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ABSTRACT: Stress relaxation was measured after application of a double-step shear 
strain on a concentrated solution of polystyrene in chlorinated biphenyl. The first 
shear strain s1 was applied to the sample in a cone-plate sample holder of a relaxometer 
at time -ti, the second strain s2 was added at t=O, and then the stress was measured 
as a function of time t. Ranges of s1 and t1 were 1.71-20.5 shear units and 10-5000 
sec, respectively, while s2 was kept constant at 1.88 s.u. These results, together with 
published results for strain-dependent relaxation moduli, were employed to assess a 
group of constitutive equations which use single integrals with respect to the time t' 
to describe the strain history. It was shown that such constitutive equation could not 
in general describe the observed results, when invariants at t' of the strain rate or the 
strain were employed in the response functions to represent the nonlinear behavior. 
However, in the special cases of relatively small s1 or large !1, constitutive equations 
of the single integral type described quantitatively the observed nonlinear behavior, 
when invariants of strain were employed in the response functions. 
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A variety of constitutive equations in differ
ential as well as integral forms have been pro
posed to describe the nonlinear viscoelastic 
behavior of polymeric systems. 1 Among the 
equations, those of the single integral type are 
of special importance, due to their simplicity 
and also to their generality in including the 
phenomenological theory of linear viscoelasticity., 
Equations of this type may be written as 

defined relative to the state at t, R; is a response 
function representing the properties of the ma
terial and Z; indicates that the integrand may 
be composed of several terms with different 
tensors S;(t'). The quantity A represents the 
magnitude of strain or strain rate and is a scalar 
derived from the invariants of the strain or 
strain-rate tensor. Published equations of this 
type may be classified into three categories ac

cording to the definition of A: 2 (1) A is a com
bination of the invariants of the strain-rate 
tensor at t', (2) A is a combination of an aver
age of the invariants of the strain-rate tensor 
between t' and t, and (3) A is a combination 

of the invariants of the strain tensor at t' de
fined relative to the state at t. Classes (1) and 

(3) probably represent the simplest equations of 

the single integral type which are able to de
scribe any non-linear behavior, because in these 

\ t I I I 
a(t)= J-= Z;R;(t-t; A)S;(t) dt ( 1 ) 

where a(t) is the stress tensor at time t, S;(t') 
is a tensor derived from the strain tensor at t' 
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cases response functions are defined only in 
reference •to two states t' and t. 

Yamamoto recently examined the applicability 
of equations of class (1) to polymer solutions 
and pointed out the importance of obtaining 
rate-dependent relaxation spectra. 2 ' 3 However, 
recent experimental results on stress relaxation 
under large strain have revealed that equations 
of class (1) may not be applicable to deforma
tions of a discontinuous nature without large 
and intricate modifications. 4 ' 5 It has also been 
shown that the strain-dependent relaxation spec
trum of .Yamamoto6 is easily obtained from the 
strain-dependent relaxation modulus, if an equa
tion of class (3) is applied. 5 However, it re
mains uncertain whether the constitutive equa
tion of class (3) thus obtained is suitable for 
describing the nonlinear behavior of polymeric 
systems with a different strain history. In order 
to test the applicability of an equation of class 
(3), we measured, in the present study, the 
stress relaxation after application of a two-step 
strain and studied the effect of strain history, 
such as the magnitude of the first-step strain 
and the time interval between two steps. The 
stress relaxation after application of a two-step 
strain has been reported by Zapas and Craft 
for elongational deformation of polyisobutylene 
and plasticized poly(vinyl chloride). 7 They o_b
served that the BKZ theory,8 a special case of 
class (3), is applicable to these systems. Our 
experimental results extended up to larger values 
of the strain than did those of Zapas and Craft. 

