# Estimation: Understanding confidence interval 

h Cook, A Sheik

Adrian Cook
Statisticia

## Aziz Sheik

NHS R\&D National Primar ©are Training Fello IDepartment of Primary Healt Care \& General Practic Ifmperial College School o Medicin

Correspondence to
Adrian Coo
Diepartment of Primary Healt
Eare \& General Practic
I,CSM Charing Cross Campus
Reynolds Building
St Dunstan's Road,
Pondon, W6 8R
kd.cook@ic.ac.u

Date submitted: 19/7/0
Date accepted: 17/10/0
Prim Care Respir J 2000
9(B); 48-5

## INTRODUCTIO

The previous paper of this series described hypothesi testing, showing how a p-value indicates the likelihood of a genuine difference existing betwee two or more groups. An alternative to using p-value abone, to show whether or not differences exist, is $t$ report the actual size of the difference. Since a difference observed between groups is subject to random variation it becomes necessary to present no odly the difference, but also a range of values aroun the observed difference within which it is believed th true value will lie. Such a range is known as a confidence interval

Confidence intervals may be calculated for means proportions, differences between means or proportions, relative risks, odds ratios and many othe symmary statistics. Here we describe in detail onl ohe simple calculation, that of a confidence interva for a proportion. Using examples from the literatur we look at the interpretation of other confidence istervals, and show the relationship between p-value and confidence intervals

## WHYUES ALONE ARE NOT ENOUG

P-values express statistical significance, but statistically significant results may have little clinica segnificance. This is particularly the case with larg studies that have power to detect very small dèfferences. For example, an improvement in averag paak flow of $1 \mathrm{l} / \mathrm{min}$, when comparing interventio and control groups, may be statistically significant bu clearly has little clinical benefit

Adfurther drawback of p -values is the emphasis place on $\mathrm{p}=0.05$, a value chosen purely by convention bu which has spawned a tendency to dismiss anythin larger and focus attention on smaller values only. B
presenting instead a confidence interval, one require the reader to think about what the values actuall mean, thus interpreting the results more fully

## cNLCULATING THE CONFIDENCE INTER FOR A PROPORTIO

Kaur $k t$ a carried out a prevalence study of asthm symptoms and diagnosis in British 12-14 year olds ${ }^{1}$ From a sample of 27,507 children, $20.8 \% ~(n=5,736$ reported 'ever having' asthma. Assuming the sampl te be representative, the true national prevalenc should be close to this figure, but it remains unknow and a different sample would probably yield a slightly
different estimate. To calculate a range likel to contain the true figure, we need $t$ know by how much the sample proportion is likely $t$ vary. Put more wechnically, we need $t$ know the standard deviation of the sample statistic This is known as the standard error

One way of finding the standard error would be t take several more samples, calculate the proportio 'eiver having' asthma separately in each sample, the calculate the standard deviation of these proportions Fsortunately, such labour is unnecessary because it ha been shown that most summary statistics follow normal distributions, particularly when sample size afe large. Furthermore, the standard deviations o these distributions are directly related to the standar deviation of the original data. The situation is illustrated in Figure 1, which shows a possible distribution of data, together with the expected distribution of mean values generated by data samples

Wath data from a normally distributed variable, 95 of observations should lie within two standard deviations of the mean. Having said that a sample statistic is expected to be normally distributed, it

