
Polymer Journal, Vol. 9, No. 5, pp 479-488 (1977) 

Distribution Function of Polymers with and without Interactions. 
II. The Distribution Function of the Square Radius 

of Gyration of a Ring Chain 

Takao MINA TO 

Department of Pure and Applied Sciences, College of General Education, 
University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan. 

(Received March 7, 1977) 

ABSTRACT: The characteristic function of the distribution function of S2 for a 
ring chain with interactions is obtained in closed form. The Fourier transformations 
of the characteristic function are performed numerically, in one-, two-, and three
dimensional spaces and analytically in two-dimensional space. The expressions for the 
perturbed distribution functions valid for small S 2 values and large S 2 values are given. 
A simple variational technique is introduced to obtain the perturbed mean square radius 
of gyration in a closed form. It should be noted that, in two-dimensional spcce, there 
exists the negative critical value of z, below which no Fourier transformation of the char
acteristic function may be permitted. Here, z is the usual excluded volume parameter. 
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In a previous paper (hereafter referred to as 
Part I), the present author1 proposed a method, 
based essentially on the first order perturbation 
theory, for obtaining the perturbed non-Gaussian 
distribution function such as that of the square 
distance of the center of mass from one fixed 
end of a chain. The purpose of this second 
article is to apply the same method for obtain
ing the perturbed distribution function of the 
square radius of gyration for a ring chain of 
infinite length, and make advanced commenta
tion on the second moment of distribution and 
the phase change of a chain with an attractive 
interaction. This problem has attracted con
siderable interests in recent years. It has been 
supposed that a polymer with strong attractive 
interactions, will condense into a solid ball be
low a certain critical negative z* (the excluded 
volume parameter). Stockmayer2 has suggested 
that the critical value z* is ca. -0.14. Chikahisa3 

suggests that the perturbation series for the ex
pansion factor a 2 for the mean square end-to
end distance is divergent at z*. Ptitsyn, et al.,4 
studied z* by the Monte Carlo method and 
obtained almost the same results as those by 
Stockmayer's. Oono5 showed that z*=O, that 

is, a sufficiently long chain collapses just below 
z=O. This prediction is shown to be true by 
Saito6 with the aid of an approximate theory. 
All of these comments are in reference to a 
three-dimensional polymer chain. 

By using the Feynman path integral method, 
the present author has recently shown that, in 
two dimensional space, the mean square radius 
of gyration for a ring chain is proportional to 
L-112 below negative Ve( cx:z*) for purely attrac
tive interactions of Gaussian type. 7 Here, Ve 

corresponds to the amplitude of the delta-func
tion, and L is the total length of a chain. 

Now, as shown in Part I, the distribution 
function P(S2 ) of the square radius of gyration 
for a ring chain is written as 

( l ) 
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with 

~
rL=O [ ~L K(r;; L)= £v'rexp -A dti-/ 
r 0=0 0 

ir; \ L \ + 2,I} Jo J dtds(rt-rs) 2 

-B ~: dtdsV(lrt-r,1)] ( 2) 

where A=d/2!, B= 1/2!2 , l is the length of a 
segment, L is the total length of a chain, d is 
the space dimensionality, and V(r) is the inter
action potential. When there exists no V(r), 
the unperturbed characteristic function K0(r;; L) 
is given by8 

K0 (r;; L)=[(x/2)/sin (x/2)t ( 3) 

where x 2=ir;L/A and the subscript O refers to 
the unperturbed state. The Fourier transforma
tion of eq 3 lead to the following asymptotic 
expressions: 8 

(S2) 0P(t) 
6 1/2 

= (---;) ]~o [3(2n+ 1)2t-s12 - t-3/2] 

xexp[-3(2n+l)2/2t] (d=l) 
3 1/2 

=36(1!') .Eo (n+l)"[(n+l)2t-712-r1r 512] 

xexp [-3(n+l)2/t] (d=2) 

( 
2 )l/2 

=12 ir- ,,,~y-2(2n+l)2r 1 

+(2n+ 1)4r1r 2J exp [ -(2n+ 1)2/2t] (d=3) 

( 5) 

for a small t value, and 

(S2) 0P(t)=¼ I; (-lt+In2ir 2 

n=l 

xexp(-n2ir2t/6) (d=l) 

=i I; (2n4 ir4 t/3-3n2ir2) 
n=l 

x exp (-n2ir2t/3) (d=2) 

=½ I; (-1)"+1(12n2ir2-9n4ir4 t+n6 ir6t2) 
n=l 

x exp (-n2ir2t/2) (d= 3) ( 6) 

for a large t value (here, t stands for the ratio 
of S2 to its statistical average, i.e., (S2) 0 =iL/12). 