EXPERIMENT AL 

The stress relaxation was measured after ap
plication of a two-step strain in a solution of 
polystyrene in Aroclor 1248. The polystyrene 
was the stand<J.rd sample 14a, of molecular 
weight l.80x 106, supplied by Pressure Chemical 

-Company. The solvent, Aroclor 1248, was a 
mixture of partially chlorinated biphenyl sup
plied by Monsanto Chemical Company. The 
solution was the same as that previously used 
for measurements of strain-dependent relaxation 
moduli. 4 ' 5 Experiments were performed at 30°. 
Measurements were carried out with a cone
plate type relaxometer as reported earlier. 9 The 
double-step strain was applied by repeating 
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-t1 0 time 
Figure 1. Illustration of stress relaxation for 
double-step strain. The first strain s1 is applied 
at time t= -t1 and the second strain s2 is added 
at t=O. Stress is measured as a function of time 
for t>O. 

twice the procedure for the usual (single-step) 
relaxation measurement. The first strain s1 was 
applied at time t= - ti, the second strain s2 was 
added at t=O and then the shear stress a was 
measured as a function of time, as illustrated 
in Figure 1. The second strain s2 was kept 
small (s2=1.71 or 1.88 shear units) in the 
present measurements, while the first strain s1 

and the time interval t1 were varied from 1. 71 
to 20.5 s.u. and from 10 to 5000 sec. 

RESULTS 

Examples of the stress relaxation for the 
double-step strain are shown in Figures 2 
through 4 for various combinations of the first 
strain s1 and the time interval t1 • Figure 2 
gives the results for s1=1.71 and S2 =1.71. Dif
ferent symbols represent various values of t1 • 

The stress a for t 1 = 0 ( filled circles) is the same 
as that for a single-step strain of magnitude s= 
's1+s2 • On the other hand, a for t1 =5000 sec 
(circles with pip up) is equal within experiment
al error to that for a single-step strain of S=S2. 

This result is co·nsistent with the previous result5 

that the maximum relaxation time for this 
system, approximately 1.5 X 103 sec, is much 
shorter than 5000 sec. If the relation of linear 
viscoelasticity applies, the stress for t1 =0 sec 
should be larger than that for t1=5000 sec by 
a factor 2 over the whole range of times, and 
the stress for intermediate t1 should be inter
mediate to those for t1=0 and 5000 sec. How-
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Figure 2. Stress for double-step strain measured 
for 20% solution of polystyrene 14a at 30°. The 
first strain s1 and the second strain s2 are both 
1.71 shear unit. Various directions of pips represent 
time intervals !1: pip up, 5000 sec; successive 90° 
rotations clockwise correspond to 1000, 100, and 
20 sec, respectively. Filled circles represent !1=0. 
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Figure 3. Stress for double-step strain, measured 
for 20% solution of polystyrene 14a at 30°. The 
first strain s1 is 6.83 and the second strain s2 is 
1.88 shear units. Various directions of pips re
present time intervals !1: pip up, 5000 sec; succes
sive 90° rotations clockwise correspond to 1000, 
100, and 20 sec, respectively. Filled circles re
present !1=0. Solid lines represent predictions of 
eq 5 for !1=1000, 100, and 20 sec, from top to 
bottom. 
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Figure 4. Stress for double-step strain, measured 
for 20% solution of polystyrene 14a at 30°. The 
first strain s1 is 20.5 and the second strain s2 is 
1.88 shear units. Various directions of pips re
present time intervals t1: pip up, 5000 sec; succes
sive 90° rotations clockwise correspond to 1000, 
100, and 20 sec, respectively. Filled circles re
present !1=0. Solid lines represent predictions of 
eq 5 for t1 = 1000, 100, and 20 sec, from top to 
bottom. 

ever, the observed stress for t1 =0 is larger than 
that for t1 =5000 sec only in the range of very 
short times. In the range of longer times, these 
two stresses are approximately equal to each 
other. This result might be expected from the 
fact that the strain-dependent relaxation modulus 
G(t, s) is relatively insensitive to the variation 
of the strain s when t is small but decreases in 
proportion to (s2+3)-o.sa when s and t are 
large. 4 , 5 Therefore, the stress sG( t, s) for a 
single-step strain at long times increases as s 
increases from O to about 2 and then decreases 
as s increases. In the case of Figure 2, the 
stresses for a single-step strain at long times are 
insensitive to the variation of s because s is 
close to 2. The stress for the double-step strain 
of intermediate time interval t1 is approximately 
equal to that for the single-step strain (or t1 = 
5000 sec) in the range of long times (t> 102 sec). 
In other words, the strain history preceding the 
application of s2 does not affect the stresses in 
this range of long times. In the range of shorter 
times, however, a decreases as t1 decreases; the 
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smaller the observed stress, the larger the stress 
remaining at the time of application of the ad
ditional strain. 

