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ABSTRACT: In order to interpret the change in heat capacity LlCp at glass transition 
temperature and the excess enthalpy H, of polymer liquids and glasses relative to the 
crystals, a hole theory is presented in which both the hole fraction and the state of 
chain conformation are assumed to be frozen-in in the glassy state. In this treatment, 
LlCp and He are both divided into two parts: one associated with intersegmental and 
the other with intrasegmental interactions. The relations TV(Lla) 2/ L1Cp1nter Ll/3 = I and 
TV(Lla)2/ LlCpLlp I are derived, where T is temperature, V is volume, Lla and L1j3 are the 
differences in the thermal expansion coefficient and compressibility between the liquid 
and glassy states respectively, and LlCpinter is the part of LlCp attributable to interseg­
mental interactions. Using the results of this theory, the experimental observations 
for LlCp and He are compared and analyzed, bringing in at times the principle of cor­
responding states. 

KEY WORDS Hole Theory/ Polymer/ Glass Transition/ Heat Capaci­
ty/ Excess Enthalpy/ 

In the preceding paper1 we explained the glassy 
state by the hole theory, in which the glassy 
state was distinguished from the liquid and crys­
talline states by the freezing of holes which re­
spect to intersegmental interactions. In this 
paper we deal with the thermodynamic proper­
ties which reflect both inter- and intra-segmental 
interactions, i.e., changes in heat capacity LlCP 
at glass transition temperature and "excess 
enthalpy" H, of the liquid and glass relative to 
the crystal, whereas in the previous paper1 we 
considered the problems concerned with inter­
segmental interactions only, e.g., internal pres­
sure. Since the glassy state may be regarded 
as a frozen liquid such that the polymer chains 
cannot change their conformations and that the 
segments cannot exchange their mean positions 
with each other, both holes and chain confor­
mation are frozen-in in the glassy state. There­
forfore each of the above quantities LJCP and H, 
may consist of two elements: one associated 
with holes, intersegmental interactions, and the 
other associated with conformation of chain 
backbones, intrasegmental interactions. 

Here we present a general hole theory incorpo­
rating the previous one, and derive a few rela­
tions between thermodynamic quantities such as 
L1Cv, H" L1(3, and Lla, where Ll/3 and Lla are re­
spectively the differences in compressibility and 
and the thermal expansion coefficient between 
the liquid and glassy states. From the theoreti­
cal results we try to analyze the experimental 
observations, using at times the principle of 
corresponding states. 

THEORY 

Model 
We consider a system in which N segments 

are on M lattice sites (M?:.N). Thus there are 
(M- N) empty sites or holes. If we denote the 
cell volume by v*, then M/N=V/Nv*-=V/V*-= V, 
where V is volume, and hence the quantity 
(1- v-1 ) represents the hole fraction. In devel­
opping the theory further, we make the follow­
ing two assumptions. 

Assumption 1. The change in the cell volume 
with pressure and temperature is essentially 
independent of the hole fraction or V. This 
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implies that the thermal expansion coefficient and 
compressibilility of the cell volume are almost 
continuous at the glass transition, and that the 
glasses of different hole fractions have almost 
the same cell volume, the same thermal expan­
sion coefficient and the same compressibility 
(see APPENDIX in the preceding paper1). 

Assumption 2. The free energy of the system 
is expressed by the sum of two kinds of free 
energy: one associated with the internal degrees 
of freedom or intrasegmental interactions, in­
cluding the so-called short range interaction 
related to the chain conformation, and the other 
associated with the external degrees of freedom 
or intersegmental interactions. The former is 
considered to be independent of volume, and 
depends on temperature alone in the zero-th 
approximation. On the other hand, the latter 
should be dependent upon the hole fraction, 
the mean distance between nearest neighbor 
segments and temperature T. Hence it can be 
regarded as a function of V, V*, and T. Thus 
the assumption is represented by 

F=U-TS=U1(T)-TS1(T) 

