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ABSTRACT: Light scattering from poly(l-butene) films prepared by tubular extrusion 
was studied in order to investigate its crystalline superstructure developed by the crystalli
zation from oriented melts. Analysis of the light-scattering patterns together with electron 
micrographs indicates the existence of a row-nucleated crystalline superstructure whose 
rows are preferentially oriented at angle ±ao with respect to the extrusion (ED). The 
lamellar overgrowth from the nuclei gives a sheaflike crystalline superstructures aligned 
regularly along the nuclei and nearly side by side with their axes preferentially oriented 
perpendicular to the ED. The depolarized and polarized components of scattered light 
from such assembly of the sheaves were analyzed in terms of a paracrystal model of 
Hosemann type. The analyses have yielded information on (i) average size of the sheaf, 
(ii) average intersheaf distance and its paracrystalline disorder, and (iii) average orientation 
of the row nuclei. 

KEY WORDS Light Scattering / Poly(l-butene) / Tubular-Extruded 
Films / Crystalline Superstructure / Row-Nucleated Morphology / 
Interparticle Interference / Paracrystal Model / Oriented Crystalli
zation / 

In a previous article, 1 we studied the morphology 
and deformation mechanism of the crystalline 
superstructure of poly(l-butene) films prepared by 
tubular extrusion. The observed superstructure 
is typical of the so-called row-nucleated structure 
developed by crystallization from oriented polymer 
melts. Figure 1 is a typical electron micrograph 
of surface replicas of the specimens. The lamellae 
are supposed to overgrow from "rows" of nucleat
ing points, initially, in a direction normal to the 
extrusion direction (ED). In the course of its 
overgrowth, however, the growing front occasional
ly branches at some distances and angles in space 
into new lamellae, leading to the development of 
a diverging sheaf of fibrils as shown in Figure 1. 

The sheaves, each of a radius of 3 microns 

* On leave from the Research Center, Mitsui 
Petrochemical Industries, Ltd., Waki-cho, Kuga-gun, 
Yamaguchi 740, Japan. 

(R0 =3 µ) and half an aperture angle of 30 degrees 
(ro=30°) are aligned nearly side by side with their 
axes preferentially oriented perpendicular to the 
ED. Figure 2 represents the typical Hv, Vv, and 
H H light-scattering patterns from the specimens 
and Figure 3, their schematic representations. Im
portant features of the butterfly type Hv scattering 
pattern and the complex Vv and HH scattering 
patterns have been qualitatively described in 
terms of a model of an isolated and symmetrical 
sector with its axis ("sheaf axis," Oy3) oriented 
perpendicular to the ED (Figure 5(a). 1 The 
sector is assumed to be optically anisotropic com
posed of uniaxially anisotropic scattering elements 
with polarizabilities a 1 and a 2 parallel and per
pendicular to the principal optical axis a (unit 
vector along the optical axis). 

The outer four lobes (single hatched) of the Hv 
pattern with scattering maxima at 0=0max,Hv and 
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at azimuthal angles µ= ±,umax and 1r ±µmax have 
been described in terms of the isolated sector 
model. The scattering angles omax,Hv and //max 

of the maximum intensity are shown to be as-

Figure 1. Typical electron micrograph of free 
specimen surfaces. Arrow indicates the extrusion 
direction. 

Hv Vv 

+· r 

sociated with the average size of the sector R0 

and r0 •1 The equatorial two lobes (single hatched) 
of the Vv and HH patterns are also described in 
terms of an isolated model, the scattering angles 

0::i~!~vv and o::i~!~Hh of the maximum intensity 
are reciprocally related to an "average distance" 
between the two opposing fans constituting the 
symmetrical sector. 

The isolated model was shown to be unable 
to account for the inner four lobes (double hatched) 
of the Hv pattern with maximum intensity at 
/t=±[;r/2-(rm)Hy] and ±[ir/2+(rm)Hvl and those 
of the Vv pattern (no hatched). These are pro
posed to arise from an inter-sheaf interference 
of the scattered fields. The angles (r m)Hv and 
(r m)vv are thought to be associated with the angle 
a 0, i.e., an average orientation angle of row
nuclei1 with respect to ED. This prediction may 
be partly confirmed by the observation that the 
elongation of the specimen along the ED system
atically decreases the angle (r m)Hv and (r m)Vv, 

and thus the angle a 0 • 

The isolated model also fails to account for the 
scattering maxima of the meridional two lobes 
(double hatched) of the Vv and HH patterns. The 
scattering is considered to arise from the intersheaf 

interference effect, the scattering angles 0::i';;t Vv 

1--------1 20° 

ED 

I 
HH 

~----;!O, p • A 

Fig. 2. Typical Hv, Vv, and Hn light-scattering patterns from the specimens. P and A indicate 
the polarization direction of the polarizer and analyzer, respectively. The extrusion direction 
(ED) is in vertical. 
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Hv Vv HH 

Figure 3. Schematic representations of the scattering patterns shown in Figure 2, and definitions 
( ) 01'=0 ot•=90 (r ) oµ=o d 01•=90 ofOmax,Hv, /lmax, rm Ilv, max,Vy' max,Vy, m Vy' max,Jlh' an max,J/h• 

and 8~~~,Hh of the maximum intensity of which 
are reciprocally related to the average intersheaf 

distance, d.1 The angle was shown to decrease 
systematically with elongation along the ED, 
indicating that the distance, d increases with 
elongation as may be expected. 