Figure 3 shows the results for the combina
tion of si=6.83 and s2 =1.88. In contrast to 
the case in Figure 2, the stress for ti =0 sec is 
smaller than those for other values of ti in the 
range of long times. This is expected, because 
s exceeds 2 in this case. Again, the larger the 
stress remaining at the time of application of 
the second strain, the larger is the observed 
stress on the short time scale. In this case, the 
effect of the variation of ti persists to a longer 
time scale than was the case in Figure 2. Figure 
4 represents the result for a still larger si: si = 
20.5 and s2 =1.88. Qualitatively the same fea
tures as in Figure 3 are observed. However, it 
is clear that the effect of the variation of ti is 
larger and persists to still longer times than in 
Figure 3. 

DISCUSSIONS 

In order to examine the applicability of a 
constitutive equation of class (3), as defined in 
the introductory section, let us rewrite eq 1 for 
the shear stress in a simple shear deformation. 
Since functions A and Si for a simple shear 
deformation include only the shear strain s(t') 
as a variable in the case of class (3), a may be 
written as 

a(t)= [
00
F(t-t'; s(t')) dt' ( 2) 

where s(t') is the strain at t' defined relative to 
the state at t and F is a scalar function of t
t' and s(t'). By introducing the strain defined 
in Figure 1 for s(t'), one obtains an expression 
for the stress for a double-step strain as 

a(i)=a(t+ti, si+s2)-a(t+ti, s2 )+a(t, s2) ( 3) 

where a(t, s) is the stress at time t after applica
tion of a single-step strain s. The stress a(t, s) 
is related to the strain-dependent relaxation 
modulus G(t, s) as4 

a(t, s)=sG(t, s) ( 4) 

In the case of linear viscoelasticity, G(t, s) is 
independent of s and eq 3 reduces to 
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(5) 

where G(t) is the relaxation modulus of linear 
viscoelasticity. 

With the use of G(t, s) reported earlier, the 
stresses for a double-step strain were calculated 
with eq 3 and were compared with the experi
mental results. Examples of calculated results 
are shown by the solid lines in Figures 3 and 
4. In the case of small si and s2 , the agreement 
between theoretical and experimental results is 
excellent, irrespective of the time interval ti, 

although calculated results are not shown in 
Figure 2. The agreement is also good for 
moderately large values of si, as shown in 
Figure 3. It might be remarked that eq 5 for 
linear viscoelasticity gives results in the wrong 
direction: the theoretical value of a(t) decreases 
as ti increases. When the strain si is large, eq 
3 shows a tendency to overestimate the stress 
for a double-step strain in the range of short 
times, as shown in Figure 4. The relative dis
crepancy between theoretical and observed results 
is larger when the time interval ti is smaller. 
For ti= 1000 sec, predicted values are in close 
agreement with those observed. This agreement 
may be partly trivial, because the stress should 
approach a(t, s2) as ti increases, for constitutive 
equations of any type. Still, the contribution 
of the first two terms_ on the right hand side 
of eq 3 is essential for the agreement, as seen 
by the fact that the calculated result is clearly 
closer to the observed than is a(t, s2) represented 
by the result for ti=5000 sec. 

It may be concluded that no constitutive 
equation of class (3) is capable of describing 
stresses at very large deformations of the typical 
polymer solution studied in this study. The 
success of the BKZ model in describing stress 
relaxation for a double-step strain is apparently 
due to the fact that the measurements were 
confined to relatively small strains. 7 As men
tioned before, classes (1) and (3) represent the 
simplest equations of the single integral type 
that involve response functions defined in 
reference to only two states t' and t. On the 
other hand, eq 3 may be applied to any equa
tions of the single integral type with response 
functions defined in reference to two states t' 
and t, although the derivation is not shown 
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here. Therefore, the present result indicates that 
response functions for the polymer solution 
should require as variables at least two states 
of the strain history, in addition to the state t. 

In other words, each value of the response 

function may be determined by giving strain 
states of at least two times in addition to the 
state at time t of observation of stress. When 
the strain is not _too large, an equation of class 
(3) is capable of describing the shear stress in 
a double-step shear strain. It is possible that 
the constitutive equation of class (3) is a good 
approximation for describing any stress com
ponent for any strain history in polymer solu
tions in a restricted range of magnitude of the 
strain. We will examine this possibility in sub
sequent publications making use of various 
strain histories. 
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