+UiV, v*, T)-TS2(V, v*, T) ( 1) 

where U is the internal energy and S the entropy, 
and the subscripts 1 and 2 refer to intraseg­
mental interactions, respectively. In general U1 

and U2 , or S1 and S2 cannot be expressed 
separately since, for example, the admissible 
number of arrangements of the polymer chain 
on the lattice and the conformational state of 
chain backbones may be mutually affected. 
However Gibbs and DiMarzio 2 have shown, 
with a lattice theory, the possiblity that the parti­
tion functions for intra- and inter-molecular 
interactions are formally expressed separately. 
Thus we may reasonably use the expression 
of eq 1 in zero-th approximation. The free 
energy in our previous paper1 •3 was also expressed 
in the form of eq 1; the partition function cor­
responding to U1 -TS1 was represented by the 
implicit form J(T), whereas that corresponding 
to (U2 -TS2 ) was given in the explicit form. 
The preceding model showed that Assumption 1 
is valid at pressure much less than internal 
pressure and that the dependence of the T -P-V* 
relation on V is only slight even at higher 
pressure. 
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In the glassy state, which is considered here 
to be a quasi-equilibrium state, it is assumed 
that the holes and the conformation of the chain 
backbones are completely frozen in. Thus, in 
the glassy state, the hole fraction or Vis assumed 
to be constant and the part of U1 -TS1 associated 
with the hindered rotation about chain backbones 
is also assumed not to vary. On the other 
hand, in the liquid state, V and v* are both 
allowed to change so as to minimize the free 
energy. 

In the present theory in which inter- and 
intra-segmental interactions are separately ex­
pressed, both ACP and H. are also represented 
by the sum of two parts: 

LJCp=.::JCpinter + .::JCpintra 

H.=H/nter +He intra 

( 2) 

( 3) 

where superscripts inter and intra refer to inter­
and intra-segmental interactions, respectively. 
From the definitions for these quantities, we have 

ACp=A(aH./aT)p , 

ACpinter=.::J(aH,inter;aT)p , 

.::JC/ntra=LJ(aH.introjaT)p , 

where the symbol A denotes the difference be­
tween the liquid and glassy states. Since the 
the equation of state and ,dCPinter are both deter­
mined by a volume-dependent part of free energy, 
some relation among .::JC/nter, Ap and Aa is 
expected, which will be derived in the next 
section. The expressions for .::JC/nter and H,inter 

will be also derived by using the explicit form 
for U2 given in the previous paper. 1 ' 3 Finally, 
we will present a simple rotational-isomeric 
model for the conformational energy of a chain 
backbone and express ,dCPintra and H.intra with 
two parameters involved in the model. 
LJCpinter and H/nter 

First we will express the the heat capacity 
C/nter at constant pressure arising from inter­
molecular interactions. From the definition of 
the heat capacity, we have 

C;~ter = T(aS2/aV)v•,r(aV/aT)/ 

+ T(aS2/aV*)v,r cav*;ar)/ + T(aS2/aT)v,v• 

=T(aS2/aV)v,,rV{aln V/aT)/ 

-(a ln v* ;ar)p1} + T(aS2/aV*)v,r 

( 4) 
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for the liquid state, and 

C~~ter = T(aS2/aV*)v.r(aV* /aT)v,P+ T(aS2/aT)v,v• 

( 5 ) 

for the glassy state, where the symbols 1 and 
g as subscripts and superscripts refer to the 
liquid and glassy states respectively. From eq 
4 and 5, we can derive L/C/nter as 

L/Cpinter = c~~ter -C~~ter = T(aS2/aV)v•,T V(a1 -ag) 

( 6) 

using the relation ca In V*/aT)/=(a In V*/aT)v,P 
=ag (Assumption 1), where a 1 and ag are the 
thermal expansion coefficients (a In V/aT)p in the 
liquid and glassy states. The relation P= 
-(aF/aV)r = -(aF/aV)v,, T = {T(aS2/a V)v•,r-(aU2/ 
af!)v•,r)/V* can be derived from the condition 
that the volume of the cell is determined so as 
to minimize the free energy of the system (see 
APPENDIX of the preceding paper1). With 
this relation, L/CP1nter may be expressed in an 
alternative form 