In this work we have investigated the effect 
of the interactions on the above expressions. 
First, the closed expression for the perturbed 
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characteristic function is evaluated in the same 
way as Part I is. Secondly, the Fourier trans
forms of characteristic functions are performed 
analytically for d=2 and numerically for d= 1, 
2, and 3. Thirdly, in order to obtain the per
turbed square radius of gyration (S2) in a closed 
form, we have introduced a simple variational 
technique, and discussed the singular behavior of 
P(S2) for negative V(r) (attractive interactions). 

CALCULATIONS 

Derivations of the Perturbed Characteristic Function 
As shown in Part I, the perturbed character

istic function K(r;; L) is given by the following 
approximation: 

K(r;; L)=K0(r;; L) 

x ( exp [ -B ~: dtdsV(lrt-r,I) ]) (6a) 

':::.K0(r;; L) 

xexp [ -B(~: dtdsV(lrt-r,I))] (6b) 

=Ko(r;; L) exp (-U) (6c) 

where 

(6d) 

which is the first order correction of V(r) to 
K0(r;; L). Here the symbol < · · ·) denotes an 
average over K0(r;; L), i.e., 

< · .. >= ('L=O §r ... exp [-A\ L dti-/ 
Jro=O )o 

+ ;12 ~: dtds(rt-r,f] 

/
\' L=o §r exp [-A\ L dti-/ 
Jr0=0 Jo 

+-;12 ~:~dtds(rt-r,)2] (7) 

Let's introduce Q defined as 

Q=(exp -ik(rt-rs)) ( 8 ) 

We can separate eq 8 into d-rectangular com
ponents. One of these components Qx is easily 
calculated to give 

Qx':::.exp {-(p/4a)[2(1-e-folt-sl) 

( 9) 
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where a 2 =-i1)/AL, p=l/2A, and Real Part of a 

must be positive (Re a> 0). Thus we get from 

eq 47 in Part I for U: 

U= BVL2 (a/·q)d12 (10) 
(2ir l/2 t' 

in the limit L-+oo, where we used the delta 

function for V(r), i.e., V([rt-r.[)= Va([rt-r.[). 

Now from the relations: x 2 =i1)L/A and a 2 = 
-i1)/AL, the following equation is derived: 

(11) 

Taking the condition of Re a> 0 into account, 

one obtains a=-ix/L for Imx>0 and a=ix/L 
for Im x<O, respectively. Then eq 10 is written 

in terms of x as 

(12) 

where V= VBL 14-d 12/(2irp)dl2, and the sign(±) 

means that (-) corresponds to the case of 

Im x > 0 and ( +) to that of Im x < 0, respec

tively. From eqs 6 and 11 the perturbed char

acteristic function K(1J; L) becomes 

K(1J; L)=[(x/2)/sin (x/2)t exp [ -v(±ix)d12 ] (13) 
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Table I. The numerical results from 
the integration of eq 14' 
in one-dimension (d= 1) 

v=0 

0.0 
0.1209 
0.5100 
0.8342 
0.9737 
0.9754 
0.9101 
0. 8137 
0. 7137 
0.6162 
0.4517 
0.3273 
0.2363 
0.1703 
0.1227 
0.0636 
0.0328 
0.0121 
0.0044 

(S2)oP(t) 

V=-0.05 v=0.05 

0.0017 
0.3915 
1.0450 
1.3256 
1.3309 
1.1950 
1.0292 
0.8607 
0.7137 
0.4800 
0.3922 
0.2599 
0.1703 
0.1093 
0.0681 
0.0214 
0.0007 
0.0 

0.0 
0.0312 
0.2194 
0.4721 
0.6486 
0.7290 
0.7388 
0.7065 
0.6535 
0.5916 
0.4690 
0.3637 
0.2798 
0.2150 
0.1655 
0.0995 
0.0617 
0.0325 
0.0191 

v=0.1 

0.0 
0.0066 
0.0839 
0.2419 
0.3969 
0.5037 
0.5574 
0.5710 
0.5574 
0.5290 
0.4517 
0.3721 
0.3016 
0.2430 
0.1956 
0.1281 
0.0862 
0.0509 
0.0329 
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Table II. The numerical results from 
the integration of eq 14' 
in two-dimensions (d=2) 

v=0 

0.0 
0.0026 
0.0917 
0.3844 
0.7396 
0.9914 
1.0964 
1.0840 
0.9990 
0.8784 
0.6214 
0.4084 
0.2563 
0.1594 
0.0927 
0.0313 
0.0101 

