 
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Lennard-Jones (6, 12) potential expressed by eq 39 
is not suitable for the perturbation energy for the n­

alkane system. Patterson et a/. 17 discussed 
(l(c?)(oo.(aT)p=o as a function of rxT, by combining 
Prigogine's smoothed potential cell model for chain 
molecular liquids with the potential energy of the 
(m, n) type. The combination with the (6, 12) poten­
tial yielded the general shape of the experimental 
curves, but the values of (I(rx2)(arx(aT)p=o were too 
large for any values of rxT. They also showed that 
the combination with the (6, 12) potential gave a 
larger temperature dependence of P* than that 
calculated by Flory's theory. We thus conclude that 
the combination of a suitable equation of state for 
the hard sphere model with a suitable configu­
rational energy is essential for accurately predicting 
thermodynamic properties of liquids. 
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