L/Cpinter={(aU2/at\.,T) + PV*}(a1-ag) ( 7) 

Next we will express the quantity (aS2/aV)v,•r 
in terms of a and compressibility p = -(a In V/ 
aP)r in order to relate L/C/nter to the changes 
of a and p at glass transition temperature. 
Thermal pressure coefficient (aP/aT)v=a/p is 
given by 

(aP/aT)v1=ai/ pi= (aS/aV)r1 

=(aS2/aV)v•,r/V* +{(aS2/aV*)v,T 

-(V/V*)((aS2/aV)v•,r)(aV*/aV)r1 ( 8) 

for the liquid state and 

(aP/aT)vg=ag/ pg=(aS/aV)rg 

=(aS2/aV*)v,r(aV*/aV)v,T 

=(aS2/aV*)v,r/V ( 9) 

for the glassy state. 
Accordingly, combining eq 8 and 9, and using 

the relation V(aV*/aV)r=pg/p1 (Assumption 1), 
we obtain 

(aS2/aV)v•,r/V*=Lla/Llp (10) 

where Lla=a1-ag and Llp=p1-Pg· 

Finally, substituting eq 10 into eq 6, we have 
the expression 
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If L/C/nter is replaced by L/Cp, this equation be­
comes identical with the well known equation 
L/CpL/p/TV(Lla/= I which holds for a thermo­
dynamical second order transition. In the p;e. 
sent theory, since L/Cp1ntra=LICp-L/Cp1nter;;,:O, 
it follows that 

TV(Lla) 2/ L/CpLlp=LIC/nter; L/Cp:s;; I . (12) 

Heat capacity at constant pressure CP and that 
at constant volume Cv are related to each other 
by the equation CP=Cv+TVa2/p. Therefore we 
have 

L/C/nter=L/C/nter + L/(TVa 2/ p) (13) 

noting L/Cp1ntra=LICv1ntra from Assumption 2. 
From eq 11 and 13, we have 

L/Cvinter 
----~~ 

L/Cpinter 
(l-a1pg/agp1) 2 

(pg/ p1)(ai/ag- l) 2 

_ (l-Pil/P1g) 2Pilag 
- (ai/ag-1 )2P1ga1 

(14) 

(14)' 

where P 1 is internal pressure defined by (aU/aV)r 
and the relation P 1=Ta/p-P=Ta/f3 is used. 
As can be seen from this equation, LICvinter is 
not zero but positive, and thus it follows that 
L/Cv > L/Cvintra. 

According to the previous hole theory,1· 3 the 
expression for U2 is given by 

U2=-Nz*z1Ks(V-l+sf 1 (15) 

where z' is the mean coordination number of 
a lattice site, i.e., s=z'/z, and -c*zK is the 
lattice energy, intersegmental interaction energy 
per segment, represented by 

-c* z' K=z* z' {l .0109(1/N/V*)4-2.409(o-3 N/V*) 2}/2 

(16) 

Here the symbols c* and o- are the parameters 
involved in the Lennard-Jones 12-6 potential 
expressed as u(rij)=4c*{(o-/rij)1 2 -(o-/ri;-)6} where 
u(rij) is the potential energy of interaction be­
tween segments i and j as a function of separa­
tion rij· If we use the expression in eq 15 for 
U2 , the quantity L/CP1nter is derived from eq 7 
as 

L/Cpinter=Nc*z' Ks(Vg-1 +s)- 2 VgL/a 

at atmospheric pressure (P=O). 

(17) 
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We note here that, if the corresponding states 
principle for polymer liquids4 is assumed, LfCPinter 
of a molar unit having three external degrees 
of freedom, which is denoted here by JC/inter 
may be a universal function of the reduced 
variables, as shown in the following. We let 
3c designate the external degrees of freedom per 
segment. Then, JC/inter is expressed as 
LICPinterNA/cN, where NA is Avogadro's number. 
The principle of corresponding states for the 
equation of state is assumed here, and U2 is also 
assumed be expressed as U2 =Ni,.*z' xf(V, T, V*/ 
(/N), where the function f is a universal one 
and the reduced temperature T is defined as 
ckT/r;;*z'. It then follows that 