In this article, we will generalize our earlier 
calculations on scattering from the isolated sheaf. 
We will consider scattering from an assembly of 
sheaves in which interference of the scattered fields 
from different sheaves should be taken into 
account. 

MODEL 

First to consider is the scattered intensity from 
the one-dimensional assembly of the anisotropic 
sheaves. The assembly contains N particles 
(sheaves) and its orientation fluctuates around an 
average angle a 0 with respect to the ED. For the 
sake of simplicity we shall assume that inter
ference of the scattered fields from different as
semblies can be ignored, i.e., only the interference 
of the scattered fields from the particles within 
an assembly being considered, and that the assem
blies are oriented in a plane Oy1z 1 perpendicular to 
propagation direction of the incident beam (Figure 
4). 

The sheaf is assumed to be a two-dimensional 
sector oriented in the plane of Oy1z1 as before. 
Orientation of the sheaf axis, Oy3 , fluctuates around 
its average orientation (~=~o, Figure 5(b)), though 
the fluctuations are assumed to be independent 
and not correlated. The displacement vector 
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Figure 4. Definitions of the scattering angle O and 
azimuthal angle ,, and polarization direction <j, of 
incident beam. The unit vectors s0 and s' indicate 
the propagation directions of the incident and scat
tered beams, respectively, and fp corresponds to 
that of the polarization direction of the incident 
beam. The Oz1 axis coincides with the ED. The 
vector Rn is a displacement vector between the 
scattering center and a point of observation. 

between adjacent scattering centers are allowed to 
fluctuate around its average vector, ii according 
to a particular distance statistics described by 
Hosemann. 2 The fluctuation of the distance 
between adjacent particles is assumed to be in
dependent, so that the probability, Hn(z) of finding 
the nth neighbour at a distance, z from a given 
particle is given by a convolution product of 
Hi(z), the probability of finding the nearest 
neighbour at a distance z, 

,,-... ,,-... ,,-...,,-... 
Hn(z)=o(z)Hi(z)Hi(z)· · ·Hi(z) (1) 

where o is Dirac's delta function and H1 occurs 
(n-1) times. 
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+----~----')l,~------=-=-+-Y3 
(Sheaf Axis) 

?-o 

Figure 5. (a) Optically anisotropic sector as a model 
for the sheaflike crystalline superstructure. R0 is the 
radius and r o is half of the aperture angle of the sector. 
a is the unit vector along the principal optical axis of 
the uniaxially anisotropic scattering element. x,ygz, 
and x 4 y 4z4 are the coordinates fixed to the sheaf and 
the polarizability ellipsoid, respectively. The angles 
/3 and w specify orientation of the optical axis with 
respect to radius of the sheaf. 

z1 IEDl 

/·· Assembly of Sheaves 
,' . .., 

1 
l%<:+l)th-sheaf 

/~th-sheaf (i,1-N) 

/,/ . ,,·,' 
/ l • Z3, 

y3 (sheaf axis) 

Figure 5. (b) Relationship among the coordinate 
systems x1y1z1 (fixed to the apparatus), X2Y2Z2 (fixed 
to the assembly) and x3y3z3 (fixed to the sheaf). The 
angle a denotes orientation of the row-nucleus (or 
assembly axis, Oz2) with respect to the ED (Oz1) and t; 
denotes that of the sheaf with respect to the row
nucleus (Oz2), The vector d, is the displacement 
vector connecting the centers of the adjacent par
ticles. The axes Oxi, Ox2, and Ox, are coaxial. 

Orientation of the row-nucleus or the axis of 
assembly, i.e., Oz 2 and that of the sheaf axis, i.e., 
Oy3 are set to be symmetric with respect to the 
ED (Oz1 axis) and the transverse direction (Oy1 
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axis) so that the symmetry of the system matches 
to that of the observed morphology. The two 
dimensional model should suffice for our present 
purpose in studying qualitatively the interparticle 
interference effect in connection with possibly 
existing row nuclei. 

THEORY 

Scattering from an Assembly 
First, consider the scattering intensity, /(11, a) 

from a single assembly oriented at an angle a 

with respect to the ED. If JJ(h, .;) is the scatter
ing amplitude from the j-th sheaf in the assembly 
under a given polarization condition, and Zi1c is 
a displacement vector between the j- and k-th 
scattering centers, the scattered intensity at a 
point of observation located far from the scatter
ing material is given by5 

I(h, a)=(c/8ir) J:,<fif1c * exp (-ih·Zi1c)) (2) 
j,k 

where f * denotes a complex conjugate off, and 
h is the scattering vector defined by, 

h =(2ir / A)(so-s 1) =(2ir/ A)s (3) 

A is the wavelength of light in the medium, and 
c is the velocity of light in vacuo. The vectors 
s0 and s' are unit vectors along the propagation 
directions of the incident and scattered beams, 
respectively. The factor (c/8ir) is associated with 
a coefficient related to the Poynting's theorem in 
the Gauss unit. 5 

The angular bracket < ) denotes an ensemble 
average, i.e., the average overall possible distribu
tions of particles in the assembly with respect to 
spatial distributions of scattering centers and 
orientation of the individual particles. If there 
is no orientation correlation between the indi
vidual particles, and the orientation fluctuation 
is independent of the correlation in the position 
of the centers of each particle, it follows from 
eq 2 that 

I(h, a)(8ir/c) 

=N<lfl 2)+<lfl>2 J:, <exp(-ih·Zi1c)) 
j ,k 

(j,/ak) 

=N[<I f l2)-l(l)l 2] 

+l(f)J 2[N+ J:,<exp(-ih·Zi1c))] 
j, k 

(j#k) 

