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Intrinsic Viscosity of Polyelectrolytes in Salt Solutions* 
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ABSTRACT: A theory is given for the inverse square-root dependence of the intrinsic 
viscosity of polyelectrolytes on the concentration of added salt. The results agree with 
the data by Noda, Tsuge, and Nagasawa. The existence of at least a partial drainage 
effect in polyelectrolytes is discussed. 
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The intrinsic viscosity has been a quantity of 
prime importance since the very beginning of 
polymer studies. In contrast with uncharged 
polymer molecules, the intrinsic viscosity of 
polyelectrolytes is even more interesting because 
of its sensitivity to added simple salts such as 
NaCl or NaBr. This sensitivity must be crucial 
in biological activity. Moreover, the dependence 
on salt concentration gives rise to an extra 
dimension for testing theories. 

Understanding the intrinsic viscosity of 
polyelectrolyte solutions requires greater 
theoretical efforts for the following reasons. 
First, the intrinsic viscosity has been shown 
experimentally1 •2 to be proportional to 1 /c/ 12, 
where Cs is the concentration of added salt, 
while most theories have predicted a 1/cs 
dependence,3 except for those of Fixman4 and 
Yeh and Isihara. 5 However, as has been pointed 
out by Noda, et al.,2 Fixman's fundamental 
assumption that the concentration of counter
ions is much higher than Cs inside a polyion 
seems invalid. Yeh and Isihara assumed a 
segment distribution function referred to the 
molecular center of gravity. The distribution 
function vanishes at the origin and approaches 
the random-walk distribution function at large 
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distances, and is of the type used by Bueche. 6 

Although Yeh and Isihara have reproduced the 
Cs - 112 dependence, the assumed distribution 
function requires a better theoretical justifica
tion. Second, while the Stockmayer and Fixman 
relation7 seems to hold for the molecular weight 
dependence of the intrinsic viscosity, it is diffi
cult to understand the curve with a negative 
slope which Noda, et al., recently found. Third, 
the same experimental data showed a significant 
deviation of the viscosity ratio [ r; ]/[ r; ]0 plotted 
against [M/cs]112 from Fixman's formula. There 
are still other somewhat minor theoretical diffi
culties. Motivated by these observations, we 
have written the present paper. 

The concentration dependence of the intrinsic 
viscosity of polyelectrolytes can be interpreted 
qualitatively. Some of the charges of the 
polyion are neutralized by the salt ions so that 
as the concentration of salt increases the polymer 
shrinks, resulting in a decrease in the intrinsic 
viscosity. 

We adopt a pearl-necklace model with a for 
the diameter of the segment, considered to be 
spherical, and b for the bond length. The 
molecular weight of a segment is denoted by 
M 0 and the total number of segments is N. 
The molecular weight of the polyelectrolyte is 
M=NM0 • 

VISCOSITY FORMULA 

An intrinsic viscosity formula which takes 
into consideration both the excluded volume 
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effect and the hydrodynamic interactions between 
the segments has been given by one of us. 8 In 
a simplified version based on a uniform 
expansion parameter it is9 

[ l [ 7J ]oa2 ( 1 ) 
7J l+a<R-1) 

Here, [r;]o is the intrinsic viscosity in the absence 
of the volume exclusion and the hydrodynamic 
interaction and a is the expansion factor for 
the square average end-to-end distance defined 
by 

<R2)112 
a <R2)/12 ( 2) 

The denominator of eq represents the 
hydrodynamic interaction effect. This is due 
to the finite size of the segments precisely as 
in the excluded volume effect. However, since 
the term "excluded volume effect" has been 
used only for expansion, we consider the 
hydrodynamic effect as separate from the 
excluded volume effect. 

The hydrodynamic interaction effect is given 
by 

( 3) 

where <R-1) 0 represents the random-walk result: 

-1 I 1 ( 6N)l/2 12+31121 
<R ) 0=4ir j w0(R)RdR=b ---;- In 2 _ 3112 

( 4) 

w0(r) is the segment distribution function about 
the center of gravity for the case without 
exclusion volume. 8 With eq 3, the intrinsic 
viscosity given by eq 1 will be asymptotically 
proportional to a 3 at high molecular weight. 

Whatever the form of w0(R), the above 
average is correct in magnitude as far as 
random-walk processes are concerned. The 
average <R-1) appears in eq 1 owing to the 
consideration of hydrodynamic interactions. In 
the past, it has been stated that the viscosity 
data of neutral polymers can be explained by a 
consideration of volume exclusion without 
hydrodynamic interaction. For polyelectrolytes, 
we keep this term and find its role. 