JC/inter =L1Cp inter NA! cN = Ll(o U2/oT)pNA/ cN 

= r;;*z'N;, Ll(o'/oT) 
C 'JI p 

(18) 

where R is kNA, the gass constant, and Pis the 
reduced pressure. The right side of eq 18 is a 
function of the reduced variables. Accordingly, 
provided that the reduced variables at glass 
transition temperature Tg are independent of the 
substance, which holds roughly as shown in the 
preceding report, 1 the change in heat capacity 
LJC/nter at Tg for a molar unit having three 
external degrees of freedom should have the 
same value for any substance. This result is 
identical with the statement presented by 
Wunderlich5 based on the hole theory of Hirai 
and Eyring. 5 In Wunderlich's treatment, how­
ever, the choice of a unit seems uncertain, 
whereas in the present case such a structural 
unit may be determined, for example, by the 
method described in the previous paper. 3 Trans­
forming eq 11, we obtain the expression for 
JC/inter as 

LIC/inter=R'I'g vg' (L1a')2/ LIS' 

=R v/ Lia' ( 1-a/; ai')P{1 

x{l-(a//at')(P{if P{g)}-1 (19) 

where V', a', S', and P/ are defined as V/a 3N, 
(oln V'joT);, pr;;*z'ja3, and Pia3/s*z', respectively 
(therefore P;' =Ta'/S' at P=O). On the other 
hand, it follows from eq 17 that an alternative 
form for LIC/ inter is given by 
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LIC/inter=RKs(Vg-1 +s)-2 VgL1a' (20) 

This section will end with a convenient esti­
mate of the excess enthalpy H,inter based on the 
expression for U2 given by eq 15 with eq 16. 
It is assumed here that a perfect crystalline 
state, the reference state, may be described as 
the case of V= I in the hole model, i.e., as the 
case in which the hole fraction is zero. The 
excess enthalpy H,inter relative to the crystal 
may then be given as 

=-t*Nz'K{s(V-1 +s)-1 - I} 

=t*Nz'K(V-1)/(V-l+s) (21) 

for the liquid state, where U1inter is U2 in the 
liquid state and Uc is that in the crystalline 
state, and 

H/nter~c* Nz' K( Vg- I )/(Vg-1 +s) (22) 

for the glassy state. 

Cpintra and H.intra_A Simple Model for the 
Con/ ormational Energy of Chain Backbones 

In this section, we will make a simple analysis 
of the change in heat capacity at Tg and the 
excess enthalpy attributable to intrasegmental 
interactions. Both these quantities may be 
related to the hindered rotation about polymer 
chain backbones, since other degrees of freedom 
of intrasegmental interactions may show almost 
the same features in different states, i.e., in the 
liquid, glassy, and crystalline states, at the same 
temperature. 

We now represent the partition function J(T)R 
for the hindered rotations about chain backbones 
with the simplest rotational-isomeric approxima­
tion as follows 

J(T)R ={i:w; exp (-t;jkT)) m 

i=l 

(23) 

where each unit of the main chain has w; rota­
tional isomers which have the energy c;, hence 

n 
I;w; is the total number of rotational isomers 
i=l 

for each unit, and m is the total number of rota­
tional units in the system. Thus the enthalpy, 
H(T)R associated with chain conformation may 
be derived from the partition function, eq 23, 
as 

H(T)R = -kT2(o In JRjoT) 
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n n 
=m.I:; {w;s; exp (-s;f kT))/ I;w; exp (-s;f kT) 

i=l ;io=l 

(24) 

The heat capacity CPR associated with the rota­
tion of chain backbones may then be expressed 
as 

cpR=(aHR/aT) (25) 

and the excess enthalpy H,intra as 

H/ntra={H(T)R-HcR in the liquid state (26) 
H(Tg)R-HcR in the glassy state 

Here, H 0 R denotes HR in the crystalline state, 
and it is assumed that in the glassy state the 
rotation about chain backbones is frozen-in in 
the conformational state at which the glass has 
been formed. Accordingly, CPR of the grassy 
state is zero. Hence the quantity ,JCPintra may 
be equal to CPR of the liquid state at Tg, 

