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ABSTRACT: A coaxial two phase model is presented to account for the change with 
temperature in the intensity of the (100) reflection for the poly(r-methyl L-glutamate) crystal and 
that of the (110) reflection for the poly(r-benzyl L-glutamate) crystal. This model consists of 
two coaxial rods, whose central part represents a rigid helical backbone and the surrounding 
part, soft side chains. The equation for the temperature dependence of the (hkO) reflection 
intensity from the crystal in which the coaxial rods are hexagonally packed, is derived, and 
applied successfully to analyze the experimental results. 
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In the first paper of this series, we reported that 
the intensity of the (100) reflection for the poly­
(r-methyl L-glutamate) (PMLG) crystal, and that 
of the (110) reflection for the poly (r-benzyl L­
glutamate) (PBLG) crystal increase with increasing 
temperature, and that these intensities are related 
to the lateral spacings between a-helices (hereafter 
referred to as lateral reflections). Furthermore, 
the square root of the intensity was found to be a 
linear function of the temperature (Figure 1).1 

wich two phase model. However, the sandwich 
two phase model is not satisfactory for describing 
the structures of a-helical PMLG and PBLG, as 
they are very different from that of a sandwich. 

A qualitative account for this finding may be 
found in the differences between the temperature 
factors of the atoms of the main-chain backbone 
and those of the side chains. Such a quantitative 
account may require a detailed structure analysis 
at each temperature, and this would be quite 
impracticable. 

In order to account for this finding, we have 
adopted a sandwich two phase model which has 
been proposed to account for the results of small­
angle X-ray scattering of crystalline polymers. 2 

We have assumed that the rigid helical core cor­
responds to the crystalline parts, and the side­
chain region to the amorphous surface layers. 
The results obtained were explainable by this sand-
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Figure 1. The relative change of the square root of 
the (100) Bragg reflection intensity of PMLG as a 
function of temperature by N. Matsushima, et al. 1 

In this paper, we propose a more realistic model 
for PMLG and PBLG crystals and derive an equa­
tion for temperature dependence of the intensity of 
the lateral reflection on the basis of this new model. 
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A MODEL FOR ESTERS OF 
POLY(GLUTAMIC ACID) 

Figure 2 illustrates a model of PMLG and 
PBLG crystals. The center of the rod is a helical 
backbone with side-chains surrounding it. Since 
the helical backbone is regarded as rigid due to the 
intramolecular hydrogen bonds and the side 
chains long and flexible, we can assume that the 
center of the rod is more rigid and more dense 
than its surroundings. We call this the coaxial 
two phase model. 

For the PMLG crystal the coaxial rods are close­
ly arranged in a hexagonal net. 3 The hexagonal 
arrangement is also approximately correct for 
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Figure 2. Coaxial two phase model of PMLG and 
PBLG: D, rigid helical core; D, soft side-chain 
region. 

a 

Figure 3. Unit cell of crystal composed ,of the two 
coaxial rods. 
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PBLG crystal. 4 Figure 3 shows the projection 
of the unit cell on the plane perpendicular to the 
helical axis, where a is the lattice parameter, r 0 

and r. are the radii of the main-chain helix and that 
of the total helix, respectively, and Pc and Ps are 
the electron density of the helical core and that 
of the side-chain region, respectively. We will 
calculate the diffraction intensity of the lateral 
reflection based on this model. 

STRUCTURE FACTOR OF LATERAL 
REFLECTION 

To calculate the structure factor of the lateral 
reflection, one must recall that the reflection 
observed is a Bragg reflection which satisfies 
Laue equation. Taking account of this point, the 
structure factor F(R) of the lateral reflection then 
may be written as 

F(R)= p(r) exp (21riRr cos fJ)r dr dfJ ( 1 ) 

where R is the radial distance in the cylindrical 
reciprocal space, r, the radial distance from the 
center of the coaxial rod, and p(r ), the electron 
density projected to the plane perpendicular to the 
rod which is assumed to depend only on r; rdrdfJ 
is the element of area in the lateral plane, and 0 is 
the polar angle in the lateral plane. The integra­
tion is performed over a unit cell. 

For the coaxial two phase model we assumed 
that the electron density p(r) is given by 

p(r)={Pc for O~r~rc 
Ps for r0 ~r~r. 

( 2) 

Thus, the integration is reduced from O to 21r and 
r from O to r., because the hatched area of Figure 
3 does not contribute to the integration. 