(S2)oP(t) 

V= -0.05 V=0.05 

0.0 
0.0098 
0.2045 
0.6663 
1.0975 
1.3202 
1.3449 
1.2435 
1.0815 
0.9021 
0.5765 
0.3392 
0.1854 
0.1328 
0.0393 

0.0 
0.0006 
0.0387 
0.2111 
0.4774 
0.7148 
0.8590 
0.9073 
0.8839 
0.8163 
0.6302 
0.4503 
0.3087 
0.2075 
0.1389 
0.0644 
0.0333 
0.0162 
0.0102 

v=0.1 

0.0 
0.0001 
0.0154 
0.1105 
0.2954 
0.4963 
0.6488 
0.7323 
0.7535 
0.7294 
0.6102 
0.4679 
0.4022 
0.2466 
0.1767 
0.0941 
0.0551 
0.0303 
0.0200 

Table III. The numerical results from 
the integration of eq 14' 

in three-dimensions (d=3) 

0.0 
0.0 
0.0143 
0.1535 
0.4878 
0.8733 
1.1462 
1.2498 
1.2100 
1.0804 
0.7345 
0.4359 
0.2373 
0.1215 
0.0596 
0.0131 
0.0026 

(S2)oP(t) 

V=-0.05 V=0.05 

0.0 
0.0002 
0.0328 
0.2735 
0.7435 
1.1939 
1.4424 
1.4699 
1. 3412 
1.1333 
0.6902 
0.3594 
0.1619 
0.0588 
0.0106 

0.0 
0.0 
0.0059 
0.0834 
0.3112 
0.6222 
0.8871 
1.0342 
1.0600 
0.9961 
0. 7450 
0.4877 
0.2973 
0.1759 
0.1044 
0.0413 
0.0212 
0.0116 
0.0079 

v=0.l 

0.0 
0.0 
0.0024 
0.0439 
0.1931 
0.4321 
0.6700 
0.8346 
0.9044 
0.8924 
0.7278 
0.5167 
0.3422 
0.2210 
0. 1438 
0.0679 
0.0392 
0.0228 
0.0158 
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Fourier Transformation of the Characteristic 
Function: Numerical Results 
From eq 1 and 13 the perturbed distribution 

function P(S2 ) is given as 

--- -.:.r·-·1 ·-··-· . 
r-
u---
V······-····· 

---7 
,< 

/ 

X 

Figure 1. The integration paths chosen for the 
derivation of the asymptotic expressions for P(t). 
The original path I' is deformed to become the 
path U, represented by the broken line for the 
derivation of eq 15, and to become the path V, 
represented by the dotted line for the derivation 
of eq 16. 

t 

P(S2)= I+= d)J[(x/2)/sin (x/2)t 
) _= 2ir 

xexp [-dtx2/24-v(±ixl12 ] (14) 

(14') 

where rc<J is the path of integration as shown 
in Figure 11 ' 12 and t=S2/(S2) 0 =12 S 2/lL. Equa
tion 14' was numerically calculated for certain 
values of v as a function of t. Detailed nu
merical results are tabulated in Table I, II, and 
III for d= 1, 2, and 3, respectively, and these 
are illustrated. in Figure 1-3. These figures 
show that the most probable peak of the distri
bution is pushed out and pulled in by repulsive 
forces (v>O) and attractive forces (v<O), re
spectively. 

Fourier Transformation of the Characteristic 
Function: Analytical Results 
The complex integral in eq 14' can be analy

tically performed only in two-dimensional space 
(d=2). That is, this integral is evaluated by the 
deformation of the original path I' to appropriate 
paths as shown in Figure 1. Details can be seen 
in Part I. For a small t value, we obtain 

Figure 2. The one-dimensional distribution functions (S2) 0P(t) as a func
tion oft for various values of v: curve A, v= -0.05; curve B, v=O.O; curve 
C, v=0.05; curve D, v=O.l. 
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Distribution Function of the Square Radius of Gyration 

1.0 2, 0 3,0 

Figure 3. The two-dimensional distribution functions (S2)oP(t) as a function of t 
for various values of v: curve A, v= -0.05; curve B, v=0.0; curve C, v=0.05; 
curve D, v=0.l. 
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0.. 

u, 

'-./ 0,5 

o L_j/jj_ __ __[_ ___ ___::::~:::::::::~======1====---_J 
0 1.0 2,0 3,0 

t 
Figure 4. The three-dimensional distribution functions (S2) 0P(t) as a function of t 
for various values of v: curve A, v= -0.05; curve B, v=0.0; curve C, v=0.05; 
curve D, v=0.l. 
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1.0 

;;:: 
::--0 
V) 

V 

0, 5 

A 

0 0 1.0 2.0 3.0 

Figure 5. The comparison of the exact form with asymptotic form given by the 
leading term of eq 15 for v=O.l. Curve A: exact, curve B: eq 15. 