(4) 
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The double summation may be rewritten as, 

1V j-1 

I;(exp(-ih · Zi1J)= I: [I;(exp(-ih· zj/,) 
j,k j=l k=l 

(}*k) 

N 

+ I: (exp(-ih·Zj1c))] (5) 
k=j+l 

where the first term in the right hand side of eq 5 
is given by 

j-1 j-1 j-1 

11= I: (exp(-ih·z,-J)= I: <TI exp(-i/1-di)) 
k=l k=l i=lc 

where di is a displacement vector between i and 
(i-H)th particles. Since the distance fluctuation 
is independent, it follows that 

j-1:i-1 j-lj-1 

11= I: TI (exp(-ih·di))= I: TI F(h) 
/c:...--::1 i=k k=l i=lc 

= ;I; Fi-k=(F-Fi)/(1-F) (6) 
k=I 

where 

F(h)=(exp(-i/1· di))= ~H1(z )exp(-i/1 · z)dz 

(7) 

The function Hi(z) is the probability of finding 
the nearest-neighbour particle at a displacement 
vector z. 

Similarly 

N . 
12= I: (exp(ih·Zi1c))=[F*-(F*)N-1 +1]/[l-F*] 

k=j+l 

(8) 

where F* is a complex conjugate of F, the Fourier 
transformation of the distance statistics, H1, 
From eq 4-6, and 8, one obtains that 

(//N)(8:r/c)=[(lfl 2)- l(f)l 2]+ l(f)l 2[Z1 +Icf N] 

(9) 

Z1=Z1(h, a)=Re[(I +F)/(1-F)] (10) 

lc=lc(/1, a)= -2 Re[F(l-FN)/(1-F)2] (11) 

It is well known that the first term in the 
right-hand side of eq 9 is responsible for a diffuse 
background scattering of generally weak intensity 
arising from the orientation fluctuation of in
dividual particles and distribution of particle size. 
But the second term, is associated with the 
paracrystalline order in the spatial arrangement 
of the scattering centers in the assembly (l<f>2IZ1) 
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and with a zero-order scattering arising from the 
assembly as a whole, (l(f)l 2Ic/N). 

The distance statistic Hi(z) was first given by 
Prins3' 4 in the exponential form. In stead of 
using this function, we have adopted the function 
introduced by Hosemann, 

H 1 (z) = (2:r )-312(M;xM;.Jd;z)-112 

(12) 

where d is the average distance between adjacent 

particles, and :ld;i are the mean square fluctua
tions of the displacement vector d; between the 
two adjacent particles in i-th direction where i 
may be x 2 , Y2, and z2 axes (Figure 5(b)). The 
Fourier transformation of the function H 1 is 
given by2 

F(h)=IF(h)Jexp[-i(h·d)] (13) 

where 

F(h) =exp[ -(:ld;xh/ + Jd;.h,2 + :ld;,h/)/2] (14) 

The quantities hx, hy, and hz are x 2 , y 2 , and z 2 

components of the scattering vector h. 

In a special case where :ld;x =:ld;. =0, it 
follows that 

Hi(z)=(2:r:Jd;S112 exp[-(z2-d)2/2:ld;z] (15) 

IF(h)J =exp(-Jd,2zh//2) (16) 

In the limit of large distance fluctuation i.e., 
Jd;.--> co, it follows that IFl-->0, and therefore 
the lattice factor Z1 

approaches unity and the zero-order scattering 
Ic(h) 

Ic(h)= -2IFI {[1 + IFl 2]cos (h·d)-2IFI 

-!FIN cos[(N+l)h·d] 

+ 2IFIN+l cos [N(h· d)] 

-IFIN+Z cos [(N- l)h·d]}/ 

[l-2IFI cos (h·d)+ IFl 2J2 (18) 

approaches zero. Consequently the scattered 
intensity in the limiting case is given by eq 9, 
17, and 18 as, 
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1/N =(c/8rr)<I / 12), when M;,->rx, (19) 

Therefore the scattering in the limiting case 
becomes a criterion of so-called "independent" 
sea ttering. 

Scattering from Individual Particles 
The scattered field LlE. from a volume element 

dr within a given sector is expressed, at the point 
of observation RD far from the center of scattering 
material, b/ 

LlE,(r, t)=E0(k//RD)[s' xs' XM]exp[i(h·r)]dr 

(20) 

where E 0 is the magnitude of the electric field 
vector E0 exp (iwt) of the incident beam at the 
volume element dr, and k 0 =2rrf).0 , Ao being the 
wavelength of light in vacuo. The vector M= 
M(r, t) is the oscillating dipole moment induced 
by unit strength of the incident field £ 0 and is 
given in a form, 

M(r, t)=Mi(r)exp[iw(t-RD/c)] (21) 

where c is the velocity of light in vacuo. The 
amplitude M1(r) having a spatial fluctuation in 
scattering material depends upon the size, shape, 
and relative orientation of the polarizability 
ellipsoid of the volume element dr with respect to 
the incident field vector £ 0, as will be discussed 
in the following. It was assumed that the varia
tion of the optical properties of the volume ele
ment with time occurs slowly compared with the 
time-scale of the optical frequencies, so that 
variation in the amplitude M1 with time may be 
ignored. The last term exp [i(h·r)] is the phase 
factor of the scattered field from the element dr 
relative to the scattering center. 