Fingure 1. Expected distribution of a sample mea


Trable 1. Formulae for calculating standard erro

| Summary statisti | 历ormul | Symbo | \$tandard error (SE |
| :---: | :---: | :---: | :---: |
| Mea | $\frac{\bullet}{n}$ | $\bar{x}$ | $\frac{d(x)}{\sqrt{n}}$ |
| Rroportio | $\frac{\text { sase }}{\text { sases }+ \text { noncase }}$ | p | $\sqrt{\frac{p(-1 p)}{n}}$ |
| Sifference in mean | $\frac{\bullet x_{1}}{n 1}-\frac{\bullet x_{2}}{n 2}$ | $\overline{x_{1}}-\overline{x_{2}}$ | $\sqrt{\frac{d(x 1)^{2}}{n 1}+\frac{d(2)^{2}}{n 2}}$ |
| Bifference in proportion | $\frac{\text { sase } 1}{\text { sase } 1 \text { t noncase } 1}-\frac{\text { sase } 2}{\text { sase } 2 \text { t noncase } 2}$ | $\begin{array}{ll} p 1 \not p \quad 2 \end{array}$ | $\sqrt{\frac{p 1(-1 p 1)}{n 1}+\frac{p_{2}(-1 p 2)}{n 2}}$ |
| Relative ris | $\frac{\text { sase } 1 甘(\text { case } 1 \pm \text { noncase } 1)}{\text { sase } 2 \mathbb{H}(\text { case } 2 * \text { noncase } 2)}$ | R | $\sqrt{\frac{1}{\text { sase } 1}-\frac{1}{\text { sase } 1+\text { noncase } 1}+\frac{1}{\text { sase } 2}-\frac{1}{\text { sase } 2+\text { soncase } 2}}$ |
| Qdds rati | $\frac{\text { sase } 1 \text { bnoncase } 1}{\text { sase 2knoncase } 2}$ | Q | $\sqrt{\frac{1}{\text { sase } 1}+\frac{1}{\text { Noncase } 1}+\frac{1}{\text { sase } 2}+\frac{1}{\text { Noncase } 2}} \text { * }$ |

follows that on $95 \%$ of occasions it will be less tha tivo standard errors from its true value. The probabil tyr of the range formed by the sample statistic plus o nsinus two standard errors containing the true value i therefore $95 \%$. This range is the $95 \%$ confidence imterval. Formulae for the standard error of commo summary statistics are in Table 1, those for other statistics are usually readily available in textbooks. Fo thre example of asthma prevalence, the standard erro can be calculated as $0.25 \%$ giving a $95 \%$ confidenc irsterval of $20.3 \%$ to $21.3 \%$. The narrowness of thi confidence interval reflects the large sample size, illustrating how certainty in a result grows as the number of observations increase, resulting in smalle standard errors and narrower confidence intervals

## ENTERPRETING CONFIDENCE INTERVAL GOR RELATIVE RISK

Wald and Watt compared all-cause mortality amon different types of smoker with that of lifelong non smokers ${ }^{2}$ Kompared to non-smokers, the relative ris (RR) of mortality among former cigarette smokers wa 1t11 (95\% confidence interval 0.92 to 1.34 ). The bes e§timate of the effect on mortality is an increase o $\mathrm{lt} 1 \%, \mathrm{RR}=1.11$, but the possibility of no effec $(\mathrm{RR}=1.0)$ remains. Among current smokers the rel tize mortality was 2.26 ( $95 \%$ confidence interval 1.9 te 2.58). This confidence interval does not includ $\mathrm{RR}=1.0$ and so we can be confident that mortality i higher among current smokers

Among pipe and cigar smokers who had neve smoked cigarettes, mortality compared to non-smoker was 1.23 ( $95 \%$ confidence interval 0.99 to 1.75 ) Relative mortality is higher than that of ex-smokers but the confidence interval is much wider. The greate ugdth is partly due to the pipe/cigar group bein smaller than the ex-smokers group, one more or on felver death thus has a greater effect on mortality an the wider confidence interval reflects the less stabl result

## AQNEHDENCE INTERVALS AND P-

It may have become apparent that the statistical significance of differences can be gleaned from cgnfidence intervals. A confidence interval containin $1 @$ for a relative risk or an odds ratio means we ar leass than $95 \%$ sure that a genuine difference exists, segnificance test of the difference would thus giv pg 0.05. Similarly a confidence interval not includin 1 d 0 corresponds to $\mathrm{p}<0.05$, while an interval bounde ai one end by 1.0 exactly would give $\mathrm{p}=0.05$. A sim lar situation exists with confidence intervals for differences in means or proportions, the only defference being that no effect is represented by th value 0.0 , rather than 1.0

Tine practice of reporting confidence intervals togethe weith $p$-values is questionable, $p$-values adding littl inoformation for the informed reader. An exception $t$ tleis rule occurs when a large number of confidenc intervals are reported, in this instance the generall discouraged habit of replacing p -values with stars indicating $\mathrm{p}<0.05$ and $\mathrm{p}<0.01$ becomes useful, allowing a rapid overview of results to be made

## GONCLUSION

Here we have outlined the theory and practice of calculating confidence intervals, and give pointers toward their meaningful interpretation