(S2)0P(S2) 

=36( ! f2 l~o (n+ 1) 

X [(n+ 1 +v)3t-712 -2-1(n+ 1 +v)t- 512 ] 

xexp[-3(n+l+v) 2/t] (15) 

For a large t value we get 

2 
(S2) 0P(t)= - I; [(2n\•r4 t/3-3n2n 2) cos (2nnv) 

3 n~I 

+2vir3n3 sin (2nirv)] exp (-n 2n2 t/3) 

+ n- 112
( + )[1+ (})+ ·. ·l 

xexp(-3v2/t) (16) 

It can be shown that the values of (S2 ) 0P(S2 ) 

as a function of t numerically oalculated from 
eq 14' are in close agreement with those cal
culated from eq 15 and 16 in the regions where 
eq 15 and 16 are respectively applicable. In 
particular the leading term in eq 15, which is 
valid for a small t value, describes fairly well 
the behavior of P(S2 ) when t is relatively large. 
This situation is shown in Figure 5. 

DISCUSSIONS 

The Second Moment of the Distribution 
Hereafter we shall consider only a two-dimen-
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sional chain. With the aid of eq 15 which is 
valid for small values of t, the perturbed second 
moment (S2) is given by (see Appendix) 

(t)=(S2 /(S2) 0)= (12S2//L) 

= ~: dttP(t)/~: dtP(t)oc(l+v)2; r=2(l+v)2 

(17) 

where we have taken the term n=O only in eq 
15, and the integral region is cut off at r be
cause P(t) has negative values if t>r- Thus 
(S2) is written in the form 

a. 2 =_<S2> =1+2v+v2 (18) 
s (S2)0 

This shows that the second moment, or, the 
expansion factor as", is expressed as a power 
series in the parameter v up to the second. order. 
From the definition of V= VLA/2nl2, v is ex
pressed by the excluded volume parameter z as 

V= VLA/2d2 = VL/2d 3=z/2 ; z= VL/;r/3 (d=2) 

Therefore eq 18 becomes 

a/=l+z+z2/4 

(19) 

(20) 

On the other hand, the first order perturbation 
theory of (S2) for a two-dimensional linear 

Polymer J., Vol. 9, No. 5, 1977 
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chain leads to 9 

as 2=l+ll/24Z-··· (21) 

The coefficient of z in eq 20 is about twice as 
large as that in eq 21. Generally speaking, the 
coefficient of z for a ring chain is larger than 
that for a linear chain as is so of a three
dimensional chain, and this tendency may be
come more pronounced with a decrease in the 

space dimension. Since the exact value of the 
coefficient of z for a two-dimensional ring chain 

has not been reported, we can make no com
parison with eq 20. 

Certain devices are necessary in order to ob
tain (S2) in a closed, nonperturbative form. 

Here, if we take 

Kr(C: r,;; L)= \'L=O ::Zr exp [-Ar- dtr/ 
Jr0=0 Jo 

+ i~; ~: dtds(rt-r.)2] (22) 

as the trial path integral, we may rewrite eq 2 
in the form, 

K(r,;; L)=KT(C: r;; L) 

x(exp[(l-C)E,2 ~: dtds(r1-r.)2 

-B~: dtdsV(lr1-r,[)]\ (23) 

where C is the parameter to be chosen to mini
mize the free energy of a chain and the average 
< ... )T has the same meaning as that in eq 7. 
Furthermore, we approximate eq 23 as 

K(r;; L)~KT(C: r;; L) exp (M+N) (24) 

where the integrals M and N are given as 

M=(l-c{Jf2 ~: dtds(r1-r.)2)T (25) 

N=-( B ~: dtdsV(lr1-r,1)\ (26) 

To find M we need ((r1-r,)2)T- This can be 
obtained by expanding the r.h.s. of eq 8 and 
eq 9 with respect to k and kx up to the order 
k2 and kx 2, respectively. Then using the relation 

(2(rx1-rx,J2)T=((r1-r,J2)T, we get 

((r1-r,J2)T=(;S/a)[2(1-e-ialt-sl)+(e-iat -e-iasJ2] 

(27) 
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in two-dimensional space where a 2= -iCr;/AL. 