Now, since 

exp (21riRr cos 0)d0=21rJ0(21rRr) ( 3) 

Equation 1 becomes 

(Ts 
F(R)=21r )o p(r)J0(21rRr)r dr ( 4) 

where J O is the Bessel function of the first kind of 
the zeroth order. Substituting eq 2 in eq 4 and 
using the identity 

\
7 rJ0(21rRr)dr=-'-J1(21rRr) Jo 21rR 

( 5) 
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we obtain 

'°'(R)-( ) rJ1(2nRrc) + r.l1(2nRr.) 
l" - Pc-Ps R Ps --~ - ( 6) 

where 11 is the Bessel function of the first order. 
The intensity is then given by the square of the 
structure factor F(R). On the basis of eq 6, we 
can calculate the temperature-dependence of the 
lateral reflection intensity. 

TEMPERATURE-DEPENDENCE OF THE 
INTENSITY OF LATERAL 

REFLECTIONS 

Since all of the parameters, Pc, p., r0 , r., Rand 
J 1 in eq 6 change with temperature, temperature­
dependence for these parameters was derived at 
first. Since the electron density is thought to be 
proportional to the mass density, the temperature 
dependence of Pc and Ps are given by the following 
equations, 

( 7) 

1 1 -=~-{1+(2a.+a0)(T-T0)} (8) 
Ps Pso 

where a 0 and a. are the linear thermal expansion 
coefficients of the helical core and of the side­
chain region, respectively. In eq 7 and 8 we as­
sumed that the thermal expansion of the helical 
core is isotropic, and that the linear thermal ex­
pansion coefficient of the side-chain region in the 
direction of the helical axis is equal to that of 
the helical core. Here and in subsequent cases, 
the subscript O will represent the respective value 

at temperature T0 except for that of the Bessel 
function J 0 • As a matter of course, the corre­
sponding equation for r0 is 

( 9) 

Since the unit cell of the crystal is a hexagonal 
lattice, it immediately follows 

a r=~ 
s 2 

1 { 3 }1/2 
R = 4(h2+hk+k2)- a=ma 

(10) 

(11) 

where h and k are the Miller indices. Thus both 
R and r, are related to a. For the temperature 
dependence of a, we have 

The Bessel function 11 is a function of r. and a. 
Thus, it also depends on temperature. To cal­
culate the temperature-dependence of the Bessel 
function l 1(x), we carried out Taylor's expansion 
using the value x 0 at temperature To for l1(x). 
Since a 0 and a. are considered to be small, we 
have for J1(x). 

l1(X)=l1(Xo)+{lo(Xo)- _li~_o2__ }(x-x0) (13) 

Taking into account eq 6 to 13, we finally obtain, 

{ J(T) }112 
l(T/) =l+(Aa.+Ba0 )(T-T0) (14) 

where /(T) and /(T0) are the intensities at tempera­
tures T and T0 , respectively, and A and B are 
constants which are given by 

A 

_ 2p.0_+(l __ E'co)(2 __ 2!._colfJ_(2nrco/mao)_) _ 2Psor coli (!E_) 
Apo ao aol1(21rr0 0/mao) m 

(15) 
l + _____!l__o[J_sol, ( 7r / m) 

2Llpor 0 ol1(2nr 0 0/mao) 

f!so-3p_co+(l- 2rc0_) 2nfcolo(27Cfcofmao) + 4rc_O_+_(lsO (4fco-ao)li(!E_) 
B= Llpo ao maol1(21rr0 0/ma0) a0 2 m 

(16) 
1 +__!l_flf!.ol1(1r/m) ___ _ 

2Llp0r 0 011 (21rr0 0/ma0) 

where Llp0 is the difference between the electron 
density of the helical core Pc and that of the side­
chain region p •. 

Equation 14 indicates that the square root of the 
relative intensity is a linear function of tempera-
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ture with a slope of Aa.+Ba0 • If the slope is 
positive, the intensity increases with increasing 
temperature; and if negative, the intensity de­
creases. In the next section, we shall estimate A 
and B for the particular cases of PMLG and PBLG. 
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APPLICATION 

The crystalline form of PMLG is hexagonal, 
containing one chain, with a unit cell edge of 
a=ll.95 A and an axial repeat of c=27 A, cor­
responding to an 18-residue 5-turn helix. 3 There­
fore, we assume that the total helix and the main­
chain helix have a radius of r.=5.98 A and r0 = 
3.9 A, respectively. The latter corresponds ap­
proximately to the outside of the .B-carbon. 5 

Thus the electron densities p0 and p. are estimated 
as 1.58 and 1.29, respectively, and Llp0 is 0.29. 
The value of m for the (100) reflection is ../3/2 
from eq 11. Substituting these values into eq 15 
and 16, A and B are 3.3 and -4.3, respectively. 
The square root of the relative intensity of the (100) 
reflection for PMLG is then given by 

{ J(T) }112 
(-·· -- =1+(3.2a.-4.3a0 )(T-T0) 

J To) 
(17) 

Accordingly, eq 17 indicates that if a.> 1.5a0 , the 
intensity increases with increasing temperature. 
The linear thermal expansion coefficient of the 
helical core a 0 is thought to be the same order of 
magnitude as that of 1.5 A-meridional spacing, 
which is the axial translation per amino acid re­
sidue. The thermal expansion coefficient of the 
1.5A spacing is one-tenth as large as that of the 
lateral spacing. 6 This completely satisfies a.> 
1.5a0 • Therefore, the square root of the intensity 
increases linearly with increasing temperature. 
This prediction is in satisfactory agreement with 
the results obtained for the (100) reflection for 
PMLG, as shown in Figure 1. The coaxial two 
phase model seems to be very applicable. 