Depolarized and polarized compoments of 
scattered light are detected by observing the 
scattered light through an analyzer. If the polari
zation direction of the analyzer is specified by a 
unit vector O the total scattered field /(h) from 
a sheaf is given by 

/(11)= dr[LlE.(r) · O] 

\"12+r0 111 0 

= ),,; 2-r 0
dr) 0 rdr[LlE.(r)·O] (22) 

The scattering amplitude / thus obtained cor-
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responds to the function f in eq 9. We assume 
that scattering from a large particle can be des
cribed in terms of the Rayleigh-Gans-Born or 
Rayleigh-De bye theories. 5 The assumption is, 
of course, legitimate in our problem. 

The induced dipole moemnt M(r) at the point 
r is given in terms of the coordinate system fixed 
to the polarizability ellipsoid of the scattering 
element, i.e., Ox4y4z4 coordinate (Figure 5(a)), as 
follows: 

(23) 

tP is a unit vector along the polarization direction 
of incident beam, and a is the polarizability 
tensor of the scattering element, relative to the 
medium surrounding the sheaf, i.e., 

(24) 

It is assumed that the scattering element has 
uniaxial anisotropy with polarizabilities a 1 and a 2 

along and perpendicular to the principal optical 
axis and that the surrounding medium is iso
tropic, having polarizability a.. Q is an ortho
gonal matrix of the coordinate transformation 
from OX1YtZ1 to Ox4y4Z4, and E0 is the amplitude 
of the electric field of the incident beam whose 
direction is given in the Ox1y 1z 1 coordinate 
system by a column vector 

tp=(O, sin¢, cos¢) (25) 

where the angle ¢ characterizes the polarization 
direction of the incident beam (Figure 4). 

The induced dipole moment M1 described by 
x 4, y 4, and z4 components can be represented in 
terms of x 1, y 1, and z1 components by multiplying 
M1 in eq 23 by the transposed matrix of Q. 

(26) 

The matrix of the coordinate transformation 
Q may be given by 

(27) 

where Qi is the transformation matrix of the 
coordinate from XiYiZi to Xi+1Yi+1Zi+1 (i=l-3). 
From Figure 5, these matrices are obviously given 
by 
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0 WsRo=Wcos (H-a+r-1'), W=(21rR0f).) sin 0 Q,~( cos a -:nu) a~ 
sin a 

Q.~u 0 

cos f 

sin f 

cos a 

~ni) 
cos f 

The rest of the integral in eq 32 must be numeri
cally calculated. As a special case of interest, 

(29) w=0, which we are going to deal with in this 
article, the integrand is given by 

t-1 -tuv (O · [s' X (s' X M 1)Dw~o 

Qs= 0 tw 
-tuw) 
-tv (30) =oEo{sin ¢[(0· .vi) sin2 (;+a+r-,B)+(O·z1) 

u V w 

where 
u = sin .S sin w 

v = cos .S sin r-sin .S cos w cos r 
w = cos ,8 cos r+sin .S cos w sin r (31) 
1 = (v2+w2)-112 

In determining Q3, Oz4 is taken parallel to the 
optical axis, a, and Oy4 is perpendicular to a 

and in the plane of Oy3z3• The angles .S and w 

are the polar and azimuthal angles of the otpical 
axis a with respect to radius of the sheaf r. 

From eq 20-22, and 26-31, one obtains that 

~
rr/2+ro 

X dr(O" [s' X (s' X M1)D 
rr/2-T o 

(Ro 
X Jo rdr exp (ih·r) (32) 

where 

h·r= -kr sin 0 cos(f +a-µ+r) (33) 

It should be noted that M1 =Mi(r)=Mi(r, r) 
is independent of r but dependent only upon the 
angle r for a homogeneous and anisotropic sector 
for which ai, a2, .S and w characterizing optical 
properties of the sector are constant through the 
space. Furthermore, in case of w =0 (planar 
orientation) or a randomly varying w, the particle 
is centersymmetric. Thus, the phase factor 
exp [i(h · r)] becomes simply cos (h · r). In such a 
-case, it follows that 

~
Ro d (h ) R 2[ sin w.Ro r r cos ·r = o 
o W.R 0 

__ _1__ sin2( W.R0/2)] 
2 (34) 

2 (W2R0/2) 

where 
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x sin 2(f +a+r-.S)l 

+cos ¢[(0· .v) sin 2(H-a+r-.S) 

+(O·z1) cos2 (f+a+r-,8)] 

+p[(O· .h) sin ¢+(0· z1) cos¢]} (36) 

wher p is defined by 

(37) 

Polarized and Depolarized Components of the 
Scattered Light 
The unit vector along the polarization direction 

of the analyzer O was defined by Cabannes6 in 
such a way that (i) for the prarallel polarizer and 
analyzer, i.e., 0=011 , 011 should be in the plane 
of s' and tp, and be perpendicular to s' and that 
(ii) for the crossed polarizer and analyzer, 0=0+, 
O+ should be perpendicular to the plane of s' and 
tP. These are given as follow, 7 •8 

011 = -[cos2 0+sin2 (} sin2 (¢-µ)r 112 

x {sin(} cos(} cos(¢- /l)X 1 

+[sin2 0 sin p cos(¢-11)-sin s'1].v1 

+[sin2 0 cos µ cos(¢- µ)-cos ¢]ki} (38) 

o+ =[cos2 o+sin2 (} sin2(µ-¢)r 112 

X {sin O sin(tt-s{,)X1 

-I-cos O cos¢ Yi -cos O sin¢ z1} (39) 

Apparently, the Vv, Hv, Vn, HH scattering are 
obtained by setting the 0-vector as 011 (¢=0°), 
0/¢=0°), 0/¢=90°), and OJ¢=90°), respec
tively. 