The integral in M is now easily performed and 
the expression simplifies to 

M=(l-C)C-112(,BA)(±ix) (28) 

where (±) has the same meaning as mentioned 
before. The integral in N is obtained by the 

replacement of x by C112 x in eq 12: 

N=-vC112(±ix) (29) 

From eq 23-29 K(r;; L) becomes 

K(r;; L)=[(C112x/2)/sin (C112x/2)]2 

x exp {-(±ix)[ -w(C- l)c-112 +vC112 ]} 

where W=pA. Then P(S2 ) is expressed as 

P(S2)= 1+=~_72_[(C112x/2)/sin (C112x/2)]2 
J-= 2ir 

xexp{-tx2/l2 

-(±ix)[vC112 -w(C-l)C-112]} 

=3iir~;2)o ~rdxsi::; 

xexp {-tx2/3C-2(±ix)[w(C-1 - l)+v]} 

(30) 

Since the distribution function which covers the 

whole range of t cannot be obtained, we will 
derive the expression for P(S2) that is valid 

for small values of t. By replacing t and v 
with t/C and v-w(l-C-1 ) in eq 15, respectively, 

one finds immediately that 

(S2) 0P(t)oc{[ 1 +v-w(l-C-1)]3(t/Cf712 

-2-1[1 +v-w(l-C-1)](t/C)-512 ) 

x exp {-3C[l +v-w(I-C-1)]2/t) (31) 

where the term n=O is taken only in eq 15. 
Here, we notice that eq 31 can be regarded 

as the expression for the free energy of a ring 

chain with S 2 fixed. Then, neglecting ln terms, 

we get 

(32) 

with u=l+v-w for the free energy F. Dif
ferentiating eq 32 with respect to C, C=w/u is 
obtained. This gives 

(S2) 0P(t)ocexp (-12uw/t) (33) 

so that we have 

(S2)ocL(l +v-w)ocL2 (34) 
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in the limit of L---+oo where vcxL was used. 
J. de Cloizeaux has shown that the mean square 
end-to-end distance (R2) is proportional to L 2 

for d=2. 10 The result of eq 34 coincides with 
this, but does not agree with the numerical 
calculations of a lattice chain. 11 

Singular Behavior of the Distribution Function 
We now consider the singular behavior of the 

distribution function represented by eq 14' for 

negative values of v (attractive forces). Before 
proceeding, a simple physical meaning is given 
for our approximation in eq 6a-6b. The ex
ponential part in the r.h.s. of eq 6a may be 
expanded in powers of 

and this may be summed up again as follows: 

1 /\L \ , , 11 11 ) 
X 31 \)o · · · j dtdsdt ds dt ds V,sV,,s,Vt"s" + ... 

1+(~:- dtdsV,s)+ ;! (~: dtdsV1s)(~: dt'ds'V,, 5 -) 

+ ;! (~: dtdsV,s)(~: dt'ds'V,, 5-)( dt11 ds11 Vt"s")+ · · · 

=expG: dtdsv,s) (35) 

where the notation Vs,= V(jrt-r,j) has been 
introduced for simplicity. Hence our approxi
mation of taking exp (U) in place of (exp U) 
corresponds to neglecting all corelations between 
interaction terms in all orders. 

This approximation gives for d=2 

P(S2 )cx I dx .x: exp [-tx2/3-2v(±ix)] (36) 
)r Sill X 

A change such as the gloublar-coil transition is 
usually characterized by the singular behavior 
of eq 36 as a function of v. Here the following 
two facts are noted. In the case of v=O, the 
behavior of sin2 x in the dominator of eq 36 as 

sin2 x~exp 2R (R---+oo) (37) 

along the integration path r ensures the con
vergence of the x-integration. 

In the case of vcl;cO, the interaction term 
exp [ -2v(±ix)] also behaves in such a manner as 

exp [-2v(±ix)]~exp -2vR (R---+oo) (38) 

Here, R is the distance from the origin to a 
point on the path r as shown in Figure 1. 