Formula (1) is based on assigning a hydro
dynamic force F(R) to every point R in space. 
This force is a function of a single variable R 
and thus is different from the many-body force 
introduced by Kirkwood and Riseman. Because 
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of this difference, the hydrodynamic interaction 
has been expressed essentially by the average 
<R-1) 0 • Note here that we have used <R-1)o 
instead of <R-1) in order to set aside the usual 
excluded volume effect. 

The integral of eq (4) counts the number of 
segments in each "surface" element 4nRdR. 
However, this counting is not quite correct, 
because a single force F(R) represents the effects 
of a single segmental sphere at R and because 
the very volume exclusion of this segment does 
not allow other segments within its volume. 
That is, we should have counted the number of 
spheres instead of points. Moreover, a pair of 
neighboring segments cannot approach closer 
than the bond length b. It is important to take 
into consideration this smallest unit of distance 
because the effectiveness of the hard-sphere 
diameter a is relative to b and because the 
hydrodynamic interaction, being effectively 
proportional to <R-1), is divergent at R=O. 
For these reasons, we correct the integration of 
eq 4 so as to collect ir(a/2)2 per nb2 • According
ly, we introduce a correction factor (a/2b)2 into 
the hydrodynamic term a<R-1 ) in the denomi
nator of eq I. 

The above correction is analogous to the 
quantum correction h3 due to the Pauli principle 
to the classical phase space volume element dp 
dr. rt' must be distinguished from the usual 
excluded volume effect, which is expressed by 
the factor a -l in eq 3. This factor represents 
the selfavoiding-walk effect on the random-walk 
processes and is independent of what we have 
just discussed, although the origin is the same. 
In fact, a depends on N but the above correc
tion is independent of N. The former correc
tion is of long-range character and the latter is 
short-range. Note that w0(R) in eq 4 has been 
obtained for long distances and is not correct for 
short distances even for random walk processes. 

We remark that the above correction merely 
changes the numerical values of a and b, which 
are only theoretical parameters. For the 
molecular weight dependence of [r;], the presence 
of M in the denominator is actually crucial. 

The hydrodynamic interaction term has been 
obtained by a volume integration of 1/R. 
Because this distance cannot also be arbitrary 
small, the combined factor 4nR2 dR/R may be 
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corrected. With this correction and somewhat 
more explicitly, eq 1 becomes 

[r;] [r;]oa2 ( 5) 

l+ 0:1 [: J[: r2 

in which the volume character of the hydro
dynamic interaction is clearly manifested. 

The ratio [ r; ]/[ r; ]0 can be identified as the 
viscosity expansion coefficient a~ cubed, because 
the Einstein formula for the intrinsic viscosity 
is proportional to the volume occupied by a 
polymer molecule, and because there should be 
no hydrodynamic term when a= 1. The underly
ing assumption is that the polymer molecule is a 
solid sphere and no solvent molecule can go 
through the sphere nor even slip on the polymer 
surface. 

In order to evaluate the intrinsic viscosity, 
one needs to evaluate the expansion parameter. 
For this evaluation, we assume that the interac
tion potential between a pair of segments 
consists of three parts: a hard-sphere potential, 
a screened Coulomb potential, and an attractive 
potential: i.e. 

{
oo, r<a 

<fi(r)= e* 2 2 2 
- exp (-K(r-a)-c2 exp (-3r /2?.) , 
cor 

r>a ( 6) 

where e* is the effective charge on the segments, 
co is the dielectric constant of the solution, and 
the attractive part of the potential is assumed 
to be given by an exponential function with 
two parameters. We have found that the 
combined total potential reproduces the usual 
molecular potential form rather well. Use of 
the Gaussian exponential function is just for 
convenience. 

The screened Coulomb potential adopted here 
agrees with what the long-range limit of the 
pair distribution function of hard-sphere ions 
suggests. 10 We use the result given by eq 13 
of ref. 10: 

7/f(r)=~ exp (-µr~ 
c0 r ( 1 + Sirnp) 

The screening constant µ is given by 

µ=K(l+Siranp)- 112 , 

( 7) 

p= 1/kT (n being the number of charges per 
unit volume) and 
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( 8) 

where e is the charge of simple ions in the 
solvent and K is the Debye screening constant 
for point ions. The factor Siranp is small and 
is neglected in the above expression (7). 