Orientation Distribution 
The scattered intensity l=l(h, a) in eq 9 and 

the particle scattering amplitude f(h, a, f) are 
calculated for a given orientation a of the assembly 
or nucleus, Oz2 axis, and for a given orientation 
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of the sheaf, Oz3• We considered two extreme 
cases in terms of the orientation distributions for 
the nucleus P1(a) and that for the sheaf axis 
pe{;). 

(i) There are no orientation fluctuations of 
the sheaf axes within the assembly, though the 
assembly as a whole has some orientation fluctua
tions with respect to 0zi, i.e., 

P1(a)=exp[-o-a2{sin a-sin ao)2], a0 =35° (40) 

and 

P2(g)=a(;-;o), ;o=-35° (41) 

where a is Dirac's delta function. 
(ii) There are no orientation fluctuations of 

the assembly axes as a whole, but the sheaf axes 
within the assembly have some independent 
orientation fluctuations, i.e., 

(42) 

and 

pe(f) =exp[-a-i(sin; -sin ;0)2], ; 0= -35° (43) 

In the former case, the scattering intensity 
I(/1, a) from an assembly oriented at an angle a 
is given from eq 9 by 

I(/1, a)/N=(c/8ir)lf(h, a, ;0)12 

x[Zi(h, a)+Ic(h, a)/N] (44) 

The average intensity from the system is finally 
given by 

I(h)= [da I(h, a)pi(a) Ir da P1(a) (45) 

In case when N->co and Z1->l as in the case of 
large disorders, 

I(/1)->(c/8ir)N<I fl 2) 

=N(8: )rdalfl 2p1(a) /[dapi(a) (46) 

The independent scattering intensity thus obtained 
is given by a more explicit formula, by substituting 
eq 32 and 34 into eq 46, 

Io ( 2ir ) 4 

I(h)/N-> Rn2 To F(ws, µ) (47) 

where Io is the intensity of the incident beam 
given by (c/8ir)E/, and 
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F(ws, p)=R/ r da P1(a) 

X { [::~:dr(O-[s' X (s' X M1)]) 

X [ si~;~o _ ~~i1
2j;:~{22)Jr / 

(48) 

In the latter case, 

I(h)/N=(c/8ir){(I f(h, ao, rn 2)- l<f(h, ao, ;))1 2 

+l<f(h, ao, g))l 2[Zi(h, a 0)+I,(h, a 0)/N]} 

(49) 

where 

<I f(h, ao, rn 2>= [ d; P2(;)I f(h, ao, rn 2 I 
rd; P2(;) 

l<f(h, ao, ;))1 2 = I cdf P2(;)f(h, ao, ~) I 
rdf P2(;) I 2 

Distribution of the Assembly Size 

(50) 

(51) 

In order to study the effect of size of the 
assembly Nd (d being the average intersheaf dis
tance), on the scattering intensity distribution, 
Ic/N in the second term of right-hand side of 
eq 9 was included. Size distribution of the as
sembly or distribution of N in the assembly is also 
considered by assuming the distribution function 
P(N) previously used in one of our papers,9 

[ (N-N)2]/21v-1 [ (N-N)2
] P(N)=exp --~2 -2- I; exp --2-2-

o-N N=l O"N 

(52) 

where N and a- N are average number of the par
ticles in the assembly and its standard deviation. 
The average zero-order scattering <Ic)av is then 
given by 

2N-1 
<Jc)av= ,6 Ic(N)P(N) (53) 

N=l 
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NUMERICAL CALCULATIONS AND RESULTS 

Numerical calculations of light-scattering in
tensity distribution from the system were performed 
for a special case of w=0° and f,=90° (tangential 
orientation of the optical axis a in the plane of 
the sector). All calculations were performed for 

the sectors with Ro=3µ and ro=30° from the 
results obtained in a earlier work. 1 

The disorder in the interparticle distance is 
assumed to occur only along the assembly axis, 

Oz 2, so that 

Lld;,=Lld;y=O, L1d;z=LJd2 (54) 

The z 2 component of h in eq 16 is given by 

hz=h·z2=-(2rrlA) sin O cos (a-1i) (55) 

by utilizing eq 28. 

100,---,----,----,--,---,-~--,---,---,-----, 

z 
10 

+_ 
N 

0 5 

w 

g R o;; 

I ··········· 0.5 a, -

2 ---- 0.5 20 3 
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Figure 6. Angular dependences of calculated (Z1 + lei 
N) along the assembly axis (µ=a) for an assembly 
oriented at angle a with respect to W=2rr(Ro/2) sin 0. 

d=l.3 Ro. 

Figure 6 shows angular dependences of calculat
ed (Z1 + lei N) along the assembly axis, i.e., at 
1i=a for a given assembly oriented at an angle 
a with respect to Oz1 axis. The lattice and zero

order scattering factors (Z1 + lei N) are plotted as 
a function of a reduced scattering angle W =2rr(Rol 
).) sin O for various sets of the parameters. The 
angular distribution was calculated for a particular 
value of average interparticle distance d=l.3 Ro, 

a lattice disordered parameter g=Lldld=0.5 or 
0.35, an average number of particles in the assem
bly .N = 10, 20, and oo, and its standard deviation 