Tsble 2. Relative all-cause mortality of different smoking group

| §moking grou | n | die | R ${ }^{\dagger}$ | 95\% C |
| :---: | :---: | :---: | :---: | :---: |
| Lifelong non-smoke | 853 | 84 | 0.0 |  |
| Frormer cigarette smoke | 546 | 26 | 1.1 | 4.92 to 1.3 |
| Pipe/cigar smoke rsever smoked cigarette | 930 | 31 | 3.2 | 6.99 to 1.7 |
| $\mathfrak{C}$ urrent cigarette smoke | \$18 | 64 | B. 2 | 8.97 to 2.5 |

## Statistical Notes I

Cdinical significance may be gauged both from th pbint estimate of the difference, and consideration o the confidence limit's upper and lower bounds Whether or not a confidence interval contains unity fo aerelative difference, or zero for an absolute differenc reveals statistical significance. Because they conve both aspects of significance, confidence intervals hav become the strongly preferred way of presentin results

## Acknowledgement

ASS is supported by an NHS R\&D National Primar Care Training Fellowship

## Becommended readin

Gardner MJ, Altman DG. Statistics with confidence London: BMJ, 1993

Reference
1 Kaur B, Ross Anderson H, Austin J bt a aPrevalence of asthm symptoms, diagnosis, and treatment in 12-14 year old childre across Great Britain (international study of asthma and allergie in childhood, ISAAC UK). $\mathbb{B M} \quad 1998 \mathbf{6 1}: 118-24$
2. Wald NJ, Watt HC. Prospective study of effect of switching fro cggarettes to pipes or cigars on mortality from three smokin related diseases. $\boldsymbol{B} M \quad 1997 \mathbf{3 1}: 1860-3$

## Erratu

In the June 2000 issue of the Primary Care Respiratory Journa , keference: Cropper JA, Frank TL, Fran PI, Hannaford PC. Primary care workload and prescribing costs in children. The impact of respiratory symptoms. Hrim Care Respir 2000; 9(1);8-11. The table should read as follows

Table 2: Parcentage of children having at least one consultation or prescription $i$ primary care by positive response

|  | Wositive response categor |  |  |  | $c^{2}$ test for linear tre $d^{a}$ | $\underline{p v a l} \mathrm{e}^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 2- | 3 | $5-$ |  |  |
| Dotal in each grou | 56 | 76 | 29 | 98 |  |  |
|  |  |  |  |  |  |  |
| \$otal surgery consultation | 92.7 | 98.8 | 96.4 | 98.4 | 9.8 | 0.02 |
| Isower respiratory consultation | 29.1 | 98.7 | 66.0 | 9/8.3 | 206.0 | 40.00 |
| spper respiratory consultation | 5d. 5 | 59.8 | 7/2. 4 | 9/4. 1 | 25.2 | ¢0.00 |
| Ison-respiratory consultation | 89.1 | 93.4 | 90.1 | 93.7 | 7.2 | $\theta .25$ |
|  |  |  |  |  |  |  |
| \$otal home visit | 964.5 | \%6. 1 | 58.1 | 55.0 | 53.9 | 0.00 |
| Lsower respiratory home visit | 960 | 504 | 98.2 | 23.3 | 62.9 | 40.00 |
| Ispper respiratory home visit | 98.8 | 26.3 | 93.8 | 92.3 | \$0.2 | 0.00 |
| Ison-respiratory home visit | 98.2 | 24.5 | 23.4 | 28.5 | 9.8 | 0.16 |
| Isnknown cause home visit | \%\%8 | \%88 | 90.4 | 90.1 | 6.3 | 0.03 |
|  |  |  |  |  |  |  |
| \$otal number of prescription | 84.2 | 94.6 | 92.7 | 98.4 | 85. | 40.00 |
| Ison-respiratory prescription | \% 0.3 | 83.2 | 82.3 | 86.2 | 11.4 | 0.00 |
| Bespiratory prescription | 68.3 | \$/2.4 | 86.4 | 93.6 | 80.1 | 40.00 |
| BNF $31{ }^{\text {b }}$ prescription | 9.1 | 93.7 | 50 | 65.1 | 568.6 | 40.00 |
| BNF $32{ }^{\text {c }}$ prescription | \%8 | 9\%6 | 20.3 | 98.7 | 412.8 | ¢0.00 |
| BNF $51{ }^{\text {d }}$ prescription | 55.7 | 68.1 | 9\%.0 | 83.1 | 38.1 | 40.00 |
| BNF $63{ }^{\circ}$ prescription | O\%6 | \% | 803 | $9 \% 0$ | 25.5 | \%0.00 |