From the slope of the straight line shown in 
Figure 1, we can estimate the linear thermal ex­
pansion coefficient of the side-chain region by 
assuming that the thermal expansion coefficient of 
the helical core is the same as that of the 1.5 A­
meridional spacing. Table I shows the estimated 
values of the linear thermal expansion coefficient 
of the side-chain region; a1. and a 2• refer to the 
ones observed above and below the transition 
temperature, T,, which is defined as the break 
point temperature in Figure 1, respectively.1 

Table I also includes experimental values obtained 
by dilatometric measurements, which are corrected 
to give the linear thermal expansion coefficient in 
the side-chain region. 1 Although the model is 
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Table I. Linear thermal expansion coefficient of the 
side-chain region for PMLG and PBLG 

PMLG 

Intensity of the (100) 
reflection 

Specific volume 

PBLG 

Intensity of the (1 IO) 
reflection 

Specific volume 

5.6x10- 4 2.3 X 10-4 

4. 6 X 10- 4 b 2.1xlQ- 4b 

6.5x10- 4 2.2x10- 4 

4.2x10- 4b 2.ox10- 4 b 

• T,, transition temperature. 
b By K. Hikichi, A. Tsutsumi, S. Jsozaki, and M. 

Kaneko. 19 

very approximate in nature, the agreement be­
tween values obtained by the two methods is close. 

The unit cell of PBLG is triclinic, containing 
one chain, with cell dimensions of a=b=15.25 A, 
c=27A (fiber axis), a=.8=84°20', and r=122°, 
corresponding to an 18-residue 5-turn helix. 4 

This is a minor modification of the hexagonal 
lattice. Thus, we assume that PBLG is arranged 
in a hexagonal lattice, whose unit cell dimensions 
are a=b=l4.93A and c=27A. In this case the 
radius of the total helix r. and of the main-chain 
helix r0 are 7.47A and 3.9A, respectively. The 
electron densities Pc and Ps are then estimated to 
be 1.58 and 1.32, and Llp0 is 0.26. Using these 
values, we finally obtain the following equation 
for the temperature-dependence of the (110) 
reflection intensity. 

{ 
/(T) }1;2 
](To) =1 +(3.3a,-4.3a0 )(T-T0) (18) 

As in the case of PMLG, eq 18 clearly indicates 
that the square root of the (110) reflection intensity 
for PBLG increases linearly with increasing tem­
perature. This agrees with the experimental 
results of the (110) reflection for PBLG. 1 The 
linear thermal expansion coefficients of the side­
chain region obtained by X-ray intensity and 
dilatometric measurements are shown in Table I. 

We may estimate the temperature-dependence 
of other reflections by using a. and a 0 obtained 
above. For example, for the (110) reflection of 
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PMLG, we expect Aa.+Ba.=-4.0xl0-4 above 
the transition temperature T,. However, the 
experimental value was from 0 to -9 x 10-4, 

although smaller than 15.6 x 10-4 for the (100) 
reflection.1 The reason for this disagreement is 
that the (110) reflection is related to a more de­
tailed structure of the rod which we neglect in this 
model. 

Similarily, for the (210) reflection of PBLG, we 
expect Aa. + Ba0 = -17 x 10-4 above T,. The 
experimental value was positive. This shows 
that the slope is opposite in sign between the 
theoretical and experimental values. The disagree­
ment is caused by the same reason as that of the 
(110) reflection of PMLG. 

The change in slope at T, for PMLG and PBLG 
was interpreted in terms of the onset of the side­
chain motions. 1 This also has been confirmed by 
many physical methods, including nuclear magnetic 
reasonance, dynamic mechanical and dielectic 
measurements. 5 • 7- 9 

CONCLUSION 

We proposed a structural model for solid esters 
of poly(glutamic acid) in the a-helical state. We 
designate a coaxial two phase model consisting of 
rigid helical core and soft side chain. An equation 
of lateral reflection intensity from the crystal com­
posed of the coaxial rod was derived, enabling 
us to treat quantitatively temperature-dependence 
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of the intensity of the lateral reflection. The equa­
tion was successfully applied in analyzing the 
experimental results for PMLG and PBLG. 
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