O"N =3. 
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Figure 7 shows (a) Hv, Vv, and Hn light scatter
ing patterns for an isolated anisotropic sheaf with 
its axis (Oy3) perfectly oriented perpendicular to 
the vertical direction of the apparatus (Oz 1 axis) 
(i.e., a=.;=0), and (b) the corresponding pat

terns for an assembly perfectly oriented along 
the vertical direction (i.e., a=O) with .N=lO, 
crN=3, d=l.3R0 , g=0.5, and c;=.;0 =0° (i.e., 

within the assembly, the sheaf axes are perfectly 
oreinted perpendicular to the assembly axis). 
The value of p in eq 37 was assumed to be -113. 
This corresponds to the case in which scattering 
arises predominantly from the orientation and 
anisotropy fluctuations rather than from density 
fluctuations associated with the term (a2 -a8 ) 

and thus with the third term in eq 36. 
Figure 8(a) represents the Hv, Vv, and Hn 

patterns for the assemblies of infinitely large size, 
i.e., N=oo, and Figure 8(b) represents those for 

assemblies of finite size, N = 10. In both cases, 
the assemblies are oriented at particular angles 
a 0 = ±35° with respect to the vertical or extru
sion direction. No orientational disorders are 
introduced in terms of orientation of the assembly 
axis and of the sheaf axis. Again, it is assumed 

that d=l.3R0 , g=0.5, p= -113 and crN=3. 
Figure 9(a) shows the effect of orientation dis

tribution of the assembly and sheaf axes on the 

Hv, Vv, and Hn scattering patterns for the case 
(ii) in which the sheaf axes have some orientation 
fluctuations with in the assemblies oriented at 
particular angles a 0 = ±35° with respect to the 
ED, while Figure 9(b) shows that for case (i) 
in which the sheaf axes have a fixed orientation, 
fo = -35°, though the assembly as a whole has 
some orientation fluctuations. It was again 
assumed that d=l.3R 0 , g=0.5, p=-113, N=lO, 

crN=3 and cr=5. The assumed orientation dis
tribution functions Pi(a) and P2(f) are shown in 
Figure 10. We assumed that .;0 =-35° from the 
electron microscopic evidence and a 0 =35° to attain 

the best fit between the calculated and observed 
zero-order scattering patterns as discussed later. 
The values for cr=cra=cre0=5 are arbitrarily 
assumed. 

DISCUSSIONS 

As shown in Figure 6, the zero-order scattering 
associated with scattering from the assembly as a 
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Figure 10. Assumed orientation distribution func
tions for the assembly axes, p 1(a) and the sheaf axes, 
ps(f). ao=-fo=35°, a=aa=aco=5. 

whole, i.e., the term associated with Ic/N is im
portant in general only at very small scattering 
angles, typically at W smaller than 2 for the size 
of the assembly studied in this article. This may 
be clearly seen by comparison of curves 1 to 3 
and curves 4 and 5. At larger scattering angles, 
the lattice factor Z 1 associated with regularity in 
the spatial distribution of the interparticle dis
tance plays an important role. As pointed out by 
Hosemann,2 only the first order maximum is dis
cernible at the scattering angle reciprocally related 
to the average interparticle distance a (i.e., w m = 
211:(R0/J.) xsin 8c::::.2n:R0/d=2n:/1.3=4.8, noticing 
that 2d sin (8/2)=2) for systems having the disorder 
parameter g, 0.18;:Sg:$0.35. The greater inter
particle disorders, as in the case of g=0.5, smears 
out the maximum in Z 1• The lattice factor Z 1 

approaches unity at scattering angles greater than 
W mC::::.4.8. At these angles the scattering from 
the system becomes identical to independent 
scattering as already discussed. It may be noted in 
the figure that 

Jim Z1=l, lim Ic/N=N-g 2 

8-tO o-o 

so that (Z1 + le/ N)-> N as 8->0, which is theoreti
cally confirmed from eq 10 and 11. 

Figure 7(a) shows scattering patterns from an 
isolated particle perfectly oriented with its axis 
0y3 normal to the ED or 0z1 direction. The Hv, 
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Vv, and HH patterns from the isolated particle 
qualitatively agree with the experimental patterns 
shown in Figures 2 and 3. The four lobes of the 
Hv pattern have their maximum intensity at 
W = W max and µ=µmax· These angles are related 
to the size and shape of the sector as described in 
a earlier paper. 1 The corresponding patterns in 
Figure 7(b) are those from 10 sheaves, aligned 
parallel to the ED with d=l.3R0 , and g=0.5. 
The Hv pattern is not affected much by the inter
ference, while the Vv and HH patterns are signifi
cantly affected in that (i) the interparticle inter
ference gives rise to the scattering maximum at 
the meridian in the Vv and HH scattering, as was 
found in the experimental patterns, and that (ii) 
the interference also gives a strong zero-order 
scattering for the Vv and HH patterns on the equa 
tor owing to scattering from the assembly as a 
whole. Thus, it is obvious that a better agree 
ment between the calculated and experimental 
patterns may be obtained by introducing the effect 
of interparticle interference. 

The value of d=l.3R0=4µ is assigned, since it 
gives maximum intensity in the meridional v .. 
and HH scattering intensity distributions at the 
scattering angles, as observed in the experimental 

patterns, i.e., at the (}~~tvv and 8~~~.Hh 

(see Figure 3), respectively. The g-value and the 
values for N and o N are not uniquely determined. 
A precise determination of the parameters re
quires a more quantitative comparison between 
the calculated and measured intensity distributions, 
and is beyond the scope of this study. There are 
no higher order maxima in the intensity distribu
tions of the meridional Vv and HH scattering, 
indicating that the g-value should be greater than 
0.35, probably around 0.5. The value of N of 
order 10 seems to fit of the calculated and observed 
patterns. 