Considering the case of two isomers of different 
energies (n=2), and assuming that in the crys­
talline state every rotational unit is in the con­
formational state 1 (i=l), we have from eq 24, 
25, and 26 

H/ntra=mL1sw exp (-,ds/kT)/{1 +w exp (L1s/kT)) 

(27) 

for the liquid state, and 

L1C/ntru=mk(L1s/kT)"w exp (-L1s/kT)/ 

X {1 +w exp (-L1s/kT)) 2 (28) 

where L1s=s2-s1(s1 :c;;;s2), and w=w2/W1, From 
these equations we readily derive the relations 
at Tg represented by 

LJs/kT= T LJC/ntrnjH/ntra+H/ntrujmkT (29) 

w=(LJHintra) 2 exp (L1s/kT)/(mkT2 LJC/ntru) 

(30) 

ANALYSIS OF EXPERIMENTAL OBSER­

VATIONS AND DISCUSSION 

LJC/nter and Heinter 

In Table I, we show the values of TV(L1a) 2/ 
L1CpL1/3 for polymers calculated from published 
data. The value of TV(L1a)"/ L1CPL1p, which is 
,JC/nter/LJCP according to the present theory (eq 
12), is less than unity and about 0.6 in most 
cases. This fact agrees with the theoretical 
prediction represented by eq 12. The fact that 
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this ratio is less than unity implies, in general, 
that two or more "ordering parameters" are 
necessary to specify a glassy state. 7 The present 
theory has essentially two ordering parameters: 
one is the hole fraction representing interseg­
mental interactions and the other represents the 
state of chain conformation. 

We now evaluate ,JC/inter and ,JC/inter with 
the average values of the reduced variables for 
some polymers which were obtained in the 
preceding paper. 1 Required values for the cal­
culation are as follows: V/=1.083, V//a 3N= 
0.997, a/ =2.27, ai' =5.10, i'; 1=0.616, and 
P{g=0.386. (Pi1 and P{g are the averages for 
poly(vinyl acetate)8 and poly(methyl methacry­
late ). 9) Considering L1Cv inter/ LJC/nter=,L1Cv' inter; 
,dCP'inter, aifag=ai'/ag', and Pil/Pig=P{if P{g, 
and using eq 14 and 19 with the above values, 
we have 

LJC/inter=3.61R=7.18 cal/mol 

,JC/ inter/ ,JC/ inter=0.1635 

,JC/inter= 1.17 3 cal/mol 

LJC/inter _ ,JC/inter=LJ(TVa2/ /3)=6.0l cal/mol 

On the other hand, using eq 14' and 20 with 
eq 16, we have 

,JC/inter=2.12R=4.22 cal/mol 

,JC/inter/ LJC/inter=0 .0694 , 

where we used s=I0/12 and the theoretical 
value 0. 707 for Pig/Pi! calculated from the ex­
pression for U2 of eq 15 in the preceding pa per. 1 

The value of ,JC/inter obtained from eq 20 is 
much lower than that from eq 19, probably be­
cause the model for U2 (eq 15) gives the lower 
value of (aU2/aV)v•,T· This may be also respon­
sible for the fact that the constant cell volume 
model in the previous paper3 gives a lower value 
of Pi[, The latter value for LJC/inter/LJC/inter 
is much lower than the former because it is 
sensitive to the ratio Pil/Pig, to which the theory 
gives a value lower than the experimental one. 1 

According to the present analysis, a consider­
able amount of ,JC/inter is expected and we 
cannot regard L1Cv as the change in heat capaci­
ty L1Cvintra associated with intrasegmental in­
teractions only. In other words, the quantity 
L1Cv may include the change in heat capacity 
arising from the changeability of the mean posi-
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Table I. Various thermodynamic 

Polymer Tg, Vg, crix 104, ag X 104, Pl X 105, pgX 105, 
OK cc/g OK-1 OK-1 cm2/kg cal/deg g 

Polystyrene• 362 0.97 5 .45h 2.46h 4.72h 3.16h 
Poly(methyl methacrylate)h 384 0.855 5.52 2.58 5.07 3.84 

Poly(vinyl chloride) {: 353 0.75 3.76 1.61 3.89 3.30 
348 0.725 5.70 1.99 4.23 2.42 

Poly(vinyl acetate) {! 294 0.836 5.93 2.28 3.84 2.32 
298 0.855 ,:Ia 4.0 Llp l .56i 

• ref 10, h ref 9, 0 ref 11, d ref 9 and 12, 0 ref 13, r ref 5, g ref 8, h ref 14, i ref 15. 