In the past, the screened potential for hard
sphere ions has been determined by solving the 
Poisson-Boltzmann equation with the Debye 
screening constant. In this method, the hard
sphere character of the ions is taken into 
consideration through a boundary condition on 
the surface of the sphere at the origin of the 
coordinate system. However, in the vicinity of 
the sphere, the Debye screening may not be 
used, since it is a quantity representing a long
range many-body effect. The potential in eq 7 
has been determined from the asymptotic 
behavior of the pair distribution function, 
which is determined by the potential of the 
average force and is free from this drawback. 

The Debye screening constant is determined 
by the ionic character of the solution and is 
related to the concentration of added salt. 
Assuming that the dielectric constant is of order 
unity within a polymer molecule and that the 
charge of the ions is e, the electronic charge, 
we have 

K 2 = 8ire2 Nal0-3cs/ co/ k T 

=9.004X l016C8 

where C8 is in mol/100 ml. 

( 9) 

We shall use the assumption that the screened 
Coulomb repulsion and the exponential attrac
tion combined are small in comparison with 
the thermal energy so that a first-order calcula
tion is possible. This does not mean that each 
of the two oppositely signed potentials is small. 

The evaluation of a is then straightforward. 
We obtain 

(10) 

The expansion factor for the mean square 
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radius of gyration is denoted by r.2. It is given 
by 

a2=l 1341: 
s + 105"' 

=1+1.2763f (11) 

As mentioned before, the intrinsic viscosity 
is associated with a 3• In order to find a 3, 

Fixman used a device based on a differential 
equation with a uniform expansion of the bond 
length in proportion to a .11 In order to derive 
his expression, we assume that the bond length 
associated with the unperturbed square average 

(r2>0=Nh/ 

is characterized by a constant h0 , instead of h. 
In the presence of volume exclusion, the actual 
bond length h which enters the expression of 
(r2> together with a may be replaced by ah0 • 

Retaining only the factors outside of the curly 

brackets of eq 10, we write 

2 4 -
a =1+-f 

3a 

where means f with h replaced by h0 • We 
assume that both and changes in a are small 
so that, with neglect of a second-order small 
term, we have 

2 4 -
r.rda =-df 

3 
(12) 

Integrating this equation under the initial condi
tion that a= I when =0, we find 

a 3=1+2~ (13) 

For the expansion factor for the radius of 
gyration, the same procedure results in 

3 3 -
a, =1 +-x 1.276f 

2 

= 1 + l.914~ 

RESULTS AND DISCUSSION 

(14) 

The expansion parameter f O is associated with 
c8 • When c, is 0.01, 1/Ka is approximately 0.4 
and its square is small. For higher concentra
tions, l/(Ka)2 is even smaller. The effective 
charge e* may be related to e through an 
ionization factor x as follows: 
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e*=xe (15) 

Being an effective parameter, x can depend on 
the concentration and the ionic strength of 
solutions. By comparing our viscosity formula 
with the data of Noda, et al, i.e., Table II of 
ref 2, we have found that it varies slightly 
from 0.418 for C8 =0.0l to 0.353 for C8 =0.5. 
Since our viscosity formula includes several 
other parameters, we did not try to find best 
values for x but rather have adopted x=0.418 
for the following parameters: 

h=50A, A=3.6A a=8A, 

c2=(k/10)x290, Na=6.0229 X 1023 , T=290K 

(16) 

The diameter a and the bond length h cor
respond to a segment of our theoretical pearl
necklace model. Since the theory assumes 
flexibility, a segment corresponds to several 
monomer units. Since we are using a perturba
tion theory with a/h as a convergence parameter, 
we have given a rather small ratio. The 
molecular weight of a segment has been assigned 
a convenient value of 100. 

With the above choice of the parameters, our 
theoretical relation between fo and c, becomes 

0.05Ix2 

fo= -0.0129+ 112 
Cs 

( I 7) 

Hence, choosing M/ 12= 10 we obtain 

3 1 +0.1276f0M 112 
( 18) a~= 1 3.7x10-• 

+ (1 +0.1276f0M 112)1 12 

We have illustrated a/ in Figure 1. As we 
see, a~ 3 gives nearly a straight line when 
plotted against M/c8

112 • The degree of ioniza
tion is 0.103 and the viscosity constant K= 
1.02x 10-3 for PAA. Hence, [r;]/M112 in the 
plot in Figure 4 of Noda, et al.,2 has been 

converted to [r;]/[r;]o, by dividing the ordinate 
by 1.02. The agreement between our theory 
and experiment is excellent. In particular, we 
note that even the case of C6 =0.5, which has a 
negative slope, is in agreement. Such a nega
tive slope has not been reproduced by the Stock
mayer-Fixman theory. 