The Hv patterns are not affected much by 
interference because at the scattering angles where 
the particle-scattering factor If I 2 is not zero, the 
lattice factor Z 1 becomes almost unity. The 
strong zero-order scattering from the assembly as 
a whole cannot be expected in the Hv patterns, 
contrary to the cases of the Vv and Hu patterns 
since the particle factor I f I 2 becomes zero under 
the Hv polarization at the small scattering angles. 

The calculated patterns still deviate from the 
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experimentals patterns in that (i) the calculated 
Hv pattern does not give the zero-order scattering, 
while the corresponding experimental pattern ex
hibits the inner four lobes (double hatched) at 
µ= ±[ir/2±(rm)Hvl and meridional two lobes (see 
Figure 3), and that (ii) the calculated zero-order 
scattering in V v and H H patterns are oriented on 
the equator, while those found in the experimental 
patterns are oriented nearly at a diagonal direction 
as seen in Figures 2 and 3. 

To account for the discrepancies between the 
caclulated and experimental patterns, one may 
consider the case where the nuclei or the assembly 
axes are oriented at particular angles±a0 with 
respect to the ED. Figures 8 and 9 represent the 
scattering patterns corresponding to this case. 
For such a complex system, it may be worthwhile 
to describe separately the contribution of each 
factor, i.e., the particle 1/12, the lattice Z 1 and the 
zero-order scattering factor Uc/ N) to the net 
scattering. Figure 11 represents the contour 
plots of (a) Zi, (b) 10 /N, and (c) Z1 +I0 /N for the 
case in which the assembly orients perfectly either 
at angle a 0 or at angle -a0 , a 0 =35° and for 
d=l.3R0 and g=0.5. As indicated above, there 
is no interference effect between the scattering 
fields from different assemblies. 

At a given azimuthal angle, Z 1 is minimum at 
W=O and generally increases with increasing W, 
passing a broad and ill-defined maximum (region 

z, 
(a) 

so· 

lc/N 
(b) 

with double hatch) and then decreases to an 
asymptotic value of 2 except at µ= ±55° for 
which the asymptotic value is 1 +g2=1.25. This 
is because the value Z 1, for each assembly, in
creases to unity with an increase in the scattering 
angle W and the system is composed of the two 
assemblies oriented at a= ±a0• For /t= ±55°, 
however, only one assembly contributes to the 
angular dependence of Z 1 and the other orients 
normal to the scanning plane, i.e., a- ft= ±90° 
in eq 55 for the other assembly, thus leading to 
value Z 1 =l =0.25 independent of scattering 
angles. The function Z 1 at a given W passes 
through a minimum value at azimuthal angle 
/t= ±55°, i.e., at the angles reciprocally related 
to orientation of the assembly. The scattering 
from the system becomes a criterion of the inde
pendent scattering at the single hatched region 
where the net value of Z 1 approaches the asymp
totic values of 2 or 1.25. The double hatched 
region corresponds to the angular region where 
Z 1 passes through a very broad and ill-defined 
maximum. 

The zero-order scattering associated with scat
tering from the assembly as a whole has a steep 
peak intensity at W=O and continuously decreases 
with increasing W at a given azimuthal angle 
shown in Figure ll(b) for N=lO and aN=3. 
The scattering intensity le/ N passes through steep 
peaks at ft= ±55°, i.e., at the angle reciprocally 

Z, + lc/N 
(CI 

(ED) 
z, 

j' 
ao= 35° 

Single Hotch - z, , lndep Scoffering 

Double Hotch - Mox. Z1 6 lc/N 
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Figure 11. Contour plots of (a) Zi, (b) Ic/N, and (c) Z1 +Ic/N for the case where the assemblies 
orient at angles ±35° with the ED. Z 1 and Z1 +Ic/N are equal to 2 at the single hatched region 
where the scattering falls into a criterion of the independent scattering. Intensity becomes 
maximum at the double hatched region. 
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related to the orientation of the assemblies. 
The scattering patterns shown in Figure 8(a) 

are therefore interpreted as a product of the cor
responding patterns shown in Figure 7(a) and the 
contour pattern in Figure 1 l(a), while those shown 
in Figure 8(b) are interpreted as a product of the 
patterns in Figure 7(a) and the pattern in Figure 
ll(c). The meridional scattering maxima in the 
Vv and H H patterns are primarily determined by 
the meridonal intensity distribution of the lattice 
factor Z 1• The diagonal zero-order scattering 
lobes shown in Figure 8(b) with maximum intensity 
at /l = ±[ir/2±(rm)Hvl for the Hv scattering and at 
µ= ±[ir/2±(rm)vvl for the Vv scattering (see 
Figure 3) are attributed to the strong angular 
dependence of 10 /N as shown in Figure ll(b). 
The best fit of the observed and calculated pat
terns in the zero-order scattering region was ob
tained for the value of a 0 =±35°. 