0.15 
/-a- .. .., 

o, .. o.... d, 
z 

~~0.10 --x 
- Mo- - -o-- - - o ... .,o to. 

z 

io.o5 

glassy 

\1 =1086 
I 
0 
I 

2 3 4 5 6 7 
TX 102 

Figure 1. Calculated reduced excess enthalpy Heinterjs*z'N associated with intersegmental 
interactions and experimental excess enthalpy He of polysytyrene divided by s*z1N: --, 
curve for H,interjs*z1N calculated from eq 21 and 22; O, experimental value of H,/s*z'N 
for polystyrene10 (s*z'N=ll8 cal/g)3• 

tion of the center of the segment in the liquid 
state, in addition to the change in heat capacity 
for intrasegmental degrees of freedom associated 
with the hindered rotation about main chains. 

In Table I, the values of the change in vari­
ous kinds of heat capacity at Tg for several 
polymers are shown, being calculated from 
published data with eq 11 and 14. Such values 
as LlC/nter, LlCvinter, and L1Cpintra are greatly 
dependent on the values of ag/a1 and P;g/Pn, 
and therefore it is very difficult to obtain these 
values accurately. For the same reason the 
constancy of the obtained values of LlC/inter in 
Table I is poor because the the principle of 
corresponding states for the equation of state 
is not sufficiently well satisfied. 

The theoretical results for H/nter expressed 
by eq 21 and 22 are illustrated in Figure 1, 
being compared with the experimental total ex-

442 

cess-enthalpy for polystyrene10 derived by s* Nz'. 
The value of s* Nz' used is that obtained in the 
previous paper,3 and the total excess enthalpy 
was estimated by converting the observed excess 
enthalpy relative to the 39-% crystalline to 100-%. 
The calculated curve of H/nter;s*z'N for poly­
styrene glass is evaluated from eq 22 with Vg/Vg * 
= 1.097 given in the preceding report. 1 The excess 
enthalpy H/ntcr arising from intersegmental in­
teractions associated with the hole is about two 
thirds of the total excess enthalpy H.. The 
remaining portion of the excess enthalpy H.­
H/nter may be attributed to intrasegmental inter­
actions, namely, the conformational energy of 
hindered rotation about chain backbones. 

LJC/ntra and Hintra 

Subtracting the calculated H.inter from the 
observed H., we have the values of H/ntra for 
polystyrene and show them in Figure 2. The 
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quantities at glass transition 

LICp, JC pinter, LJCplinter, 

cal/deg g cal/deg g cal/mo! 

0.075 O.O48s 7 .09 
O.O86c 0.0561 8.14 

O.O68f O.O33a 
0.0481 

O.10h 0.0521 4.84 
0.0632 5.87 

0 

250 300 350 400 450 500 
T ('Kl 

Figure 2. Excess enthalpy Heintru associated with 
intrasegmental interactions for polystyrene: --, 
curve of H,intra calculated from eq 27 with Lio= 
I. 76kcal/mol and w=l. 76; O, values of H.inter 

calculated by substracting the calculated H.inter 

(eq 21 and 22) from the experimental H,. 10 

value of H/ntra at Tg, 362 ° K, thus obtained is 
4.49 cal/g. The value of L/C/ntra for polystyrene 
is estimated to be 0.0263 cal/deg g as shown in 
Table I. Using eq 29 and 30 with these values 
of H/n'ra at Tg and L/Cpintra, and taking a half 
of a repeating unit as a rotational unit, we 
have 1. 76 kcal/mo! for Lls and 1. 76 for w. With 
these values, H,intra in the liquid state is cal­
culated from eq 27 and illustrated by a solid 
line in Figure 2. The calculated curve shows 
the reasonable increase in H,intra above Tg. The 
value of Llc obtained her~ is fairly close to the 
1.67 kcal/mo! evaluated by Gibbs and DiMarzio2 