The slopes in Figure 1 depend 
c/12, as is illustrated in Figure 2. 

linearly on 
According 
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Figure 1. Viscosity ratio, [17]/[1;]o=a~3 plotted 
atainst M 1/ 2 x 10-2 for four different concentrations 
of added salt. The data points represent PAA in 
NABr (Noda, Tsuge, and Nagasawa: ref. 2). The 
straight lines correspond to our theory. 

to eq 17, the intercept is -0.0129. This result 
can be compared with Figure 5 of Noda, et al., 
in which B is plotted against Cs - 112 , where B is 
the quantity appearing in the Stockmayer
Fixman expression: 

[r,,]/M112=K0 +0.5I<P0BM112 (19) 

The relation between B and our fo is 

0.51(2.87 X l021)10-18[B X 1026] 
(1.02 X 103) X 12. 76 

fo 

From Figure 5 of Noda, et al., we read 

(20) 

Bxl026 =-0.12 (21) 

Hence, the data by Noda, et al. give approxi
mately the following experimental f 0 : 

fo exp =0.0135 

in excellent agreement with our purely 
theoretical value -0.0129 from eq 17. As we 
mentioned before, B depends actually on i, the 
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Figure 2. fo vs. l/cs112 -fo is given by eq 17. 
Circles represent data by Noda, et al.; 2 the degree 
of ionization i is 0.103. 

degree of ionization, so that we expect 

x=f(i, Cs) (22) 

By determining x in successive approximations, 
we would be able to achieve even better agree
ment with the experimental results. 

For polyelectrolytes, it is worthwhile to define 

1.276( 6 ) 112( a ) 3 3e*2 

r= M/12 ---; b C kT(~!!_N 10-3a2)1/2 
D kT en a 

(23) 

so that the electrostatic part of the expansion 
factor is 

a!e= 1 +rM112 /c/12 (24) 

Numerically, 

r=0.1276 x0.05lx2 (25) 

For x=0.418 this yields 

r=l.137x10-a (26) 

Hence, the viscosity expansion associated with 
the electrostatic repulsion alone for high con-
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Figure 3. Electrostatic expansion factor a~. vs. 
(M/c,) 112 : curve (1), our theory; circles data cor
responding to those in Figure 1; curve (2), 
Fixman's relation. 

centration is given by 

a~e=[l + 1.137 X 10-3(M/c,)112][1 +3.7 X 10-4M 112 ] 

{
1 3.7x 10-4M112 }-1 

X + 1 + 1.137 X 10-3(M/c8) 112 ( 27) 

This theoretical relation is plotted against 
(M/c8)112 10-3 in Figure 3. The extra M 
dependence of our formula gives small fluctua
tions of the theoretical values for a given 
(M/c8 ). However, these fluctuations are small 
and the solid Curve (1) represents our smoothed 
theoretical result, which has a slightly negative 
curvature. 

We have explained the 1/c/12 dependence of 
the intrinsic viscosity of polyelectrolytes by 
neglecting the term which is proportional to 
(1Ca)-2 • However, this depends on IC and a. If 
the dielectric constant •n is of order 80, the 
term (1Ca)-2 might become more important than 
(1Ca)-1. However, such a large value of IC would 
decrease the r given by eq 23 significantly, 
requiring changes in some other parameters. 

From our analysis in this paper, the hydro
dynamical interaction term is important parti
cularly in explaining the curve of a negative 
slope in Figure 1 which corresponds to C8 =0.5 
M. Therefore, it appears that there is at least 
a partial drainage effect in the polyelectrolyte 
solutions. Although further experimental tests 
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are needed to be conclusive, it would be strange 
theoretically if there were no hydrodynamical 
interaction in any polymers, because the interac
tion i5 caused by volume exclusion just as in 
the case of the ordinary excluded volume effect. 

The present work has been concerned with 
the concentration dependence of the viscosity 
ratio. In order to discuss the absolute 
magnitude of the intrinsic viscosity, we need to 
evaluate the viscosity at a reference state. We 
have also investigated the case of moderate to 
high salt concentration. In this rage, the limit 
in which the polymer charges are neutralized 
completely provides the reference state. For 
the opposite case of low concentrations, we 
need to develop a new theory. Our next task 
shall be the investigations of the low concentra
tion case and also of the effect of the (1Car2 

term. 
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