The results obtained so far indicate that the 
inclination of the row nuclei with the ED best 
explains the experimental scattering patterns. 
However, close observation of the results may 
indicate that the calculated patterns still deviate 
from the observed patterns in that (i) no scattering 
exists at the center of the calculated Hv patterns, 

-I~--------------, 

•o 
N 

" ::I.. 
> 

:i:: -;;,-2 
0 

-3 

d=i3R,9=0.5 

N= 10. o;.= 3 

/""":".:-....." 
.,/ ·,\aab 

.. ! \ 
I I ' / I ·, 

l i ·, ...... _ 
a// cad 
f jb 
I! 
I! 
:1 Ii 

a) Isolated 
bl a0 =35~ !0 = 35° 
C) P1(a). <Taa5 

dl P2 <!l, ~=5 
-4 L..J_J__j_----'-__L___L_L_L--'-_J__J_~ 

0 5 10 W 

Figure 12. Hv intensity distribution at µ=20° as a 
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9(b), and 9(a), respectively. d = l.3Ro, g=0.5, N = 
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and that (ii) the four lobes oriented in diagonal 
directions in the calculated Hv and Vv patterns 
have angular dependence(s) with 11 which are too 
strong in comparison with those of the experi
mental patterns. In order to improve the defects 
in the model one may consider an effect of orien
tation distribution of the individual particle, plg), 
and of the assembly axis or nucleus, p 1(a), around 
a particular direction as discussed earlier. 

The effects of the orientation distribution of the 
particles and the assembly axes or nuclei are 
shown in Figures 9(a) and 9(b), respectively. On 
introducing orientation fluctuations, the calculated 
patterns become even closer to the observed pat
terns. The calculated Hv pattern is improved in 
that the fluctuation yields finite intensity at the 
center of the pattern. This even explains the 
inner two lobes in meridian as found experimentally 
(see Hv pattern in Figure 9(b)). The finite 
intensity at the center is attributed to non-vanishing 
scattered intensity 1(/)1 2 from the individual par
ticle as is expected when the orientation fluctuation 
is introduced. The fluctuation also improves the 
Vv and HH patterns in that it decreases the strong 
angular dependence of the four lobes oriented in 
the diagonal directions of the patterns. The model 
giving rise to the scattering patterns shown in 
Figure 9(b) seems to be most adequate among 
those studied in this article. It should be noted 
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Figure 13. Vv intensity distributions at ,,=0° (a) 
and ,,=90° (b) as a function of W for the various 
models. The curves a to d have the same meanings 
as those in Figure 12. 
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that the intensity of the Vv and HH patterns at 
W=5 and µ=60 is only slightly higher than that 
at W=5 and µ=90°. A greater orientational 
disorder may account for the equatorial scattering 
lobes (single hatched) as depicted in Figure 3. 

The interparticle interference effect may be 
seen in a more quantitative manner by examining 
the intensity distribution itself. Figures 12 and 
13 represent, respectively, the effect on the angular 
dependence of the Hv pattern with Wat a partic
ular azimuthal angle µ and that of the Vv pat
tern at ft=0° and 90° for the same parameters as in 
Figures 7 to 9, i.e., d=1.3R0 , g=0.5, N=IO and 
aN=3. The curve, a, corresponds to the scatter
ing from an isolated particle. The curve, b, 
represents the scattering from the assemblies in 
which there are no orientation fluctuations of the 
nuclei and sheaf axes, while the curves c and d 
correspond, respectively, to the cases where 
orientation of either the sheaf axis or the assembly 
axis fluctuates. 

It is clearly shown in Figures 12 and 13 that, 
at large scattering angles, the interparticle inter
ference tends to average out, thus leading to the 
result that the scattered intensity from the as
sembly divided by the number of particles within 
it becomes identical to the scattered intensity from 
the isolated particle. The curves a and b differ 
from the c and d curves at the large scattering 
angles, and this is attributed to the difference in 
the particle scattering factor caused by different 
orientation distribution rather than by interference 
phenomenon (Figures 12 and 13(a)). 

The angular dependences of curves b to d differ 
very much from the curve, a, at small scattering 
angles owing to the interparticle interference 
effect. The zero-order scattering gives a large 
excess scattering intensity at very small scattering 
angles, W less than 1 . The intensity minimum 
in the meridional Vv intensity distribution at 
W::::::2 primarily arises from the contribution as
sociated with the lattice factor Z1. 

CONCLUSIONS 

The butterfly-type Hv pattern was found to be 
typical of the scattering from oriented sheaf-like 
crystalline superstructure (or probably from 
flattened spherulites,10 though this possibility can 
be ruled out in our case) resulting from lamellar 
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overgrowth from rows of nucleating points and the 
subsequent lamellar branchings. Measurements of 
0max,Hv and /tmax of the butterfly type pattern, 

and 0:;.~!~vv and 0:;.~!~Hh of the polarized com
ponents of the scattering enable an estimation 
of the shape and size of the sheaf and its changes 
during crystallization and deformation processes. 

The maxima in the meridional Vv and HH 
scattering intensity distributions arise essentially 
from an interparticle interference effect. The 

position of the scattering maxima 0:;,~~.vv and 

e:;,~~.Hh are reciprocally related to the average 
intersheaf distance. The inner four lobes of the 
Hv (double hatched) and Vv pattern are attributed 
to the zero-order scattering from the assemblies 
as a whole, oriented preferentially at inclined 
angles a 0 = ±35° with respect to the ED. The 
angles are closely related to the orientation of 
the inner four lobes, (rm)Hv and (rm)Vv, and may 
be related to orientation of the row nuclei with 
respect to the ED. The biaxial orientation of the 
row nuclei or the assembly axes may reflect a 
biaxial flow of melt and therefore a biaxial 
molecular orientation involved in a particular 
tubular extrusion processing. The meridional 
two lobes (non hatched) in the Hv pattern occur 
as a consequence of the orientation distribution 
of the sheaf axes and/or the nuclei, internal dis
orders of the type as described by Stein and co
workers11-13 and asymmetry in the shape of 
the sheaflike crystalline superstructure. 
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