Therefore the important mathematical facts 
which can be easily deduced from eq 37 and 38 
are summarized as follows. If v~O (excluded 
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volume), the integration with respect to x along 
the path r converges. For 0>V>-1, the inte
gral also converges, and the peak of P(t) as a 
function of v is pulled in as shown in Figure 
2-4. At the same time, according to eq 18, i.e., 

<S2) 
a-2 =- -"" 1+2v+v2 

' (S2)0 -
(39) 

(S2 ) decreases smoothly with decreasing v and 
become zero just where V= -1. In addition, 
the following quantity, whose logarithm is pro
portional to the free energy of a chain, 

(40) 

diverges as V---+ - I, where we have used the term 
n=O only in eq 15. These sketches appear in 
Figure 6. However, for v::;:-1, the x-integral 
does not converge, as is easily verified from eq 
37 and 38. These facts show qualitatively that 
the. free energy diverges and that (S2 ) tends to 
approach zero as V---+-1, where the x-integral 
cannot converge; i.e., both the free energy and 
(S2) are analytic functions of v for v > - I, but 
they are nonanalytic functions of v at V= -1. 

Other authors have put forth the theoretical 
prediction5 •6 that the mean square end-to-end 
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ATTRACTIVE REPULS VE 
-----t f--

- 1"- 0 
SINGULAR POINT 

Eq.39 

!-UNPERTURBED 
STATE 

?J 

Figure 6. The behaviors of eq 39 and 40 as a 
function of v. 

distance <R2) will decrease abruptly just below 
v=0. The present result for <S2 ) differs from 
this. However, since eq 39 is not an exact 
expression for <S2 ) within this present approxi
mate treatment, it should not be concluded that 
<S2) tends toward zero as V-->-1. This is 
because Fujita and Norisue's method12 used for 
the derivation of eq 15 and 39 is not directly 
applicable where v~ -1; the discrepancy be
tween the asymptotic form for P(t), given by 
the leading term in eq 15, and the exact form, 
increases as V-->-1, (this discrepancy is about 
8% for v=0, as shown in Appendix). Hence 
we cannot rule out completely the possibility 
that <S2) is positive finite at V= -1. In such 
a case there may occur a phase change in the 
polymer chain. It is a very difficult problem, 
to examine the behavior of the distribution func
tion and < S2) for the values of v -1, and this 
remains in the future problem. 

Anyway, if some sort of singular behavior 
does occur, it will do so at the value, V= -1 
according to our theory, and the critical value 
for the amplitude of the delta function will 
then be of the order of l3/L. According to eq 19, 
v being equal to 1 corresponds to z= -2. This 
value is much lower than that of Stockmayer's, 
i.e., z*=-0.14 for d=3. 

Polymer J., Vol. 9, No. 5, 1977 

SUMMARY 

In this paper we have obtained the two
dimensional perturbed distribution functions of 
the square radius of gyration for a ring chain 
valid for small and large values of t, expressed 
by eq 15 and 16, respectively. Using a simple 
variational technique, we have derived the ex
pression for <S2) in a closed form. However, 
the minimization of the free energy at the stage of 
eq 31 requires further very careful examinations. 

Moreover, for the chain with a purely attrac
tive interaction we have shown that, 

(1) there exists a negative critical value for 
the amplitude of the delta function potential; 
in other words, the excluded volume parameter 
z, below which the Fourier transformation of 
the characteristic function of the distribution of 
S 2 cannot be permitted. 

(2) the free energy of the chain diverges and 
<S2) tends to zero as z approaches the negative 
critical value of z from above. However for 
this latter point, a rigorous proof cannot be 
given in this paper. 

Finally, the present method cannot give in
formation for the behavior of a three-dimensional 
chain in which we are more interested. As long 
as we are concerned with P(S2 ) and <S2), it 
seems more appropriate8 to consider a two
dimensional chain than a three-dimensional one. 
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APPENDIX 

If we put y=3(1+v)2jt, then eq 17 may be 
written as 

<t)=3(1+v)2 ~:2 dy(/12_y-112)e-y 

/ loo dy(y312_y112)e-y 
J3/2 

(Al) 

The two integrals in eq Al are evaluated nu
merically, to give: 
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(t)=0.919(l+v)2 (A2) 

The numerical factor 0.919 is due to our using 
the asymptotic expression for P(S2), which is 
valid for small values of t in the calculation 
of (t). If the exact form for P(S2 ) is used, the 
value of 1 is obtained instead of 0.919. This 
result means that the unperturbed mean square 
radius of gyration (S2) 0 decreases effectively by 
ca. 8% through use of the leading term in eq 15. 
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