with their theory of glass transition in which 
w=2. Although the physical meanings of Lls 
and w obtained experimentally are not sufficiently 
clear due to the simplicity of the model, the 
values for Lls and w obtained above appear to 
show reasonable magnitudes. Therefore the 
value of H/ntra estimated as H,-H,1nter may 
reasonably be expected, and hence H,1nter eva­
luated by eq 21 and 22 may also be said to 
give reasonable magnitude and temperature 
dependence. 
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LJCvinter, JCpintra =LICp-L/Cpinter TV(Lla)2/ 

cal/deg g cal/deg g LICpLlfJ 

0.0050 0.0263 0.65 
O.Olls 0.0299 0.65 
0.0093 0.0341 0.49 
0.0039 0.0199 0. 71 
0.0040 0.0470 0.52 

0.O36s 0.63 
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LIST OF SYMBOLS 

Cp, heat capacity at constant pressure 
Cv, heat capacity at constant volume 

C/, heat capacity at constant pressure of a 
molar unit having three external degrees 
of freedom 

Cv', heat capacity at constant volume of a 
molar unit having three external degrees 
of freedom 

c, one third of external degrees of freedom 
c, as subscript designate the crystalline state 
F, Helmohltz free energy 
g, subscript and superscript for glassy state 

( except in Tg, Tg, Vg, Vg *, and Vg', 
where g refers to glass transition point.) 

g, as subscript in Tg, Tg, Vg, Vg, Vg *, and 
Vg' designate the glass transition point. 

H., excess enthalpy relative to the crystal 
H(T)R, enthalpy associated with the hindered 

rotation about chain backbones 
inter, superscript for intersegmental interactions 
intra, superscript for intrasegmental interactions 

J(T)R, partition function associated with the 
hindered rotation about chain backbones 

K, function defined by eq 16 
k, Boltzmann's constant 
I, subscript and superscript for liquid state 

M, total number of lattice sites in system 
m, total number of rotational units in system 
N, tatal number of segments in system 

NA, Avogadro's number 
n, number of rotational isomers having 

different energies per rotational unit 
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P, pressure 
P, reduced pressure, Pa3/s*z' 

P;, internal pressure, (aU/aV)r 
P;', reduced internal pressure defined as P;' 
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=P;a3/s* z' 
R, gas constant per mole 
S, entropy 
s, ratio of cordination number of a seg-

ment to a lattice site, z'/z 
T, temperature 
f, reduced temperature defined as t= 

ckT/s*z' 
U, internal energy 
V, volume 
v, reduced volume defined as V=V/V*= 

M/N 
V*, volume of cells occupied by segments, 

v*N 
V', reduced volume defined as V' = V/a3 N 
v*, volume of a cell 
w, ratio of w2 to w1 , W2/W1 

w;, number of rotational isomers per rota­
tional unit which have energy si 

z, coordination number of a lattice site 
z'; coordination number of a segment 

thermal expansion coefficient a, _, 
a, reduced quantity of thermal expansion 

coefficient defined as a'= ( a In V' / a T)-:; = 
as*z'/ck 

(3, isothermal compressibility 
S', reduced isothermal compressibility defined 

as S' = ps*z' /a3 

Ll, difference between the liquid and glassy 
states (except in Lls) 

s*, potential energy at minimum of poten­
tial energy curve of Lennard-Jones 12-6 
potential 

s;, potential energy of rotational isomer i 
difference in potential energy between 

two rotational isomers 2 and 1, s2-s1 

(s2~s1) 

a, distance between segment centers at 
which potential energy is zero in Len­
nard-Jones 12-6 potential 

1, as subscript designates the intrasegmental 
interactions ( except in s1 and w1) 

2, as subscript designates the intersegmental 
interactions (except in s2 and w2 ) 
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